CN110312573B - 使用纳米粒子模板的2d纳米片的模板辅助合成 - Google Patents
使用纳米粒子模板的2d纳米片的模板辅助合成 Download PDFInfo
- Publication number
- CN110312573B CN110312573B CN201780081226.0A CN201780081226A CN110312573B CN 110312573 B CN110312573 B CN 110312573B CN 201780081226 A CN201780081226 A CN 201780081226A CN 110312573 B CN110312573 B CN 110312573B
- Authority
- CN
- China
- Prior art keywords
- template
- nanoplatelets
- nanoparticle
- transition metal
- crystal structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 70
- 239000002064 nanoplatelet Substances 0.000 title claims abstract description 67
- 230000015572 biosynthetic process Effects 0.000 title description 10
- 238000003786 synthesis reaction Methods 0.000 title description 8
- 239000000463 material Substances 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000002055 nanoplate Substances 0.000 claims abstract description 25
- 238000004299 exfoliation Methods 0.000 claims abstract description 18
- 238000009830 intercalation Methods 0.000 claims abstract description 15
- 230000002687 intercalation Effects 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 20
- 150000003624 transition metals Chemical class 0.000 claims description 18
- 229910052723 transition metal Inorganic materials 0.000 claims description 17
- 229910016001 MoSe Inorganic materials 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 239000002135 nanosheet Substances 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000002096 quantum dot Substances 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 5
- 239000002110 nanocone Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 9
- 230000002194 synthesizing effect Effects 0.000 abstract description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 49
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 24
- 239000002356 single layer Substances 0.000 description 23
- 239000000243 solution Substances 0.000 description 20
- 239000004065 semiconductor Substances 0.000 description 19
- 239000010410 layer Substances 0.000 description 18
- 238000005424 photoluminescence Methods 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 12
- 229910021389 graphene Inorganic materials 0.000 description 11
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 10
- 238000006862 quantum yield reaction Methods 0.000 description 9
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- -1 Polytetrafluoroethylene Polymers 0.000 description 8
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 8
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 229940038384 octadecane Drugs 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 238000000103 photoluminescence spectrum Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 239000002060 nanoflake Substances 0.000 description 5
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000011257 shell material Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000013590 bulk material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 230000020477 pH reduction Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 238000005287 template synthesis Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910005913 NiTe Inorganic materials 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000001787 chalcogens Chemical group 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910005543 GaSe Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 240000000233 Melia azedarach Species 0.000 description 1
- 229910018661 Ni(OH) Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910005642 SnTe Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- OSOKRZIXBNTTJX-UHFFFAOYSA-N [O].[Ca].[Cu].[Sr].[Bi] Chemical compound [O].[Ca].[Cu].[Sr].[Bi] OSOKRZIXBNTTJX-UHFFFAOYSA-N 0.000 description 1
- SKMZXFQZLKAAJT-UHFFFAOYSA-N [Si]=[SiH2] Chemical compound [Si]=[SiH2] SKMZXFQZLKAAJT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- QHASIAZYSXZCGO-UHFFFAOYSA-N selanylidenenickel Chemical compound [Se]=[Ni] QHASIAZYSXZCGO-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/06—Sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/057—Selenium or tellurium; Compounds thereof
- B01J27/0573—Selenium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/67—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
- C09K11/671—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/67—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
- C09K11/68—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
- C09K11/681—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/12—Liquid-phase epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/024—Group 12/16 materials
- H01L21/02403—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02568—Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
- H01L29/151—Compositional structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/24—Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/42—(bi)pyramid-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/024—Group 12/16 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02417—Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02527—Carbon, e.g. diamond-like carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02535—Group 14 semiconducting materials including tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Dispersion Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种用于合成2D纳米片的模板辅助方法,所述方法包括在用作纳米片生长模板的纳米粒子基底表面上生长2D材料。然后可以从模板表面释放2D纳米片,例如通过化学插层和剥离,纯化,并且可以重复使用模板。
Description
相关申请的交叉引用:
本申请要求2016年12月30日提交的美国临时申请系列号62/440,745的权益,其内容通过引用整体结合于此。
关于联邦政府资助研究或开发的声明:不适用
发明背景
1.发明领域
本发明总体上涉及纳米粒子。更特别地,其涉及使用模板合成二维(2D)层状材料(或“纳米片”)。
2.包括根据37 CFR 1.97和1.98公开的信息的相关领域的描述。
通过机械剥离石墨的石墨烯的分离[K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubnos,I.V.Grigorieva和A.A.Firsov,Science,2004,306,666]已经引起了对二维(2D)层状材料的强烈兴趣。石墨烯的性质包括优异的强度以及高的导电性和导热性,同时重量轻、柔韧并且透明。这提供了一系列潜在应用的可能性,包括高速晶体管和传感器、阻隔材料、太阳能电池、蓄电池和复合材料。
其他种类的令人感兴趣2D材料包括过渡金属二硫属化物(transition metaldichalcogenide,TMDC)材料,六方氮化硼(h-BN),以及基于第14族元素的那些,诸如硅烯(silicene)和锗烯(germanene)。这些材料的性质的范围可以从半金属,例如NiTe2和VSe2,到半导体,例如WSe2和MoS2,到绝缘,例如h-BN。
对于范围从催化到传感、储能和光电设备的应用来说,TMDC材料的2D纳米片越来越令人感兴趣。
TMDC单层是MX2型的原子厚度半导体,其中M是过渡金属原子(Mo、W等)并且X是硫属元素原子(S、Se或Te)。单层的M原子夹在两层X原子之间。MoS2单层的厚度为在2DTMDC中,半导体WSe2和MoS2是特别令人感兴趣的,因为当材料的大小减小到单层或少层(few-layer)时,由于量子限制效应而产生另外的性质,同时在很大程度上保留了它们的本体性质。在WSe2和MoS2的情况下,这些包括当厚度减少到单个单层时展现出间接到直接的带隙跃迁,伴有强烈的激子效应。这导致光致发光效率的明显增强,为这样的材料在光电设备中的应用开辟了新的机会。其他令人感兴趣的材料包括WS2和MoSe2。
石墨烯的发现说明了当宏观尺寸的本体晶体(bulk crystal)减薄到一个原子层时,如何可以出现新的物理性质。与石墨一样,TMDC本体晶体由通过范德华引力彼此结合的单层形成。TMDC单层具有与半金属石墨烯明显不同的性质。例如,TMDC单层MoS2、WS2、MoSe2、WSe2、MoTe2具有直接带隙,并且可以在电子设备中用作晶体管并且在光学器件中用作发射器和检测器。第4族至第7族的TMDC主要以层状结构结晶,导致在其电学、化学、机械和热学性质方面的各向异性。每层都包括通过共价键夹在两层硫属元素原子之间的金属原子的六方堆积层。相邻的层通过范德华相互作用弱结合,其可以容易地通过机械或化学方法破坏以产生单层和少层结构。
TMDC单层晶体结构不具有反转中心,这允许获得新的电荷载子自由度,即k-能谷(k-valley)指数,并且开辟了新的物理学领域:“能谷电子学(valleytronics)”。
TMDC单层中的强自旋-轨道耦合导致价带中数百兆电子伏(meV)和导带中数兆电子伏的自旋轨道分裂,这允许通过调谐激发激光光子能量来控制电子自旋。
自从发现直接带隙以及在电子学和能谷物理学中的潜在应用以来,TMDC单层的工作是新兴的研究和开发领域。TMDC可以与其他2D材料(例如石墨烯和六方氮化硼)组合以制造范德华异质结构器件。
半导体可以吸收能量大于或等于其带隙的光子。这意味着吸收波长较短的光。如果导带能量的最小值在k-空间中与价带的最大值处于相同位置,即带隙是直接的,则半导体通常是有效的发射器。低至厚度为两个单层的本体TMDC材料的带隙仍然是间接的,因此与单层材料相比,发射效率较低。TMDC单层的发射效率比本体材料高约104倍。TMDC单层的带隙在可见光范围内(400nm至700nm)。直接发射显示由自旋-轨道耦合能量分开的两个跃迁(称为A和B)。能量最低因此在强度上最重要的是A发射。由于它们的直接带隙,TMDC单层是有前景的用于光电应用的材料。
在其多层形式中,MoS2是银黑色固体,作为矿物辉钼矿(钼的主要矿石)存在。MoS2是相对不活跃的。它不受稀酸和氧气影响。MoS2在外观和感觉上类似于石墨。由于其低摩擦性和坚韧性,它被广泛用作固体润滑剂。作为TMDC,MoS2拥有一些石墨烯的理想品质(诸如机械强度和导电性),并且可以发光,开辟了可能的应用诸如光电探测器和晶体管。
对于高性能应用来说,需要平坦、无缺陷的材料,而对于在蓄电池和超级电容器中的应用来说,缺陷、空隙和孔洞是合乎需要的。
可以使用“自上而下”和“自下而上”的方法制备单层和少层2D纳米片。自上而下的方法涉及从本体材料(bulk material)中机械地或化学地移除层。这样的技术包括机械剥离、超声辅助液相剥离(LPE)和插层技术。自下而上的方法(其中由其组成元素生长2D层)包括化学气相沉积(CVD)、原子层沉积(ALD)和分子束外延(MBE)以及基于溶液的方法(包括热注入)。
在现有技术中已经描述了许多合成2D纳米片的方法,其中最常见的包括机械剥离、LPE和CVD,少数报道为主要利用热注射技术的基于溶液的方法。虽然机械剥离提供高度结晶的薄片,但是该方法产率低,厚度控制差,并且不可扩展(unscalable)。LPE提供了可扩展的制备2D纳米片的途径,并且可以在环境条件下使用比其他技术更少的危险化学品进行。然而,与机械剥离一样,它提供差的厚度控制,而且反应产率低,并且产生小的薄片。差的反应产率也是CVD合成的典型特征。该方法的优点包括大的面积可扩展性、均匀性和厚度控制。然而,所得材料的质量与机械剥离薄片的质量是不可比的,其中由此制备的薄片通常很小并且显示出差的长期稳定性。基于溶液的合成方法越来越受到关注,并且可能控制所得2D材料的尺寸、形状和均匀性。然而,需要进一步改进以提供可扩展的合成方法的最终组合,其产生具有所需的结晶相、可调的窄的尺寸和形状分布并且用挥发性配体封端的薄片。
Son等人已经描述了在ZnO上生长单层石墨烯以形成准核/壳纳米粒子[D.I.Son,B.W.Kwon,D.H.Park,W.-S.Seo,Y.Yi,B.Angadi,C.-L.Lee和W.K.Choi,Nat.Nanotechnol.,2012,7,465]。然而,并未讨论从ZnO表面分离石墨烯纳米片。
MoS2是当多层形式转变为单层时从间接带隙直接转变为直接带隙的材料的实例。单独离散单层的合成是困难的,特别是当还需要控制单层的尺寸时,因为这也影响带隙。最近,已经形成可以分裂成单层的QD,从而提供一些控制。然而,该方法产生具有不同尺寸的片材。此外,在不是所有QD都具有相同的尺寸的情况下,分散性变得甚至更大。为了获得单独的单层片材,需要两步法,首先进行QD形成,然后进行单层插层以提供单独的片材。
因此,需要可扩展的合成2D纳米片的方法,其提供对材料的尺寸、形状和均匀性的高度控制。
发明概述
在本文中,描述了合成2D纳米片的模板辅助方法,其中2D纳米片生长在用作纳米片生长模板的基底表面上。然后可以从模板表面释放2D纳米片,例如通过化学插层和剥离,并且可以重复使用模板。
在一个实施方案中,用于制备2D纳米片的方法包括提供纳米粒子模板,在纳米粒子模板的表面上生长2D纳米片,从纳米粒子模板的表面移除2D纳米片,并且将2D纳米片与纳米粒子模板分离。
在一个实施方案中,纳米粒子模板包括具有第一晶体结构的材料,并且2D纳米片包括具有第二晶体结构的材料,其中第一晶体结构和第二晶体结构之间的晶格失配为约5%以下,例如,约3%或以下。
在一个实施方案中,纳米粒子模板具有六方晶体结构。
在一个实施方案中,纳米粒子模板可以是半导体纳米粒子、金属纳米粒子、金属氧化物纳米粒子或聚合物纳米粒子。在一个实施方案中,纳米粒子模板是量子点。在另外的实施方案中,纳米粒子模板是纳米锥(nanopyramid)。
在一个实施方案中,2D纳米片是2D纳米薄片。在另外的实施方案中,2D纳米片是2D量子点。
在一个实施方案中,2D纳米片是过渡金属二硫属化物纳米片。
在一个实施方案中,可以通过插层和剥离或通过超声处理从纳米粒子模板的表面移除2D纳米片。
可以通过尺寸选择性分离技术(诸如溶剂极性纯化)将2D纳米片与纳米粒子模板分离。
在一个实施方案中,在ZnO纳米粒子模板上生长过渡金属二硫属化物纳米片。
附图的若干视图的简要说明
图1是示出根据一个实施方案的2D纳米片的模板辅助生长过程的示意图。
图2是ZnO纳米粒子模板(实线)和实施例1的基底结合的MoS2材料(虚线)的紫外-可见吸收光谱。
图3是ZnO模板的高分辨率透射电子显微照片。
图4是实施例1的基底结合的MoS2材料(灰线)和实施例1中制备的水纯化的MoS2材料(实线)的拉曼光谱。
图5是实施例1中制备的基底结合的MoS2纳米片的高分辨率透射电子显微照片。
图6是实施例1的粗剥离材料的紫外-可见吸收光谱和光致发光(PL)光谱。
图7是在实施例1中在水(下)、乙腈(中)和甲苯(上)中提取的材料部分的紫外-可见吸收光谱(实线)和PL光谱(虚线)。
图8是实施例1中制备的水纯化的MoS2材料的透射电子显微照片。
图9是当在N2下储存(圆圈)和酸化(三角形)时,在水中提取的实施例1的材料部分的量子产率(QY)随时间的散点图。
图10是酸处理的纳米片的时间分辨PL光谱的单指数拟合,其用于测量PL寿命。
图11示出了新鲜(刚提取的(as-extracted))和酸化的纳米片的紫外-可见吸收光谱的比较。
发明详述
在本文中,描述了合成2D纳米片的模板辅助方法,其中2D纳米片生长在用作纳米片生长模板的基底表面上。然后可以从模板表面释放2D纳米片,例如通过化学插层和剥离,并且可以重复使用模板。图1中示出了根据某些实施方案的2D纳米片的模板辅助生长的方法。
如本文中使用的,术语“2D纳米片”用于描述厚度为1至10个原子或分子单层的粒子,并且其中横向尺寸大于厚度。术语“纳米粒子”用于描述尺寸在大约1至100nm的量级的粒子。术语“量子点”(QD)用于描述显示出量子限制效应的半导体纳米粒子。QD的尺寸通常但并不排他性地为1至20nm。术语“纳米粒子”和“量子点”并非意在暗示对粒子的形状的任何限制。术语“2D纳米粒子”用于描述横向尺寸在大约1至100nm的量级并且厚度为1至10个原子或分子层的粒子,并且其中横向尺寸大于厚度。术语“2D纳米薄片”用于描述横向尺寸在大约1至100nm的量级并且厚度为1至5个原子或分子单层的粒子。
纳米粒子模板的形状和组成不受限制。在一个实施方案中,纳米粒子模板包括半导体纳米粒子。在另一个实施方案中,纳米粒子模板包括金属氧化物纳米粒子。在另一个实施方案中,纳米粒子模板包括金属纳米粒子。在另一个实施方案中,纳米粒子模板包括聚合物纳米粒子。在一个特别的实施方案中,纳米粒子模板包括QD。
合适的模板材料可以包括:
半导体材料,诸如但不限于:
第12-16族(II-VI)半导体材料,例如ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe和HgTe;
第13-15族(III-V)半导体材料,例如BP、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN和BN;
第13-14族(III-IV)半导体材料,例如B4C、Al4C3和Ga4C;
第13-16族(III-VI)半导体材料,例如Al2S3、Al2Se3、Al2Te3、Ga2S3、Ga2Se3、In2S3、In2Se3、Ga2Te3和In2Te3;和
第14-16族(IV-VI)半导体材料,例如SnS、SnS2、SnSe、SnTe、PbS、PbSe和PbTe;
I-III-VI半导体材料,例如CuInS2、CuInSe2、CuGaS2、CuGaSe2、AgInS2和AgInSe2;
并且包括其掺杂衍生物和合金;
金属纳米粒子,例如Cu、Au、Ag和Pt;
氧化物纳米粒子,例如TiO2、SiO2和ZrO2;和
聚合物纳米粒子,例如聚四氟乙烯(PTFE)。
在将ALD涂层施加到纳米粒子表面的情况下,表面涂层可以是无机材料(例如Al2O3)、有机材料(例如聚乙二醇)或无机-有机杂化材料(例如铝醇盐“alucone”聚合物)。
在一个实施方案中,待制造的纳米片材料包括2D层状材料。合适的实例包括但不限于:
石墨烯;
氧化石墨烯和还原的氧化石墨烯;
过渡金属二硫属化物,例如WO2、WS2、WSe2、WTe2、MnO2、MoO2、MoS2、MoSe2、MoTe2、NiO2、NiTe2、NiSe2、VO2、VS2、VSe2、TaS2、TaSe2、RuO2、RhTe2、PdTe2、HfS2、NbS2、NbSe2、NbTe2、FeS2、TiO2、TiS2、TiSe2和ZrS2;
过渡金属三硫属化物,诸如例如TaO3、MnO3、WO3、ZrS3、ZrSe3、HfS3和HfSe3;
第13-16族(III-VI)化合物,诸如例如InS、InSe、GaS、GaSe和GaTe;
第15-16族(IV-VI)化合物,诸如例如Bi2Se3和Bi2Te3;
氮化物,例如h-BN;
氧化物,例如LaVO3、LaMnO3、TiO2、MnO2、V2O5、TaO3、RuO2、MnO3、WO3、LaNbO7、Ca2Nb3O10、Ni(OH)2和Eu(OH)2;
层状铜氧化物;云母;和铋锶钙铜氧化物(BSCCO);
磷化物,例如Li7MnP4和MnP4;
硅烯;锗烯;和锡烯(stanene)。
在这些材料中,相邻的层通过范德华相互作用保持在一起,其可以通过诸如插层和剥离的技术容易地破坏,以从模板表面移除纳米片。
特别的实施方案包括在纳米粒子模板上合成2D TMDC纳米片的方法。在一个实施方案中,纳米粒子模板材料具有六方晶体结构和与纳米片材料的低晶格失配,从而使得能够进行纳米片壳的均匀单层生长。否则,过度的应变可能导致缺陷或者甚至完全分离的粒子生长。
在MoS2的情况下,与六方ZnO的晶格失配为约3%。通过仔细控制条件,可以制备单分散、宽带隙的ZnO纳米粒子核模板,并且在其上外延生长单层MoS2,从而提供由于MoS2引起的发光。通过控制ZnO纳米粒子核尺寸,因此可以控制外部MoS2尺寸(并且因此控制带隙),从而提供一系列光致发光-(PL-)发射核/壳结构。可以从ZnO纳米粒子表面移除已经形成(as-formed)的纳米片,留下ZnO纳米粒子模板以重复使用。
对于MoS2的生长,据信晶格中的曲率可能导致间接带隙。因此,在一个实施方案中,2D纳米片生长在纳米锥形纳米粒子上,为纳米片生长提供平坦表面。Chen等人先前已经描述了ZnO纳米锥的生长[Y.Chen,M.Kim,G.Lian,M.Johnson和X.Peng,J.Am.Chem.Soc.,2005,127,13331]。
可以使用其他2D壳材料代替MoS2。特别令人感兴趣的材料是具有单层发光的那些材料,诸如MoSe2、WS2和WSe2。可以选择具有类似晶体结构和低晶格失配的其他核结构或合金,诸如GaN至MoS2。
然而,模板的形状不限于纳米锥。在其他实施方案中,2D纳米片在具有弯曲表面的模板上生长。合适的模板的实例包括半导体材料的球形纳米粒子,或聚合物(诸如聚四氟乙烯(PTFE))的球形纳米粒子。球形模板的使用可以有助于从模板表面提起和移除已经形成的纳米片。
在另外的实施方案中,2D纳米片生长在模板的表面上,其中模板包括通过原子层沉积(ALD)沉积的材料层。ALD提供高度保形涂层,因此具有ALD涂层表面的模板可以为2D纳米片生长提供高度均匀的基底,从而合成高度均匀的无缺陷纳米片。
在一个实施方案中,纳米粒子模板包括具有第一晶体结构的材料,并且纳米片包括具有第二晶体结构的材料,其中第一晶体结构和第二晶体结构具有小的晶格失配。在一个实施方案中,第一晶体结构和第二晶体结构之间的晶格失配为约5%以下,例如约3%以下。可能需要小的晶格失配,因为这可以有助于促进纳米片在模板表面上的外延生长,并且防止在模板和2D纳米片之间的界面处的应变。
在一个实施方案中,2D纳米片是2D纳米薄片。在一个实施方案中,2D纳米片是2DQD。QD由于其来源于“量子限制效应”的独特的光学、电子和化学性质而已经得到广泛地研究;当半导体纳米粒子的尺寸降低至低于玻尔半径的两倍时,能级变得量子化,产生离散的能级。带隙随着粒度降低而增加,得到尺寸可调的光学、电子和化学性质,诸如尺寸依赖性光致发光。此外,已经发现,将2D纳米薄片的横向尺寸降低至量子限制区域(regime)可以产生又一种独特的性质,取决于2D纳米薄片的横向尺寸和层数这两者。在一个实施方案中,2D纳米薄片的横向尺寸可以处于量子限制区域,其中可以通过改变它们的横向尺寸来控制纳米薄片的光学、电子和化学性质。例如,横向尺寸为约10nm以下的材料(诸如MoSe2和WSe2)的金属硫属化物单层纳米薄片可以在激发时展现出诸如尺寸可调的发射的性质。这可以使得2D纳米薄片的电致发光最大值(ELmax)或光致发光(PLmax)能够通过控制纳米薄片的横向尺寸进行调节。如本文中使用的,“2D量子点”或“2D QD”是指横向尺寸处于量子限制区域并且厚度为1-5个原子或分子单层的半导体纳米粒子。如本文中使用的,“单层量子点”或“单层QD”是指横向尺寸处于量子限制区域并且厚度为单一单层的半导体纳米粒子。与常规QD相比,2D QD具有高得多的表面积与体积的比值,其随着单层数量减少而增加。对于单层QD看到了最高的表面积与体积的比值。这可以产生具有与常规QD非常不同的表面化学的2D QD,其可以用于诸如催化的应用。
通过改变模板的尺寸,可以改变在表面上生长的纳米片的横向尺寸,从而允许控制纳米片的发射波长。
制备纳米粒子模板的方法不受限制。在模板表面上制备纳米片的方法不受限制。在一个实施方案中,在一定条件下将一种或多种纳米片前体加入到模板溶液中,以使一种或多种纳米片前体转化为模板表面上的纳米片。随后可以将已经形成的纳米片从模板表面移除并且与模板分离。
可以通过任何合适的技术将已经形成的纳米片从模板表面移除。在一个实施方案中,通过插层和剥离方法从模板表面移除纳米片。插层和剥离方法是本领域中公知的,并且在申请人于2017年6月23日提交的共同未决的美国专利申请号15/631,323中有所描述,该申请通过引用整体结合于此。插层和剥离方法通常涉及将插层剂添加到层状材料中以扩大层间距离,然后进行剥离方法以使层分开。在一个实施方案中,插层方法包括在一种或多种伯胺(例如己胺和/或丙胺)的存在下搅拌基底结合的(模板-纳米片)材料。在另外的实施方案中,剥离方法包括在溶剂(诸如但不限于乙腈)中搅拌插层的基底结合的(模板-纳米片)材料。在另一个实施方案中,通过超声处理将纳米片从模板表面移除。
随后可以纯化纳米片以将它们与模板分离。任选地,尺寸选择性分离技术可以用于分离具有相似尺寸(并且因此具有相似的发光性质)的纳米片。尺寸选择性分离技术的非限制性实例包括:溶剂极性纯化;尺寸选择性沉淀;柱层析;和透析。
出乎意料地,已经发现包括酸化步骤的后处理可以增加纳米片的光致发光量子产率(PLQY)。
纳米片的应用可以包括但不限于:光致发光应用;电致发光应用;光伏应用;催化;传感器;异质结构器件;以及用于诸如场效应晶体管和光电探测器之类的设备。纳米片也可以是表面官能化的,以用于生物学应用,诸如生物成像。
实施例1:在ZnO模板上的MoS2纳米片的模板辅助生长
ZnO模板合成
将16g十八烷和0.506g(0.8mmol)硬脂酸锌混合并且在105℃脱气1小时。将4g十八烷和1.082g(4mmol)十八醇在小瓶中混合并且在100℃脱气1小时。在另一个小瓶中,将2g十八烷和0.2275g(0.8mmol)硬脂酸混合并且在100℃脱气1小时。在氮气下,将硬脂酸锌/十八烷混合物加热至280℃。将十八醇/十八烷混合物装入注射器中并且快速注射。将溶液放置8分钟。将硬脂酸/十八烷混合物装入注射器中并且在8分钟后注射。将反应再放置2小时,然后冷却至80℃。加入100mL乙酸乙酯并且将反应离心。加入10mL甲苯并且温热以溶解固体。加入20mL甲醇,并且通过离心收集絮凝物。将固体在温热下重新溶解在甲苯中,并且通过0.2μmTeflon注射器过滤器。
图2中示出了ZnO纳米粒子模板的紫外-可见吸收光谱(实线)。高分辨率透射电子显微镜(图3)示出了提示为纳米锥的三角形纳米粒子。
配体交换
将1g十六胺、10mL十六烷和所有ZnO核加入到新清洁的圆底烧瓶中并且在100℃脱气1小时。将反应在110℃放置过夜以使配体交换。第二天,将反应在100℃再脱气1小时。
基底结合的MoS2合成
在小瓶中,将2g十六烷和10mL十六烷混合并且在100℃脱气1小时。在手套箱中,向小瓶中装入0.132g Mo(CO)6,然后用SUBA-橡胶隔片[SIGMA-ALDRICH CO.,LLC,3050Spruce Street St.Louis MISSOURI 63103]封隔,并且从手套箱中取出。将十六胺/十六烷混合物装入注射器中并且转移至Mo(CO)6小瓶中。将Mo(CO)6/十六胺/十六烷混合物在氮气下温热至约150℃,直至形成澄清的深黄色/橙色溶液。将配体交换的ZnO核加热至250℃,并且每5分钟加入0.5mL份的钼前体,直至总计加入5mL。然后,在40分钟内加入0.75mL十二烷硫醇,并且在完成时放置1.5小时。然后以5分钟的间隔加入三批2mL份的钼前体,以完成钼的添加。然后在5分钟内加入0.75mL十二烷硫醇并且放置45分钟。将反应冷却至60℃,然后加入80mL丙酮并且离心。将固体重新溶解在25mL己烷中并且在N2下储存。
图2中示出了基底结合的MoS2材料的紫外-可见吸收光谱(虚线)。与ZnO模板相比,紫外-可见吸收光谱的变化指示模板上的纳米片生长。图4(灰线)示出了基底结合的MoS2材料的拉曼光谱。约375和398em-1处的峰分别与MoS2的E1 2g和A1g带的文献值具有良好的一致性。高分辨率TEM(图5)示出了基底结合的MoS2。ZnO纳米锥形状的遮蔽指示ZnO模板上的纳米片生长。
插层和剥离
将基底结合的MoS2样品加入到N2填充的圆底烧瓶中,并且向其中加入2mL己胺和10mL丙胺,然后搅拌3天。使用N2流干燥混合物,并且在N2下向固体中加入200mL乙腈并且搅拌3天。滗析上清液并且离心,并且弃去任何固体。在旋转蒸发器上在30℃在减压下将液体还原成油状物,然后重新溶解在6mL乙腈中。将粗制剥离材料置于小瓶中,在盖子关闭的情况下在空气中放置6天。
图6中示出了粗制剥离材料的紫外-可见吸收光谱(实线)。图6中还示出了粗制剥离材料的PL光谱(在两个不同的激发波长:360m和450m)(分别为粗虚线(dashed line)和虚线(dotted line)),显示出激发波长依赖性PL。
溶剂极性纯化
将样品在旋转蒸发器上干燥回油状物,然后加入30mL水。将样品进行短暂的超声处理,然后通过0.45μm聚丙烯注射器过滤器。将水样品用N2冲洗并且储存在玻璃小瓶中。用乙腈收集保留在过滤器和旋转蒸发器烧瓶中的残余固体,并且再次通过相同的注射器过滤器。通过加入甲苯收集不溶于水或乙腈的残余固体。
在水中提取的材料部分的PLQY为15.5%。图7(下)中示出了在水中提取的材料部分的紫外-可见和PL光谱,分别为实线和虚线。图4中示出了拉曼光谱(黑线)。E1 2g和A1g带的位置相对于基底结合的MoS2的位置是相对不变的。图8中示出了水提取的纳米片的TEM图像,其显示出圆形(直径约5nm)纳米片。
在乙腈(MeCN)中提取的材料部分的PLQY为3.7%。图7(中)中示出了在乙腈中提取的材料部分的紫外-可见和PL光谱,分别为实线和虚线。
在甲苯中提取的材料部分的PLQY为2.1%。图7(上)中示出了在甲苯中提取的材料部分的紫外-可见和PL光谱,分别为实线和虚线。
出乎意料地,当在N2下储存时,发现在水中提取的材料部分的QY随时间增加,如图9(圆圈)所示。
酸化的影响
使用浓HCl将一部分水溶性级分酸化至pH为2-3。将样品用N2冲洗并且在卷边小瓶(crimp vial)中惰性储存。出乎意料地,发现材料的QY随着酸化和时间而增加,如图9(三角形)所示。
使用时间分辨光致发光测量酸化材料的PL寿命。使用单指数拟合(图10),测量PL寿命于9.8ns。这非常接近文献中报道的化学处理的MoS2的最高PL寿命(10.8ns)[M.Amani,D.-H.Lien,D.Kiriya,J.Xiao,A.Azcatl,J.Noh,S.R.Medhvapathy,R.Addou,S.KC,M.Dubey,K.Cho,R.M.Wallace,S.-C.Lee,J.H.He,J.W.Ager III,X.Zhang,E.Yabonovitch和A.Javey,Science,2015,350,1065],并且比已经剥离的MoS2(通常在100ps的量级)长几个数量级。
与刚提取(as-extracted)的纳米片相比,酸处理的纳米片的紫外-可见吸收曲线也更明确且略微红移,如图11所示。
实施例2:在ZnO模板上的MoSe2纳米片的模板辅助生长
ZnO模板合成
按照实施例1制备ZnO模板
配体交换
将1g十六胺、10mL十六烷和所有ZnO核(在甲苯中)加入到圆底烧瓶中并且在80℃脱气1小时。将反应在110℃在氮气下放置过夜以使配体交换。第二天,将反应在80℃再脱气1小时。
基底结合的MoSe2合成
在小瓶中,将2g十六胺和10ml十六烷混合并且在80℃脱气1小时。在手套箱中,向小瓶中装入0.132g Mo(CO)6,然后用SUBA-橡胶隔片封隔,并且从手套箱中取出。在氮气下将十六胺/十六烷混合物加入到Mo(CO)6小瓶中。将Mo(CO)6/十六胺/十六烷混合物在氮气下温热至约150℃。将配体交换的ZnO核在氮气下加热至250℃,并且每5分钟加入1mL份的钼前体,直至已经加入全部溶液。然后,通过注射器泵在90分钟内加入溶解在5mL甲苯中的2g二苯联二硒醚(diphenyl diselenide),并且在完成时在250℃放置50分钟。将反应冷却至60℃,然后加入80mL丙酮并且离心。用丙酮洗涤固体并且离心两次。将褐色沉淀物分散在25mL己烷中。
插层和剥离
在厌氧条件下进行该过程。将基底结合的MoSe2在己烷中的溶液加入到含有2mL己胺和10mL丙胺的氮气填充的烧瓶中。将混合物搅拌3天。将反应溶液在真空下蒸发20分钟,留下褐色油状物。加入200mL脱气乙腈,然后搅拌3天。使用套管过滤器在氮气下过滤溶液,然后在真空下抽空。将抽空后的油状物重新分散在6mL乙腈中,然后在空气中储存6天。
溶剂极性纯化
滗析乙腈上清液,然后将水加入到固体中,接着超声处理5分钟。
实施例3:在ZnO模板上的WS2纳米片的模板辅助生长
ZnO模板合成
按照实施例1制备ZnO模板
配体交换
按照实施例2进行配体交换。
基底结合的WS2合成
在小瓶中,将2g十六胺和10ml十六烷混合并且在80℃脱气1小时。在手套箱中,向小瓶中装入0.176g W(CO)6,然后用SUBA-橡胶隔片封隔,并且从手套箱中取出。在氮气下将十六胺/十六烷混合物加入到W(CO)6小瓶中。将W(CO)6/十六胺/十六烷混合物在氮气下温热至约150℃,得到浅黄色溶液。将配体交换的ZnO核在氮气下加热至250℃,同时进行搅拌,并且在45分钟内每5分钟加入0.5mL份的钨前体(10次注射)。使用注射器泵在40分钟内加入0.75mL 1-十二烷硫醇,然后在250℃放置90分钟。然后以5分钟的间隔加入三次2-mL份的钨前体。使用注射器泵在5分钟内加入0.75mL 1-十二烷硫醇,然后在250℃放置45分钟。将反应冷却至60℃,然后加入80mL丙酮,随后离心。收集固体并且重新溶解在25mL己烷中(用氮气鼓泡)。
插层和剥离
将基底结合的WS2在己烷中的溶液加入到含有2mL己胺和10mL丙胺的氮气填充的烧瓶中。将混合物搅拌3天。将反应溶液在真空下蒸发20分钟,留下褐色油状物。加入200mL脱气乙腈,然后搅拌3天。滗析溶液并且通过0.45μm注射器过滤器过滤,然后通过旋转蒸发除去溶剂。加入6mL乙腈,然后将溶液转移到小瓶中并且在空气中放置7天。
溶剂极性纯化
使用旋转蒸发器将乙腈中的溶液干燥返回油状物。加入30mL水,然后将样品超声处理5分钟。将溶液通过0.45μm注射器过滤器过滤。将所得无色溶液脱气并且保留为水溶性相(PLmax=431nm;QY=15.7%)。将15mL乙腈在旋转蒸发器烧瓶中旋转并且通过注射器过滤器。将所得橙色溶液保留为乙腈可溶相(PLmax=435nm;QY=6.7%)。将15mL甲苯在旋转蒸发器烧瓶中旋转并且通过注射器过滤器。将浅黄色溶液保留为甲苯可溶相(PLmax=427nm;QY=2.3%)。
上述方法的优点包括:
所述方法是可扩展的。
与通过现有技术的方法生产的2D纳米片相比,所生产的材料具有高QY,这表明材料具有更少缺陷和更高结晶度。
通过控制包括模板尺寸和尺寸分布的参数,可以实现窄的片材尺寸分布。
非剥离材料可以重复使用,得到高反应产率,从而避免材料浪费。
所述方法提供了胶体2D单层形成的简单手段,无需化学切割或机械剥离。在不进行其他方法所制造的2D单层所需的大量尺寸选择操作的情况下,可以实现较窄的PL发射。可以使纳米粒子可溶于一系列不同的溶剂中。
前述内容呈现了体现本发明原理的系统的特定实施方案。本领域技术人员将能够设计出替代方案和变型,即使在本文中并未明确公开,这些替代方案和变型也体现了那些原理并且因此在本发明的范围内。虽然已经示出和描述了本发明的特定实施方案,但是它们并不旨在限制本专利所涵盖的内容。本领域技术人员将理解,如在字面上和等同地由所附权利要求所涵盖的,可以在不脱离本发明的范围的情况下进行各种改变和修改。
Claims (17)
1.一种用于制备二维过渡金属二硫属化物纳米片的方法,所述二维过渡金属二硫属化物纳米片的厚度为1至10个原子或分子单层,并且其横向尺寸大于所述厚度,所述方法包括:
在纳米粒子模板的存下,使二维过渡金属二硫属化物纳米片前体在溶液中反应而在所述纳米粒子模板的表面上形成二维过渡金属二硫属化物纳米片;
将所述二维过渡金属二硫属化物纳米片从所述纳米粒子模板的表面移除;以及
将所述二维过渡金属二硫属化物纳米片与所述纳米粒子模板分离,
其中:
所述纳米粒子模板包括具有第一晶体结构的材料,
所述二维过渡金属二硫属化物纳米片包括具有第二晶体结构的材料,并且
所述第一晶体结构和所述第二晶体结构之间的晶格失配为5%以下。
2.根据权利要求1所述的方法,其中所述第一晶体结构和所述第二晶体结构之间的晶格失配为3%以下。
3.根据权利要求1所述的方法,其中所述第一晶体结构是六方的。
4.根据权利要求1所述的方法,其中所述二维过渡金属二硫属化物纳米片的横向尺寸处于量子限制区域并且其厚度为1-5个原子或分子单层。
5.根据权利要求1所述的方法,其中所述纳米粒子模板是量子点。
6.根据权利要求1所述的方法,其中将所述二维过渡金属二硫属化物纳米片从所述纳米粒子模板的表面移除包括插层和剥离。
7.根据权利要求1所述的方法,其中将所述二维过渡金属二硫属化物纳米片与所述纳米粒子模板分离包括尺寸选择性分离技术。
8.根据权利要求7所述的方法,其中所述尺寸选择性分离技术是溶剂极性纯化。
9.一种物质组合物,所述组合物包含:
纳米粒子模板,所述纳米粒子模板包括具有第一晶体结构的材料;和
二维过渡金属二硫属化物纳米片,所述二维过渡金属二硫属化物纳米片至少部分地覆盖所述纳米粒子模板的表面,所述二维过渡金属二硫属化物纳米片的厚度为1至10个原子或分子单层,并且其横向尺寸大于所述厚度,并且所述二维过渡金属二硫属化物纳米片包括具有第二晶体结构的材料;并且
其中所述第一晶体结构和所述第二晶体结构之间的晶格失配为5%以下。
10.根据权利要求9所述的组合物,其中所述第一晶体结构和所述第二晶体结构之间的晶格失配为3%以下。
11.根据权利要求9所述的组合物,其中所述第一晶体结构是六方的。
12.根据权利要求9所述的组合物,其中所述纳米粒子模板是纳米锥。
13.根据权利要求9所述的组合物,其中所述纳米粒子模板是量子点。
14.根据权利要求9所述的组合物,其中所述纳米粒子模板是ZnO纳米粒子。
15.根据权利要求9所述的组合物,其中所述二维过渡金属二硫属化物纳米片包括MoS2、MoSe2或WS2。
16.根据权利要求9所述的组合物,其中所述二维过渡金属二硫属化物纳米片的横向尺寸处于量子限制区域并且其厚度为1-5个原子或分子单层。
17.根据权利要求9所述的组合物,其中所述纳米粒子模板是金属纳米粒子或聚合物纳米粒子。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662440745P | 2016-12-30 | 2016-12-30 | |
US62/440,745 | 2016-12-30 | ||
PCT/IB2017/058021 WO2018122667A1 (en) | 2016-12-30 | 2017-12-15 | Template-assisted synthesis of 2d nanosheets |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110312573A CN110312573A (zh) | 2019-10-08 |
CN110312573B true CN110312573B (zh) | 2022-08-23 |
Family
ID=62708879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780081226.0A Active CN110312573B (zh) | 2016-12-30 | 2017-12-15 | 使用纳米粒子模板的2d纳米片的模板辅助合成 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10662074B2 (zh) |
EP (1) | EP3562582A1 (zh) |
JP (1) | JP6818152B2 (zh) |
KR (1) | KR102300073B1 (zh) |
CN (1) | CN110312573B (zh) |
TW (2) | TWI732135B (zh) |
WO (1) | WO2018122667A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10883046B2 (en) | 2017-02-02 | 2021-01-05 | Nanoco 2D Materials Limited | Synthesis of luminescent 2D layered materials using an amine-met al complex and a slow sulfur-releasing precursor |
WO2018170531A1 (en) * | 2017-03-21 | 2018-09-27 | Newsouth Innovations Pty Ltd | A light emitting device |
US11302531B2 (en) | 2017-06-14 | 2022-04-12 | Alliance For Sustainable Energy, Llc | Methods of exfoliating single crystal materials |
US20180366325A1 (en) * | 2017-06-14 | 2018-12-20 | Alliance For Sustainable Energy, Llc | Methods of exfoliating single crystal materials |
WO2020132152A1 (en) * | 2018-12-18 | 2020-06-25 | Northeastern University | Two dimensional materials for use in ultra high density information storage and sensor devices |
CN110853936B (zh) * | 2019-11-27 | 2022-01-28 | 长安大学 | 一种电极材料的制备方法 |
US11866847B2 (en) | 2019-12-06 | 2024-01-09 | The Trustees Of Columbia University In The City Of New York | Systems and methods for disassembling two-dimensional van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices |
KR102425893B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 칼륨, 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102425889B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102425890B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 알루미늄과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102425894B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 인듐과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102425891B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 갈륨과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
CN113621367A (zh) * | 2021-06-15 | 2021-11-09 | 哈尔滨理工大学 | 一种米粒形状硫化铅量子点的制备方法 |
CN114261989A (zh) * | 2022-01-06 | 2022-04-01 | 北京化工大学 | 垂直少层MoS2纳米片的无模板法制备 |
WO2023239539A1 (en) * | 2022-06-06 | 2023-12-14 | Northwestern University | Megasonically exfoliated two-dimensional nanomaterial inks, fabricating methods, and applications of the same |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101658792A (zh) * | 2009-09-17 | 2010-03-03 | 大连理工大学 | 一种过渡金属硫化物催化材料的制备方法及其催化应用 |
CN101659445A (zh) * | 2009-08-31 | 2010-03-03 | 广西民族大学 | 一种正方形钼酸锶纳米片的制备方法 |
CN103011259A (zh) * | 2012-12-27 | 2013-04-03 | 东莞上海大学纳米技术研究院 | 一种以二维层状材料为模板的硫化镉纳米棒的制备方法及制品 |
CN103641171A (zh) * | 2013-11-19 | 2014-03-19 | 江苏大学 | 一种Zn2+调控合成MoS2超薄纳米片的方法 |
CN103896331A (zh) * | 2014-03-08 | 2014-07-02 | 哈尔滨工程大学 | 模板法制备的二维TiO2纳米材料的方法 |
CN104310482A (zh) * | 2014-09-29 | 2015-01-28 | 南京邮电大学 | 一种超声辅助化学插层制备二硫化钼纳米片的方法 |
CN104338547A (zh) * | 2013-07-29 | 2015-02-11 | 中国科学院理化技术研究所 | 基于量子点/棒和二硫化钼纳米片的光催化剂、制备方法、光催化体系及其重整生物质制氢的方法 |
WO2015031461A1 (en) * | 2013-08-28 | 2015-03-05 | Massachusetts Institute Of Technology | Seed for metal dichalcogenide growth by chemical vapor deposition |
CN104445102A (zh) * | 2014-11-27 | 2015-03-25 | 中国科学技术大学 | 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用 |
CN104726936A (zh) * | 2015-03-27 | 2015-06-24 | 扬州大学 | 化学气相沉积制备正交相MoO3单晶纳米片方法 |
CN104893708A (zh) * | 2015-06-08 | 2015-09-09 | 青岛大学 | 二硫化钛纳米片/量子点复合物汞离子荧光探针的制法 |
CN105004775A (zh) * | 2015-07-08 | 2015-10-28 | 青岛大学 | 二硫化物点/纳米片复合物dna电化学探针的制备方法 |
CN105126876A (zh) * | 2015-09-07 | 2015-12-09 | 复旦大学 | 一种花状碳负载MoS2纳米颗粒的复合材料及其制备方法 |
CN105148947A (zh) * | 2015-08-27 | 2015-12-16 | 江南大学 | TiO2@MoS2复合物的制备与应用 |
WO2016192001A1 (en) * | 2015-06-01 | 2016-12-08 | Baoshan Iron & Steel Co., Ltd. | Aqueous-based method of preparing metal chalcogenide nanomaterials |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2461655A1 (en) * | 2010-12-06 | 2012-06-06 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Hybrid materials for printing conductive or semiconductive elements |
CN102134100A (zh) * | 2011-04-27 | 2011-07-27 | 合肥工业大学 | 一种二硫化钨纳米管的制备方法 |
GB201401715D0 (en) * | 2014-01-31 | 2014-03-19 | Univ Manchester | Exfoliation |
TWI548448B (zh) * | 2015-01-05 | 2016-09-11 | 國立交通大學 | 製備二維材料的方法 |
CN104649324B (zh) | 2015-01-21 | 2016-04-20 | 济南大学 | 一种二硫化钼/氧化锌纳米复合材料的制备方法 |
WO2016138385A1 (en) * | 2015-02-26 | 2016-09-01 | Board Of Regents, The University Of Texas System | Two-dimensional nanosheets and methods of making and use thereof |
KR102344660B1 (ko) * | 2015-05-27 | 2021-12-29 | 에이에스엠 아이피 홀딩 비.브이. | 몰리브덴 또는 텅스텐 함유 박막의 ald용 전구체의 합성 및 사용 |
CN105004755A (zh) | 2015-07-11 | 2015-10-28 | 江苏丹毛纺织股份有限公司 | 一种面料或面料在光照下的温度测试仪 |
CN105624643B (zh) | 2016-01-06 | 2018-04-03 | 天津大学 | 一种大面积硒掺杂二硫化钼薄膜材料的制备方法 |
-
2017
- 2017-12-14 US US15/842,468 patent/US10662074B2/en active Active
- 2017-12-15 KR KR1020197021265A patent/KR102300073B1/ko active IP Right Grant
- 2017-12-15 JP JP2019535804A patent/JP6818152B2/ja active Active
- 2017-12-15 EP EP17832988.4A patent/EP3562582A1/en active Pending
- 2017-12-15 CN CN201780081226.0A patent/CN110312573B/zh active Active
- 2017-12-15 WO PCT/IB2017/058021 patent/WO2018122667A1/en unknown
- 2017-12-28 TW TW107132805A patent/TWI732135B/zh active
- 2017-12-28 TW TW106146131A patent/TWI639680B/zh active
-
2020
- 2020-03-30 US US16/834,622 patent/US11964879B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101659445A (zh) * | 2009-08-31 | 2010-03-03 | 广西民族大学 | 一种正方形钼酸锶纳米片的制备方法 |
CN101658792A (zh) * | 2009-09-17 | 2010-03-03 | 大连理工大学 | 一种过渡金属硫化物催化材料的制备方法及其催化应用 |
CN103011259A (zh) * | 2012-12-27 | 2013-04-03 | 东莞上海大学纳米技术研究院 | 一种以二维层状材料为模板的硫化镉纳米棒的制备方法及制品 |
CN104338547A (zh) * | 2013-07-29 | 2015-02-11 | 中国科学院理化技术研究所 | 基于量子点/棒和二硫化钼纳米片的光催化剂、制备方法、光催化体系及其重整生物质制氢的方法 |
WO2015031461A1 (en) * | 2013-08-28 | 2015-03-05 | Massachusetts Institute Of Technology | Seed for metal dichalcogenide growth by chemical vapor deposition |
CN103641171A (zh) * | 2013-11-19 | 2014-03-19 | 江苏大学 | 一种Zn2+调控合成MoS2超薄纳米片的方法 |
CN103896331A (zh) * | 2014-03-08 | 2014-07-02 | 哈尔滨工程大学 | 模板法制备的二维TiO2纳米材料的方法 |
CN104310482A (zh) * | 2014-09-29 | 2015-01-28 | 南京邮电大学 | 一种超声辅助化学插层制备二硫化钼纳米片的方法 |
CN104445102A (zh) * | 2014-11-27 | 2015-03-25 | 中国科学技术大学 | 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用 |
CN104726936A (zh) * | 2015-03-27 | 2015-06-24 | 扬州大学 | 化学气相沉积制备正交相MoO3单晶纳米片方法 |
WO2016192001A1 (en) * | 2015-06-01 | 2016-12-08 | Baoshan Iron & Steel Co., Ltd. | Aqueous-based method of preparing metal chalcogenide nanomaterials |
CN104893708A (zh) * | 2015-06-08 | 2015-09-09 | 青岛大学 | 二硫化钛纳米片/量子点复合物汞离子荧光探针的制法 |
CN105004775A (zh) * | 2015-07-08 | 2015-10-28 | 青岛大学 | 二硫化物点/纳米片复合物dna电化学探针的制备方法 |
CN105148947A (zh) * | 2015-08-27 | 2015-12-16 | 江南大学 | TiO2@MoS2复合物的制备与应用 |
CN105126876A (zh) * | 2015-09-07 | 2015-12-09 | 复旦大学 | 一种花状碳负载MoS2纳米颗粒的复合材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
Emissive ZnO–graphene quantum dots for white-light-emitting diodes;Dong Ick Son et al.;《NATURE NANOTECHNOLOGY》;20120527;第7卷(第7期);第465-471页 * |
Parallel Stitching of 2D Materials;Xi Ling et al.;《Advanced Materials》;20160127;第28卷(第12期);第2322-2329页 * |
Side Reactions in Controlling the Quality, Yield, and Stability of High Quality Colloidal Nanocrystals;Yongfen Chen et al.;《J. AM. CHEM. SOC.》;20050830;第127卷(第38期);第13331-133337页 * |
植物膜模板法合成二维超薄纳米片及其光催化性能研究;王盟盟等;《功能材料》;20140630;第45卷(第6期);第06087-06091页 * |
Also Published As
Publication number | Publication date |
---|---|
TWI639680B (zh) | 2018-11-01 |
JP2020514221A (ja) | 2020-05-21 |
KR20190100275A (ko) | 2019-08-28 |
US11964879B2 (en) | 2024-04-23 |
EP3562582A1 (en) | 2019-11-06 |
TW201920785A (zh) | 2019-06-01 |
US20200223712A1 (en) | 2020-07-16 |
US20180186653A1 (en) | 2018-07-05 |
KR102300073B1 (ko) | 2021-09-09 |
TW201829741A (zh) | 2018-08-16 |
TWI732135B (zh) | 2021-07-01 |
WO2018122667A1 (en) | 2018-07-05 |
US10662074B2 (en) | 2020-05-26 |
CN110312573A (zh) | 2019-10-08 |
JP6818152B2 (ja) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110312573B (zh) | 使用纳米粒子模板的2d纳米片的模板辅助合成 | |
US10059585B2 (en) | Formation of 2D flakes from chemical cutting of prefabricated nanoparticles and van der Waals heterostructure devices made using the same | |
CN110300731B (zh) | 使用胺-金属配合物和缓慢释放硫的前体合成发光2d层状材料 | |
Giri et al. | Layer-structured anisotropic metal chalcogenides: recent advances in synthesis, modulation, and applications | |
WO2019110974A1 (en) | Top-down synthesis of two-dimensional nanosheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |