TWI639680B - 使用量子點核心模板之二維奈米薄片的模板輔助合成 - Google Patents

使用量子點核心模板之二維奈米薄片的模板輔助合成 Download PDF

Info

Publication number
TWI639680B
TWI639680B TW106146131A TW106146131A TWI639680B TW I639680 B TWI639680 B TW I639680B TW 106146131 A TW106146131 A TW 106146131A TW 106146131 A TW106146131 A TW 106146131A TW I639680 B TWI639680 B TW I639680B
Authority
TW
Taiwan
Prior art keywords
template
dimensional
mos
nanoflakes
nano
Prior art date
Application number
TW106146131A
Other languages
English (en)
Other versions
TW201829741A (zh
Inventor
耐吉 李洛伊 皮凱特
史帝芬 馬修 丹尼爾斯
Original Assignee
英商納諾柯2D技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商納諾柯2D技術有限公司 filed Critical 英商納諾柯2D技術有限公司
Publication of TW201829741A publication Critical patent/TW201829741A/zh
Application granted granted Critical
Publication of TWI639680B publication Critical patent/TWI639680B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/42(bi)pyramid-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02417Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本發明係關於一種用於二維奈米薄片之合成的模板輔助方法,其包含在充當奈米薄片生長模板之量子點基板表面上生長二維材料。二維奈米薄片隨後可自模板表面釋離(例如藉由化學插層及剝離),純化,且模板可再使用。

Description

使用量子點核心模板之二維奈米薄片的模板輔助合成
本發明大體上係關於奈米粒子。更具體言之,其係關於使用模板之二維分層材料(或「奈米薄片」)的合成。
「先前技術」,包括根據 37 CFR 1.97 1.98 所揭示的信息。二維拓樸材料,有時稱作單層材料,係由單層原子組成之結晶材料。自於2004年分離出石墨烯(單層石墨)以來,大量研究係針對分離其他二維材料,此係由於其不常見之特徵及在諸如光伏打、半導體、電極及水淨化之應用中的用途。 二維材料可大體上分類為各種元素之二維同素異形體或化合物(通常由兩種共價鍵結之元素組成)之二維同素異形體。元素二維材料在其名稱中後綴一般為烯(-ene),而化合物具有烷(-ane)或化物(-ide)後綴。不同2D材料之層狀組合通常稱作凡得瓦爾異質結構。 過渡金屬二硫屬化物(TMDC)單層係MX 2類型之原子厚度半導體,其中M係過渡金屬原子(Mo、W等)且X係硫屬元素原子(S、Se、或Te) 。M原子單層包夾在兩層X原子之間。MoS 2單層厚度為6.5Å。 石墨烯之發現說明當宏觀尺寸之塊狀晶體變薄直至一原子層時新物理特性如何顯現。與石墨相似,TMDC塊狀結晶係由單層彼此經凡得瓦爾力吸引結合形成。TMDC單層具有明顯地不同於半金屬石墨烯的特性。 • TMDC單層MoS 2、WS 2、MoSe 2、WSe 2、MoTe 2具有直接帶隙,且可作為電晶體用於電子學及作為射極與偵測器用於光學。 • TMDC單層晶體結構不具有反轉中心,其使得電荷載流子獲得新自由度,即k谷指數,且開啟一種新物理學領域:「能谷電子學」(「valleytronics」),及 • TMDC單層中強自旋軌道耦合引起價帶中數百meV及導帶中幾meV自旋軌道分裂,其使得可利用調節激發雷射光子能控制電子自旋。 由於直接帶隙及在電子學與谷物理學中潛在應用的發現,TMDC單層研究係新興的研究及開發領域。TMDC可與其他類似於石墨烯及六方氮化硼之二維材料結合以製備凡得瓦爾異質結構器件。 半導體可吸收能量大於或等於其帶隙之光子。此意謂較短波長之光被吸收。若導帶能量最小值與價帶最大值處於k空間中同一位置,亦即帶隙係直接的,則半導體通常係高效射極。降至兩個單層之厚度之塊狀TMDC材料的帶隙仍然係間接的,因此與單層材料相比發射效率較低。TMDC單層發射效率為塊材的約10 4倍。TMDC單層之帶隙在可見區間內(400 nm與700 nm之間)。直接發射展示以自旋軌道耦合能量分隔之兩次躍遷,稱作A及B。最低能量且因此在強度方面最重要的係發射A。因其直接帶隙之緣故,TMDC單層係用於光電子學應用有前景的材料。 多層形態之二硫化鉬係銀黑色固體,其以輝鉬礦——主要鉬礦之形式存在。MoS 2相對不起反應。其不受稀酸及氧影響。二硫化鉬在外觀及觸感方面類似石墨。由於其低摩擦特性及韌性廣泛地作為固體潤滑劑使用。作為一種過渡金屬二硫屬化物,MoS 2具有石墨烯令人希望的品質(諸如機械強度及導電性)中之一些,且可發光,使得其具有諸如光偵測器及電晶體之可能應用。 過渡金屬二硫屬化物(TMDC)二維(2D)奈米薄片材料,諸如MoS 2、MoSe 2、WS 2及WSe 2,受到自催化至感測以及能量儲存及光電子學範圍內應用逐漸增加之關注。單層及少數層TMDC為直接帶隙半導體,視組成、結構及維度而定具有變化的帶隙及載體類型(n型或p型)。其他受到較大關注的二維材料包括石墨烯、六方氮化硼(h-BN)、聚矽氧、鍺烯及錫烯。 單層及少數層二維奈米薄片可使用「由上而下」及「由下而上」方法生產。由上而下方法涉及自塊材以機械或化學方式移除層。該等技術包括機械剝離、超音波輔助液相剝離(LPE)及插層技術。由下而上方法(其中層自其成分元素生長)包括化學氣相沈積(CVD)、原子層沈積(ALD)及分子束磊晶法(MBE),以及基於溶液的方法(包括熱注入)。 先前技術中已描述數種合成二維奈米薄片的方法,其中最常見包括機械剝離、LPE及CVD,以及少數主要利用熱注入技術基於溶液之方法的報告。儘管機械剝離提供高度結晶薄片,該方法產率低,提供較差厚度控制且不可擴展。LPE提供一種可擴展的生產二維奈米薄片之途徑,且可在與其他技術相比使用較少有害化學物質之環境條件下進行。然而,如同機械剝離,其提供較差厚度控制以及低反應產率,且生產較小薄片。較差反應產率亦係CVD合成之典型特性。此方法優點包括大面積可擴展性、均勻性及厚度控制。然而,所得材料之品質並不與機械剝離薄片類似,如此生產之薄片通常較小且呈現較差長期穩定性。基於溶液之合成方法受到逐漸增加的關注且具有提供對所得二維材料之尺寸、形狀及均勻性之控制的潛能。然而,需要進一步改進以提供極限組合:生成所需結晶相之薄片的可擴展方法、可調的且窄的大小及形狀分佈及以易變配體覆蓋。 於ZnO上生長單層石墨烯以形成準核心/外殼奈米粒子已描述於Son等人[D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee and W.K. Choi, Nat. Nanotechnol., 2012, 7, 465] (見圖19) 。然而,沒有關於自ZnO表面分離石墨烯奈米薄片的論述。 [3Q16-2]MoS 2係當自多層形態轉換為單層時自帶隙間接轉變為直接帶隙的一種材料之實例。單獨離散單層之合成係困難的,尤其是當單層之尺寸亦需要控制時,因為此亦影響帶隙。最近可分離成單層從而提供一些控制之QD已經形成(見 18)。 然而,此方法生產不同尺寸之薄片。此外,在QD不是全部為同樣尺寸的情況下,分散度變得甚至更大。獲得單獨單層薄片涉及一種2個步驟的方法,首先QD形成,隨後單層插層以提供單獨薄片。 從而存在一種對提供高度材料尺寸、形狀及均勻性控制之二維奈米薄片合成可擴展方法的需要。
在一個特定實施例中,本發明包含二維材料QD模板化單層形成方法。核心材料較佳為六方且與外殼材料低晶格失配以使均勻單層外殼生長能夠進行。否則,過度應變可引起缺陷或可能完全分離粒子生長。 就MoS 2而言,其與六方ZnO晶格失配為約3%,因此其使用ZnO核心作為MoS 2核心-外殼類型構造之模板係可行的。藉由謹慎地控制條件,可製得單分散、寬帶隙之ZnO核心模板,且其上生長之MoS 2磊晶單層由於MoS 2而提供發光。藉由控制ZnO核心尺寸,外部MoS 2尺寸(從而帶隙)可因此受控制,由此提供一系列PL發光外殼/核心構造。為了鈍化核心/外殼結構,外部ZnO層可生長於核心/外殼結構上以生產提供提高之穩定性及增強發光的量子點/量子井類型結構。材料浪費及尺寸選擇中費力的處理、化學剪切或此前可能需要的進一步流程由此可避免。 可使用其他二維外殼材料替代MoS 2。特別受關注的係具有單層發光之材料,諸如MoSe 2、WS 2及WSe 2。可選擇具有類似晶體結構及諸如GaN與MoS 2之間低晶格失配的其他核心構造或摻合物。 本發明提供一種在不使用化學剪切或剝離的情況下用於膠態二維單層形成的簡單方法。較窄PL發射變得可能,而無需藉由其他方法製備二維單層可能需要的大量尺寸選擇操作。奈米粒子可製成可溶於一系列不同溶劑。
在本文中,描述一種合成二維奈米薄片之模板輔助方法,其中二維奈米薄片生長於充當奈米薄片生長模板之基板表面上。二維奈米薄片隨後可自模板表面釋離,例如藉由化學插層及剝離,且模板可再使用。二維奈米薄片之模板輔助生長的大體方法圖解說明於 1中。 對於MoS 2之生長,咸信晶格中之曲率可導致間接帶隙。因此,在一實施例中,二維奈米薄片生長於奈米稜鏡形QD上,提供用於奈米薄片生長之平坦表面。ZnO奈米稜鏡生長此前已由Chen等人描述[Y. Chen, M. Kim, G. Lian, M. Johnson and X. Peng, J. Am. Chem. Soc., 2005, 127, 13331]。六方ZnO與MoS 2間之晶格失配較小(約3%),表明ZnO係用於MoS 2二維奈米薄片生長之適合模板。成形時之奈米薄片可自ZnO QD表面藉由化學插層後接剝離及純化以移除,從而留下ZnO QD以再使用。 然而,模板形狀並不限於奈米稜錐。在其他實施例中,二維奈米薄片生長於具有曲面之模板上。適合模板之實例包括半導體材料之球面奈米粒子,或諸如聚四氟乙烯(PTFE)之聚合物的球面奈米粒子。使用球面模板可幫助自模板表面掀起及移除成形時之奈米薄片。 在另一實施例中,二維奈米薄片生長於以下模板表面上,其中該模板包含一層藉由原子層沈積(ALD)而沈積之材料。ALD提供高度保形塗層,因此具有經ALD塗佈之表面的模板可提供用於二維奈米薄片生長之高度均勻基板,使得合成高度均勻、無缺陷之奈米薄片。 在一些實施例中,模板及奈米薄片包含較小晶格失配材料。較小晶格失配可為令人希望的,因為此可幫助促進奈米薄片磊晶成長且避免模板與二維奈米薄片之間介面處的應變。 適合模板材料可包含:半導體材料,諸如(但不限於)II-VI半導體材料(例如ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe等)、III-V半導體材料(例如BP、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、BN等)、III-IV半導體材料、III-VI半導體材料(例如B 4C、Al 4C 3、Ga 4C等)及IV-VI半導體材料(例如Al 2S 3、Al 2Se 3、Al 2Te 3、Ga 2S 3、Ga 2Se 3、In 2S 3、In 2Se 3、Ga 2Te 3、In 2Te 3等);金屬奈米粒子(例如Cu、Au、Ag、Pt等);氧化物奈米粒子(例如TiO 2、SiO 2、ZrO 2等;及聚合物奈米粒子(例如PTFE)。在ALD塗料塗覆至奈米粒子表面的情況下,表面塗料可為無機材料(例如Al 2O 3)、有機材料(例如聚乙二醇)或無機-有機混成物材料(例如烷氧化鋁「alucone」聚合物) 。 在一些實施例中,待製造之奈米薄片材料包含二維層化材料。適合實例包括(但不限於):石墨烯;WS 2;WSe 2;MoS 2;MoSe 2;MoTe 2;NiTe 2、VSe 2;TaS 2;TaSe 2;RhTe 2;PdTe 2;HfS 2;HfSe 3;NbS 2;NbSe 2;NbTe 2;Bi 2Se 3;Bi 2Te 3;FeS 2;GaS;GaSe;GaTe;TiS 2;TiSe 2;ZrS 2;ZrSe 3;ReS 2;氮化物,例如h-BN;氧化物,例如LaVO 3;LaMnO 3;TiO 2;MnO 2;V 2O 5;TaO 3;RuO 2;MnO 3;WO 3;LaNbO 7;Ca 2Nb 3O 10;Ni(OH) 2;Eu(OH) 2;分層氧化銅;雲母;及鉍鍶鈣銅氧化物(BSCCO);磷化物,例如Li 7MnP 4;及MnP 4;矽烯;鍺烯;及錫烯。在此等材料內,鄰接層藉由凡得瓦爾相互作用固持在一起,其易於藉由諸如插層剝離之技術破壞以自模板表面移除奈米薄片。 在一些實施例中,奈米薄片展現量子侷限效應。舉例而言,奈米薄片可展現尺寸依賴發光,當吸收能量時,奈米薄片以由奈米薄片尺寸確定的波長重新發射。藉由變更模板之尺寸,可修改生長於表面上的奈米薄片之尺寸,由此允許控制奈米薄片發射波長。 成形時之奈米薄片可藉由任何適合之技術自模板表面移除。在一實施例中,奈米薄片藉由插層及剝離方法自模板表面移除。插層及剝離方法在此項技術中係熟知的。在一實施例中,插層方法包含在一或多種例如己胺及/或丙胺之一級胺存在下攪拌與基板結合(模板-奈米薄片)之材料。在另一實施例中,剝離方法包含在諸如(但不限於)乙腈之溶劑中攪拌與基板結合(模板-奈米薄片)之插入材料。 奈米薄片隨後可經純化以自模板分離。 出人意料地,已發現一種包含酸化步驟之後處理可提高奈米薄片光致發光量子產率(PLQY)。 奈米薄片之應用可包含(但不限於):光致發光應用;電致發光應用;光伏打應用;催化;及在諸如場效電晶體及光偵測器之器件中的使用。奈米薄片亦可經表面功能化以用於生物應用,諸如生物成像。 實例1: ZnO 模板上之 MoS 2 奈米薄片的模板輔助生長 ZnO 模板合成16 g十八烷及0.506 g (0.8 mmol)硬脂酸鋅混合且在105℃下脫氣1小時。4 g十八烷及1.082 g (4 mmol)十八醇在瓶中混合且在100℃下脫氣1小時。在另一瓶中2 g十八烷及0.2275 g (0.8 mmol)硬脂酸混合且在100℃下脫氣1小時。在氮氣下,硬脂酸鋅/十八烷混合物加熱至280℃。十八醇/十八烷混合物裝入注射器中且快速注入。溶液靜置8分鐘。在8分鐘後硬脂酸/十八烷混合物裝入注射器中且注入。反應再靜置2小時,隨後冷卻至80℃。加入100 mL乙酸乙酯且反應離心。加入10 mL甲苯且升溫以溶解固體。加入20 mL甲醇且藉由離心收集絮凝物。固體藉由升溫再溶解於甲苯中且通過0.2 µm鐵氟龍針筒過濾器。 ZnO奈米粒子模板之紫外-可見光(UV-vis)吸收光譜展示於 2中。 配體交換1 g十六烷基胺、10 mL十六烷及全部ZnO核心加入新清潔圓底燒瓶中且在100℃下脫氣1小時。反應在110℃下靜置隔夜以使配體交換能夠發生。次日,反應在100℃下再脫氣1小時。 與基板結合之 MoS 2 合成在瓶中,2 g十六烷基胺與10 mL十六烷混合且在100℃下脫氣1小時。在手套箱中,裝有0.132 g Mo(CO) 6之瓶隨後以SUBA-SEAL®橡膠隔膜[SIGMA-ALDRICH CO., LLC, 3050 Spruce Street St.Louis MISSOURI 63103]封蓋且自手套箱中移出。十六烷基胺/十六烷混合物裝入注射器中且轉移至Mo(CO) 6瓶。Mo(CO) 6/十六烷基胺/十六烷混合物在氮氣下升溫至約150℃直至形成一種澄清、暗黃色/橙色溶液。配體交換之ZnO核心加熱至250℃且每5分鐘加入0.5 mL鉬前驅物部分直至5 mL全部加入。隨後,0.75 mL十二烷硫醇歷經40分鐘加入且完成後靜置1.5小時。隨後以5分鐘為間隔加入三批2 mL鉬前驅物部分以完成鉬添加。0.75 mL十二烷硫醇隨後歷經5分鐘加入且靜置45分鐘。反應冷卻至60℃,隨後加入80 mL丙酮且離心。固體在25 mL己烷中再溶解且儲存於N 2下。 與基板結合之MoS 2材料的UV-vis吸收光譜展示於 3中, 4展示基板結合之MoS 2材料的拉曼光譜。 插層及剝離與基板結合之MoS 2樣本加入以N 2填充的圓底燒瓶且加入2 mL己胺及10 mL丙胺於其中,隨後攪拌3天。混合物使用N 2流乾燥且加入200 mL乙腈至N 2下之固體,攪拌3天。上清液傾析且離心,棄去任何固體。在30℃減壓下旋轉蒸發器上液體還原為油,隨後再溶解於6 mL乙腈中。粗剝離材料靜置在瓶中,封蓋閉合在空氣中保持6天。 粗剝離材料之UV-vis吸收光譜展示於 5中。粗剝離材料光致發光(PL)光譜(在兩個不同激發波長上)展示於 6中。粗剝離材料之拉曼光譜展示於 7中。 溶劑極性純化樣本在旋轉蒸發器上乾燥返回至油,隨後加入30 mL水。樣本經短暫音波處理,隨後通過0.45 µm聚丙烯針筒過濾器。水樣本以N 2沖洗且儲存於玻璃瓶中。留在過濾器上及旋轉蒸發器燒瓶中之殘餘固體以乙腈收集且再次通過同一針筒過濾器。不溶於水或乙腈之殘餘固體藉由加入甲苯來收集。 材料在水中萃取之部分的PLQY為15.5%。材料在水中萃取之部分的UV-vis及PL光譜分別展示於 8 9中。 材料在乙腈(MeCN)中萃取之部分的PLQY為3.7%。材料在乙腈中萃取之部分的UV-vis及PL光譜分別展示於 10 11中。 材料在甲苯中萃取之部分的PLQY為2.1%。材料在甲苯中萃取之部分的UV-vis及PL光譜分別展示於 12 13中。 出人意料地,當儲存於N 2下時,發現材料在水中萃取之部分的QY隨時間提高,如 14中所示。 酸化影響將一部分溶於水之部分使用濃HCl酸化至pH為2至3。將樣本以N 2沖洗且在鉗口瓶中惰性化儲存。出人意料地,發現材料之QY隨酸化及時間提高,如 15中所示。 酸化材料之PL壽命使用時間解析光致發光來量測。 16A展示MoS 2奈米薄片之時間解析發光,與水及儀器反應函數(IRF)比較。使用單指數擬合( 16B),量測PL壽命為9.8 ns。此非常接近文獻中報告的經化學處理MoS 2之最高PL壽命(10.8 ns) [M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Medhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R.M. Wallace, S.-C. Lee, J.H. He, J.W. Ager III, X. Zhang, E. Yabonovitch and A. Javey, Science, 2015, 350, 1065],且較剝離時之MoS 2長幾個數量級,其通常為約100 ps。 與萃取時之奈米薄片相比,酸處理之奈米薄片之UV-vis吸收量變曲線亦較確定且稍微紅移,如 17中所示。 上述方法優點包括: • 方法可擴展。 • 與由先前技術方法生產之二維奈米薄片相比,生產之材料具有較高QY,其表明材料具有較少缺陷及較高結晶度。 • 取決於模板分佈,可獲得窄薄片尺寸分佈。 • 非剝離材料可再使用,得到較高反應產率。 前述呈現體現本發明原理之系統的特定實施例。熟習此項技術者將能夠設計替代方式及變化,即使其未明確地揭示於本文中,但因此體現彼等原理且因此在本發明之範疇內。儘管已展示且描述本發明之特定實施例,但其並不意欲限制本專利覆蓋之內容。熟習此項技術者將理解可在不背離如由隨附申請專利範圍字面上及等效地涵蓋之本發明的範疇的情況下進行各種變化及修改。
圖1係圖解說明二維奈米薄片模板輔助生長方法的示意圖。 圖2係ZnO奈米粒子模板的紫外-可見光(UV-vis)吸收光譜。 圖3係實例1之與基板結合之MoS 2材料的UV-vis吸收光譜。 圖4係實例1之與基板結合之MoS 2材料的拉曼光譜。 圖5係實例1之粗剝離材料的UV-vis吸收光譜。 圖6係實例1之粗剝離材料的光致發光(PL)光譜。 圖7係實例1之粗剝離材料的拉曼光譜。 圖8係在水中萃取之實例1之材料部分的UV-vis吸收光譜。 圖9係在水中萃取之實例1之材料部分的PL光譜。 圖10係在乙腈中萃取之實例1之材料的UV-vis吸收光譜。 圖11係在乙腈中萃取之實例1之材料的PL光譜。 圖12係在甲苯中萃取之實例1之材料部分的UV-vis吸收光譜。 圖13係在甲苯中萃取之實例1之材料部分的PL光譜。 圖14係在水中萃取之實例1之材料部分的量子產率(QY) (儲存於N 2下)相對於時間的長條圖。 圖15係展示酸化對在水中萃取之實例1之材料QY的效果相對於時間的長條圖。 圖16A係酸處理MoS 2奈米薄片與水比較的時間解析PL光譜及儀器反應函數。 圖16B展示用以量測PL生存期之圖16A中所示之波譜的單指數擬合。 圖17呈現新製(萃取時)奈米薄片與酸化奈米薄片UV-vis吸收光譜的比較。 圖18係根據一種先前技術之方法以MoS 2奈米粒子形成MoS 2奈米薄片的示意性圖解說明。 圖19係展示ZnO/石墨烯準核心/外殼奈米粒子生長的示意性圖解說明。 圖20係以水純化之實例1中所製備之MoS 2材料的拉曼光譜。 圖21A係ZnO模板的穿透電子顯微圖。 圖21B係圖21A中之ZnO模板在較高放大率下的穿透電子顯微圖。 圖22A係實例1中所製備之與基板結合之MoS 2奈米薄片的穿透電子顯微圖。 圖22B係圖22A中之與基板結合之MoS 2奈米薄片在較高放大率下的穿透電子顯微圖。 圖23A及圖23B係實例1中所製備之以水純化之MoS 2材料的穿透電子顯微圖。

Claims (1)

  1. 一種用於製備二維奈米薄片之方法,其包含: 在奈米稜鏡形量子點表面上生長二維奈米薄片; 藉由化學插層自該等量子點表面剝離該等二維奈米薄片;及 純化該等經剝離之二維奈米薄片。
TW106146131A 2016-12-30 2017-12-28 使用量子點核心模板之二維奈米薄片的模板輔助合成 TWI639680B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662440745P 2016-12-30 2016-12-30
US62/440,745 2016-12-30

Publications (2)

Publication Number Publication Date
TW201829741A TW201829741A (zh) 2018-08-16
TWI639680B true TWI639680B (zh) 2018-11-01

Family

ID=62708879

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107132805A TWI732135B (zh) 2016-12-30 2017-12-28 使用量子點核心模板之二維奈米薄片的模板輔助合成
TW106146131A TWI639680B (zh) 2016-12-30 2017-12-28 使用量子點核心模板之二維奈米薄片的模板輔助合成

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107132805A TWI732135B (zh) 2016-12-30 2017-12-28 使用量子點核心模板之二維奈米薄片的模板輔助合成

Country Status (7)

Country Link
US (2) US10662074B2 (zh)
EP (1) EP3562582A1 (zh)
JP (1) JP6818152B2 (zh)
KR (1) KR102300073B1 (zh)
CN (1) CN110312573B (zh)
TW (2) TWI732135B (zh)
WO (1) WO2018122667A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883046B2 (en) 2017-02-02 2021-01-05 Nanoco 2D Materials Limited Synthesis of luminescent 2D layered materials using an amine-met al complex and a slow sulfur-releasing precursor
WO2018170531A1 (en) * 2017-03-21 2018-09-27 Newsouth Innovations Pty Ltd A light emitting device
US11302531B2 (en) 2017-06-14 2022-04-12 Alliance For Sustainable Energy, Llc Methods of exfoliating single crystal materials
US20180366325A1 (en) * 2017-06-14 2018-12-20 Alliance For Sustainable Energy, Llc Methods of exfoliating single crystal materials
US11832535B2 (en) * 2018-12-18 2023-11-28 Northeastern University Two dimensional materials for use in ultra high density information storage and sensor devices
CN110853936B (zh) * 2019-11-27 2022-01-28 长安大学 一种电极材料的制备方法
US11866847B2 (en) 2019-12-06 2024-01-09 The Trustees Of Columbia University In The City Of New York Systems and methods for disassembling two-dimensional van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices
KR102425893B1 (ko) * 2020-09-14 2022-07-26 연세대학교 산학협력단 칼륨, 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
KR102425889B1 (ko) * 2020-09-14 2022-07-26 연세대학교 산학협력단 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
KR102425894B1 (ko) * 2020-09-14 2022-07-26 연세대학교 산학협력단 인듐과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
KR102425891B1 (ko) * 2020-09-14 2022-07-26 연세대학교 산학협력단 갈륨과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
KR102425890B1 (ko) * 2020-09-14 2022-07-26 연세대학교 산학협력단 알루미늄과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
CN113621367A (zh) * 2021-06-15 2021-11-09 哈尔滨理工大学 一种米粒形状硫化铅量子点的制备方法
CN114261989A (zh) * 2022-01-06 2022-04-01 北京化工大学 垂直少层MoS2纳米片的无模板法制备
WO2023239539A1 (en) * 2022-06-06 2023-12-14 Northwestern University Megasonically exfoliated two-dimensional nanomaterial inks, fabricating methods, and applications of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201545969A (zh) * 2014-01-31 2015-12-16 英國曼徹斯特大學 剝離作用
CN105148947A (zh) * 2015-08-27 2015-12-16 江南大学 TiO2@MoS2复合物的制备与应用
CN105624643A (zh) * 2016-01-06 2016-06-01 天津大学 一种大面积硒掺杂二硫化钼薄膜材料的制备方法
TW201625350A (zh) * 2015-01-05 2016-07-16 國立交通大學 製備二維材料的方法
TW201641733A (zh) * 2015-05-27 2016-12-01 Asm Ip控股公司 用於含鉬或鎢的薄膜之原子層沉積的前驅物之合成與使用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101659445A (zh) * 2009-08-31 2010-03-03 广西民族大学 一种正方形钼酸锶纳米片的制备方法
CN101658792A (zh) * 2009-09-17 2010-03-03 大连理工大学 一种过渡金属硫化物催化材料的制备方法及其催化应用
EP2461655A1 (en) * 2010-12-06 2012-06-06 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Hybrid materials for printing conductive or semiconductive elements
CN102134100A (zh) * 2011-04-27 2011-07-27 合肥工业大学 一种二硫化钨纳米管的制备方法
CN103011259B (zh) * 2012-12-27 2014-06-18 东莞上海大学纳米技术研究院 一种以二维层状材料为模板的硫化镉纳米棒的制备方法及制品
CN104338547B (zh) 2013-07-29 2016-08-31 中国科学院理化技术研究所 基于量子点/棒和二硫化钼纳米片的光催化剂、制备方法、光催化体系及其重整生物质制氢的方法
US20150064471A1 (en) * 2013-08-28 2015-03-05 Massachusetts Institute Of Technology Seed for Metal Dichalcogenide Growth by Chemical Vapor Deposition
CN103641171B (zh) * 2013-11-19 2016-01-20 江苏大学 一种Zn2+调控合成MoS2超薄纳米片的方法
CN103896331B (zh) * 2014-03-08 2015-09-30 哈尔滨工程大学 模板法制备的二维TiO2纳米材料的方法
CN104310482A (zh) * 2014-09-29 2015-01-28 南京邮电大学 一种超声辅助化学插层制备二硫化钼纳米片的方法
CN104445102B (zh) * 2014-11-27 2016-06-22 中国科学技术大学 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用
CN104649324B (zh) 2015-01-21 2016-04-20 济南大学 一种二硫化钼/氧化锌纳米复合材料的制备方法
US20160254528A1 (en) * 2015-02-26 2016-09-01 Board Of Regents, The University Of Texas System Two-dimensional nanosheets and methods of making and use thereof
CN104726936A (zh) * 2015-03-27 2015-06-24 扬州大学 化学气相沉积制备正交相MoO3单晶纳米片方法
US20180170754A1 (en) * 2015-06-01 2018-06-21 Baoshan Iron & Steel Co., Ltd. Aqueous-based method of preparing metal chalcogenide nanomaterials
CN104893708B (zh) 2015-06-08 2016-03-30 青岛大学 二硫化钛纳米片/量子点复合物汞离子荧光探针的制法
CN105004775B (zh) * 2015-07-08 2016-02-03 青岛大学 二硫化物点/纳米片复合物dna电化学探针及其制备方法和应用
CN105004755A (zh) 2015-07-11 2015-10-28 江苏丹毛纺织股份有限公司 一种面料或面料在光照下的温度测试仪
CN105126876B (zh) * 2015-09-07 2017-06-06 复旦大学 一种花状碳负载MoS2纳米颗粒的复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201545969A (zh) * 2014-01-31 2015-12-16 英國曼徹斯特大學 剝離作用
TW201625350A (zh) * 2015-01-05 2016-07-16 國立交通大學 製備二維材料的方法
TW201641733A (zh) * 2015-05-27 2016-12-01 Asm Ip控股公司 用於含鉬或鎢的薄膜之原子層沉積的前驅物之合成與使用
CN105148947A (zh) * 2015-08-27 2015-12-16 江南大学 TiO2@MoS2复合物的制备与应用
CN105624643A (zh) * 2016-01-06 2016-06-01 天津大学 一种大面积硒掺杂二硫化钼薄膜材料的制备方法

Also Published As

Publication number Publication date
KR102300073B1 (ko) 2021-09-09
JP2020514221A (ja) 2020-05-21
US10662074B2 (en) 2020-05-26
US20180186653A1 (en) 2018-07-05
TW201829741A (zh) 2018-08-16
CN110312573B (zh) 2022-08-23
EP3562582A1 (en) 2019-11-06
JP6818152B2 (ja) 2021-01-20
TW201920785A (zh) 2019-06-01
WO2018122667A1 (en) 2018-07-05
US20200223712A1 (en) 2020-07-16
CN110312573A (zh) 2019-10-08
KR20190100275A (ko) 2019-08-28
US11964879B2 (en) 2024-04-23
TWI732135B (zh) 2021-07-01

Similar Documents

Publication Publication Date Title
TWI639680B (zh) 使用量子點核心模板之二維奈米薄片的模板輔助合成
JP7049012B2 (ja) 予め作製されたナノ粒子の化学的切断による2dフレークの形成とそれを用いて製造されたファンデルワールスヘテロ構造デバイス
TWI679171B (zh) 使用胺-金屬錯合物及慢速釋放硫之前驅物的發光二維層狀材料之合成
TW201927699A (zh) 二維奈米薄片之由上而下合成
Namazi et al. Direct nucleation, morphology and compositional tuning of InAs1− xSbx nanowires on InAs (111) B substrates
Wang et al. Transforming layered to nonlayered two-dimensional materials: cation exchange of SnS2 to Cu2SnS3
Lu et al. Preparation and photoluminescence of (3C-ZnS)/(2H-ZnS) superlattice in Mn-doped ZnS nanoribbons
Lakehal et al. Photoelectrochemical properties of ZnO nanorods decorated with Cu and Cu2O nanoparticles
Liu et al. Simultaneous Nucleation and Growth of Quaternary Polar and Nonpolar GaN–ZnO Solid Solution Nanowires and Nanorods
Cai et al. Cu 1.94 S-Assisted Growth of Wurtzite CuInS 2 Nanoleaves by In Situ Copper Sulfidation
Hsiao et al. ZnSe/ZnSeTe superlattice nanotips
Achour Photoelectrochemical properties of ZnO nanorods decorated with Cu and Cu2O nanoparticles S. Lakehal, S. Achour, Ceramics Laboratory, University of Constantine 1, 25000, Algeria.