CN104445102B - 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用 - Google Patents

一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用 Download PDF

Info

Publication number
CN104445102B
CN104445102B CN201410706212.1A CN201410706212A CN104445102B CN 104445102 B CN104445102 B CN 104445102B CN 201410706212 A CN201410706212 A CN 201410706212A CN 104445102 B CN104445102 B CN 104445102B
Authority
CN
China
Prior art keywords
nanometer sheet
thin
presoma
ultra
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410706212.1A
Other languages
English (en)
Other versions
CN104445102A (zh
Inventor
俞书宏
胡增文
徐亮
阳缘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201410706212.1A priority Critical patent/CN104445102B/zh
Publication of CN104445102A publication Critical patent/CN104445102A/zh
Application granted granted Critical
Publication of CN104445102B publication Critical patent/CN104445102B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/02Elemental selenium or tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用,其特征在于:以ZnSe-Amine有机-无机杂化纳米片为前驱体;在水中加入酸,调节水pH在0.1到2的范围内,然后加入前驱体,常温下连续磁力搅拌或超声0.5-2h,使用酸化剥离氧化,即得超薄Se纳米片;所得超薄Se纳米片可用于作为制备结晶Se纳米线、多孔硒化物纳米片及贵金属纳米片的模板材料。

Description

一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用
技术领域
本发明涉及一种超薄Se纳米片的合成方法及应用,属于纳米材料合成技术领域。
背景技术
德国《先进材料》(AdvancedMaterials,2005年,17卷,2799–2802页)报道了在三元混合溶剂中(水合肼:二乙烯三胺:水=5:14:16)溶解ZnSO4·7H2O和Na2SeO3,转移到高压反应釜中,通过水热法180℃温度下反应12h来合成[ZnSe](DETA)0.5二维纳米带。这种方法得到的[ZnSe](DETA)0.5纳米带形貌均一,内部具有多层状结构,有良好的紫外可见光吸收和荧光性能。
《德国应用化学》(AngewandteChemieInternationalEdition,2012年,51卷,3211–3215页)的报道修饰了合成方法,把ZnSO4·7H2O换成Zn(OAC)2·2H2O,并且加大投量,在150℃温度下水热反应12h,合成了ZnSe-DETA(ZnSe-DETA是[ZnSe](DETA)0.5的别称,两者化学组成相同)纳米片。得到的纳米片比原来的纳米带较宽较长,长度有微米级,宽度有几百个纳米,而且产量比原来的高。
《自然·通讯》(Naturecommunication,2012年,3卷,1057页)报道了采用超声法剥离得到单层原子厚度ZnSe片。获得到的单层原子厚度ZnSe片具有良好的光电性能,在光解水方面有强大的应用前景。用于剥离的前驱体也是ZnSe-Amine有机-无机层状结构杂化物,2007年《美国化学会杂志》(JournaloftheAmericanChemicalSociety,2007年,127卷,3157-3162页)报道了该杂化物的合成方法。
Se在纳米材料合成技术领域是非常好的模板材料。《先进材料》(AdvancedMaterials,2002年,14卷,1749页)报道了Se单质纳米颗粒的合成和晶化成纳米线的方法。《材料化学杂志》(JournalofMaterialsChemistry,2006年,16卷,3893–3897页)总结了以Se单质纳米材料为模板的硒化物纳米材料合成技术。
硒化物二维纳米材料在半导体、催化等领域有着广泛的应用,而Se单质是硒化物纳米材料合成的一个良好模板的材料。另外,Se本身可以用作光敏材料、电解锰行业催化剂等领域。因此,Se二维纳米材料的合成有着极其重要的意义。由于Se单质自身的晶体结构特点,很难长成Se超薄二维纳米结构。至今,还没有见过成功化学合成出超薄Se纳米片材料的相关报道。
发明内容
本发明的一个目的提供一种以ZnSe-Amine有机-无机杂化纳米片为前驱体合成超薄Se纳米片的方法,以解决上述现有技术所存在的不足之处。
本发明另一目的是提供这种超薄Se纳米片作为模板材料的应用。
本发明解决技术问题,采用如下技术方案:
本发明通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法,其特点在于:以ZnSe-Amine有机-无机杂化纳米片为前驱体;在水中加入酸,调节水pH在0.1到2的范围内,然后加入前驱体,常温下连续磁力搅拌或超声0.5-2h,使前驱体酸化剥离氧化,溶液的颜色由白色变黄色最后发红,静置或离心分离得沉淀,所得沉淀用水洗涤,即得超薄Se纳米片;所述前驱体的摩尔量与所述水的体积比为1.0~2.5mmol/L。反应示意图如图1所示。
所述ZnSe-Amine有机-无机杂化纳米片为ZnSe-DETA有机-无机杂化纳米片,其中DETA为二乙烯三胺。
所述水为去离子水。
所述酸为盐酸、醋酸或巯基乙酸。
本发明通过调节水的pH,可以调节前驱体剥离氧化的速度,以获得不同多孔程度的超薄Se纳米片产物;通过调整磁力搅拌或超声的时间,可以获得不同Zn含量的超薄Se纳米片产物。因为反应可以分为两个阶段:以ZnSe-DETA有机-无机杂化纳米片做前驱体为例,第一阶段如式(1)所示,是前驱体的酸化剥离阶段,剥离为ZnSe和DETA,其中DETA的结构式如式(2)所示,;第二阶段如式(3)所示,是前驱体酸化剥离后所得ZnSe的氧化阶段,经第二阶段获得超薄Se纳米片。
本发明的有益效果体现在:本发明以ZnSe-Amine有机-无机杂化纳米片为前驱体成功合成了超薄Se纳米片,本发明合成的超薄Se纳米片,继承了前驱体的形貌,长宽和前驱体相近;厚度明显减小,前驱体的厚度有40-50nm,而超薄Se纳米片的厚度只有5nm左右;此超薄Se纳米片是多孔表面粗糙的结构,有一定的柔性,刚合成出来是无定形结构。此超薄Se纳米片是良好的模板材料,可以经过结构转化形成结晶Se纳米线,也可以通过化学转化形成多孔的硒化物(Ag2Se、Cu2Se等)纳米片和贵金属(Pt,Pd等)纳米片。
附图说明
图1是本发明制备方法的反应示意图;
图2为实施例1产物ZnSe-DETA有机-无机杂化纳米片前驱体的扫描电子显微镜(SEM)照片;
图3为实施例2产物超薄Se纳米片的的扫描电子显微镜(SEM)照片;
图4为实施例2不同酸度条件下得到的超薄Se纳米片的的透射电子显微镜(TEM)照片,左图对应pH=1,右图对应pH=0.1;
图5为实施例2产物超薄Se纳米片的的原子力显微镜(AFM)照片;
图6为实施例3酸化剥离氧化连续过程的动态捕捉,包括整个反应过程的紫外可见吸收光谱、pH、电导率变化情况;
图7为实施例1、2、4、5产物的X射线衍射(XRD)谱图;其中,a对应实施例1中的ZnSe-DETA有机-无机杂化纳米片前驱体,b对应实施例2中的酸化剥离氧化获得的超薄Se纳米片,c对应实施例4中的晶化之后获得的Se纳米线,d、e分别对应实施例5中的Ag2Se、Cu2Se纳米片;
图8是实施例4产物Se纳米线的扫描电子显微镜(SEM)照片;
图9是实施例5(1)产物Ag2Se纳米片的扫描电子显微镜(SEM)照片;
图10是实施例5(2)产物Cu2Se纳米片的扫描电子显微镜(SEM)照片;
图11是实施例6产物贵金属(Pt、Pd)纳米片的透射电子显微镜(TEM)照片;
图12是对实施例6产物贵金属Pt纳米片进行X射线电子能谱(XPS)表征的谱图。
具体实施方式
以下结合实施例对本发明做具体的说明。
实施例1:
参照已报道文献(AdvancedMaterials,2005年,17卷,2799–2802页;AngewandteChemieInternationalEdition,2012年,51卷,3211–3215页)水热合成ZnSe-DETA有机-无机杂化纳米片前驱体。具体方法如下:
在100ml的烧杯中,加入5ml水合肼、14ml二乙烯三胺和16ml水,连续磁力搅拌10min混合均匀,再加入Zn(OAC)2·2H2O(3mmol)和Na2SeO3(3mmol),再搅拌10min形成均匀溶液,转移到50ml高压反应釜中,140℃温度下加热12h时间。自然冷却后,离心取沉淀物。
分别采用ZeissSupra40扫描电子显微镜(SEM)、ShimadzuUV-240紫外吸收光谱仪、PW1710X-射线衍射仪(XRD)对所得固体产物样品进行表征。
图2展示的是所得ZnSe-DETA有机-无机杂化纳米片的SEM照片,从图中可以看出前驱体纳米片厚度在40-50nm;图6中的0min曲线是所得ZnSe-DETA有机-无机杂化纳米片的紫外可见吸收光谱图;图7中的a曲线是所得ZnSe-DETA有机-无机杂化纳米片的XRD图。SEM照片、UV-vis吸收图谱、XRD图谱与文献报道的吻合,表明产物是ZnSe-DETA有机-无机杂化纳米片。
实施例2:
酸化剥离氧化前驱体合成超薄Se纳米片:
(1)在1L的玻璃瓶中,加入800ml去离子水,加入适量盐酸,磁力搅拌均匀,调节pH=1,再加入1.5mmolZnSe-DETA有机-无机杂化纳米片前驱体,持续磁力搅拌1h。可以观察到溶液的颜色由白色变黄色最后发红。自然沉淀,弃掉上层清液,取沉淀物反复用水洗涤。
(2)在1L的玻璃瓶中,加入800ml去离子水,加入适量盐酸,磁力搅拌均匀,调节pH=0.1,再加入1.5mmolZnSe-DETA有机-无机杂化纳米片前驱体,持续磁力搅拌30min。同样观察到溶液的颜色由白色变黄色最后发红。自然沉淀,弃掉上层清液,取红色沉淀物反复用水洗涤。
分别采用ZeissSupra40扫描电子显微镜(SEM)、JEOLJEM-2011透射电子显微镜(TEM)、SPA-300HV扫描探针显微镜系统(AFM测试)、ShimadzuUV-240紫外吸收光谱仪、PW1710X-射线衍射仪(XRD)对所得固体产物样品进行表征。
图3展示的是(pH=1)所的产物的SEM照片,可以看出纳米片的大小继承了前驱体的尺寸,但是厚度明显减小了,只有5nm左右。同样,原子力显微镜(AFM)也显示超薄Se纳米片的厚度在5nm左右(如图5所示)。图4是超薄Se纳米片的TEM照片,可以看出纳米片是多孔的,而且酸度越大,孔越多,而且片有一定的柔性。图7中的b曲线是(pH=1)所得产物的XRD图,可以看出超薄Se纳米片仍含有少量未被氧化的ZnSe。
实施例3:酸化剥离氧化连续过程的动态捕捉
本实施例对酸化剥离氧化过程进行了动态捕捉,连续测试了反应过程的紫外可见光吸收谱图、pH以及电导率的数据,统计它们随反应时间的变化。具体做法如下:在250ml的玻璃容器中,加入200ml去离子水,加入适量盐酸,磁力搅拌均匀,调节pH≈1.5,为了使紫外可见吸收光谱在一个合适的范围内,本案例中加入0.15mmolZnSe-DETA纳米片前驱体,持续磁力搅拌2h。在整个反应过程中,定时(间隔10min或30min)取样测紫外可见吸收光谱,pH、电导率变化由相应探头直接探测。
图6中,左图展示了整个反应过程的紫外可见吸收光谱变化,可以观察到前10min主要是剥离反应去掉前驱体中的有机物(反应式见式(1));10-120min主要是氧化反应,将ZnSe氧化成Se(反应式见式(3))。图6中,右图是整个反应过程的pH和电导率变化,辅助说明前10min主要是剥离反应,10-120min主要是氧化反应。
实施例4:
本发明的超薄Se纳米片可用作制备结晶Se纳米线的模板材料,具体过程为:
将实施例2制备的超薄Se纳米片(pH=0.1)分散在乙醇中(浓度约1.875mmol/L,本实施例是在40ml乙醇中分散0.075mmol超薄Se纳米片),自然沉降两天,取下层沉淀物,用水和乙醇反复洗涤,烘干。采用ZeissSupra40扫描电子显微镜(SEM)和PW1710X-射线衍射仪(XRD)对所得固体产物样品进行表征。
所得产物的SEM照片如图8所示,是长在微米级,直径在100nm左右的均一纳米线。XRD图谱(图7c曲线)说明产物是三方相的Se单质。由此可见,所得产物是t-Se纳米线。
实施例5:
本发明的超薄Se纳米片可用作制备硒化物纳米片(如Ag2Se纳米片、Cu2Se纳米片)的模板材料,具体过程为:
(1)将实施例2制备的超薄Se纳米片(pH=1)分散在乙二醇中(浓度约1.875mmol/L,本实施例是在40ml乙二醇中分散0.075mmol超薄Se纳米片),持续搅拌状态下,加入过量的AgNO3(0.3mmol),持续搅拌10min,自然沉淀,取黑色沉淀物,用水和乙醇反复洗涤。
(2)将实施例2制备的超薄Se纳米片(pH=1)分散在乙二醇中(浓度约1.875mmol/L,本实施例是在40ml乙二醇中分散0.075mmol超薄Se纳米片),持续搅拌状态下,加入过量的CuCl(0.3mmol,用氨水溶解),持续搅拌20min,自然沉淀,取灰黑色沉淀物,用水和乙醇反复洗涤。
采用ZeissSupra40扫描电子显微镜(SEM)和PW1710X-射线衍射仪(XRD)对所得固体产物样品进行表征。
(1)、(2)所得产物的SEM照片如图9、10所示,纳米片的整体大小继承了超薄Se纳米片的尺寸,但是厚度有所增加。而且(1)所得产物的纳米片上的孔明显变大了,(2)所的产物有很多纳米小颗粒。图7中d、e曲线分别是(1)、(2)所得产物的XRD图谱,表明它们的物相分别是β-Ag2Se和立方晶系Cu2Se。
实施例6:
本发明的超薄Se纳米片可用作制备贵金属纳米片(如Pt纳米片、Pd纳米片)的模板材料,具体过程为:
(1)将实施例2制备的超薄Se纳米片(pH=1)分散在乙二醇中(浓度约1.875mmol/L,本实施例是在40ml乙二醇中分散0.075mmol超薄Se纳米片),持续搅拌状态下,加入过量的PtCl2(0.15mmol),摇床中60℃温度下260rpm转速下反应12h,自然沉淀,取黑色沉淀物,用水和乙醇反复洗涤。
(2)将实施例2制备的超薄Se纳米片(pH=1)分散在乙二醇中(浓度约1.875mmol/L,本实施例是在40ml乙二醇中分散0.075mmol超薄Se纳米片),持续搅拌状态下,加入过量的PdCl2(0.15mmol),摇床中60℃温度下260rpm转速下反应12h,自然沉淀,取黑色沉淀物,用水和乙醇反复洗涤。
采用ZeissSupra40扫描电子显微镜(SEM)和ESCALabMKIIX射线电子能谱仪(XPS)对所得固体产物样品进行表征,并做元素无机定量分析(ICP)测试。
(1)、(2)所得产物的TEM照片如图11所示,纳米片的整体大小继承了超薄Se纳米片的尺寸,但是厚度有所增加。而且(2)所得产物有纳米小颗粒。图12中是(1)所得产物的XPS分析,表明Pt是零价态。元素无机定量分析结果如下:(1)所得产物的原子比为Pt:Se=1.47:1;(2)所得产物的原子比为Pd:Se=1.38:1。

Claims (6)

1.一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法,其特征在于:以ZnSe-Amine有机-无机杂化纳米片为前驱体;在水中加入酸,调节水pH在0.1到2的范围内,然后加入前驱体,常温下连续磁力搅拌或超声0.5-2h,使前驱体酸化剥离氧化,静置或离心分离得沉淀,所得沉淀用水洗涤,即得超薄Se纳米片;所述前驱体的摩尔量与水的体积比为1.0~2.5mmol/L。
2.如权利要求1所述的方法,其特征在于:所述ZnSe-Amine有机-无机杂化纳米片为ZnSe-DETA有机-无机杂化纳米片。
3.如权利要求1所述的方法,其特征在于:所述水为去离子水。
4.如权利要求1所述的方法,其特征在于:所述酸为盐酸、醋酸或巯基乙酸。
5.如权利要求1所述的方法,其特征在于:所述超薄Se纳米片为无定形物相,具有柔性和多孔性。
6.如权利要求1所述的方法,其特征在于:通过调节水的pH,可以调节前驱体剥离氧化的速度,以获得不同多孔程度的超薄Se纳米片产物;通过调整磁力搅拌或超声的时间,可以获得不同Zn含量的超薄Se纳米片产物。
CN201410706212.1A 2014-11-27 2014-11-27 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用 Expired - Fee Related CN104445102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410706212.1A CN104445102B (zh) 2014-11-27 2014-11-27 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410706212.1A CN104445102B (zh) 2014-11-27 2014-11-27 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用

Publications (2)

Publication Number Publication Date
CN104445102A CN104445102A (zh) 2015-03-25
CN104445102B true CN104445102B (zh) 2016-06-22

Family

ID=52891966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410706212.1A Expired - Fee Related CN104445102B (zh) 2014-11-27 2014-11-27 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用

Country Status (1)

Country Link
CN (1) CN104445102B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081307B (zh) * 2015-07-27 2018-04-10 中国科学技术大学 一种改性银纳米管、Ag‑Ag2Se复合纳米管及其制备方法
CN105642910B (zh) * 2016-01-25 2018-01-30 中国科学技术大学 一种Au纳米颗粒复合纳米片及其制备方法
US10662074B2 (en) 2016-12-30 2020-05-26 Nanoco Technologies Ltd. Template-assisted synthesis of 2D nanosheets using nanoparticle templates
CN108793098A (zh) * 2018-07-16 2018-11-13 深圳大学 二维硒纳米片及其制备方法和应用
CN112028034B (zh) * 2020-09-25 2021-09-10 深圳大学 一种硒纳米片的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320599A (zh) * 2011-08-02 2012-01-18 同济大学 一种纳米氧化石墨烯表面聚合物功能化的方法
EP2505596A2 (en) * 2011-03-29 2012-10-03 Institutul National de Cercetare Dezvoltare Pentru Chimie si Petrochimie - Icechim Process for the obtaining of hybrid polymer inorganic-organic nanocomposites based on natural or synthetic zeolites and polyacrylonitrile
KR20130056016A (ko) * 2011-11-21 2013-05-29 삼성전자주식회사 소듐 바나데이트 나노와이어의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505596A2 (en) * 2011-03-29 2012-10-03 Institutul National de Cercetare Dezvoltare Pentru Chimie si Petrochimie - Icechim Process for the obtaining of hybrid polymer inorganic-organic nanocomposites based on natural or synthetic zeolites and polyacrylonitrile
CN102320599A (zh) * 2011-08-02 2012-01-18 同济大学 一种纳米氧化石墨烯表面聚合物功能化的方法
KR20130056016A (ko) * 2011-11-21 2013-05-29 삼성전자주식회사 소듐 바나데이트 나노와이어의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical transformation: a powerful route to metal chalcogenide nanowires;Unyong Jeong等;《J. Mater. Chem》;20061231;第16卷;第3893-3895页 *

Also Published As

Publication number Publication date
CN104445102A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104445102B (zh) 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用
Li et al. Direct synthesis of monodispersed ZnO nanoparticles in an aqueous solution
Salavati-Niasari et al. ZnO nanotriangles: Synthesis, characterization and optical properties
Goudarzi et al. Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase
Dong et al. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution
Liu et al. Selective synthesis of hexagonal Ag nanoplates in a solution-phase chemical reduction process
KR101235873B1 (ko) 은 나노입자의 제조방법
CN102672199B (zh) 片带一体结构形貌的银颗粒的制备方法
EP3508291A1 (en) Method for preparing solution containing ligand-bonded gold nanoclusters
TW201141635A (en) Low-temperature sinterable metal nanoparticle composition and electronic article formed using the composition
Mulongo et al. Synthesis and Characterisation of Silver Nanoparticles using High Electrical Charge Density and High Viscosity Organic Polymer
Abbasi et al. Influence of solvents on the morphological properties of AgBr nano-structures prepared using ultrasound irradiation
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
Zhang et al. Synthesis and photocatalytic property of multilayered Co3O4
CN105478117A (zh) 一种对太阳光具有强吸收性能的金氧化锌核壳异质纳米粒子及其制备方法
CN103111628B (zh) 一种可弯曲Ag纳米线的制备方法
US20130133484A1 (en) Method for the Mass Production of Silver Nanoparticles Having a Uniform Size
CN103600090B (zh) Au@AuPt合金纳米粒子及胶体分散体系的制备方法
Gahramanli et al. Influence of stabilizers on the structure and properties of Cd x Zn1–x S nanoparticles by sonochemical method
CN108262041A (zh) 一种室温一锅制备高活性金/氧化锌复合纳米簇的方法
Zhang et al. Photocatalytic performance of Cu 2 O and Ag/Cu 2 O composite octahedra prepared by a propanetriol-reduced process
Sun et al. Preparation of TiO2-coated barite composite pigments by the hydrophobic aggregation method and their structure and properties
Suganya et al. Neem (Azadirachta indica) gum assisted sol–gel synthesis and characterization of ZnO nanoparticles for photocatalytic application
Jia et al. Selective growth of TiO 2 beads on Ag nanowires and their photocatalytic performance
Wang et al. A novel wet-chemical method of preparing highly monodispersed Cu2O nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160622