CN110255603B - 一种CuInS2薄膜均匀掺钠的方法 - Google Patents

一种CuInS2薄膜均匀掺钠的方法 Download PDF

Info

Publication number
CN110255603B
CN110255603B CN201910412544.1A CN201910412544A CN110255603B CN 110255603 B CN110255603 B CN 110255603B CN 201910412544 A CN201910412544 A CN 201910412544A CN 110255603 B CN110255603 B CN 110255603B
Authority
CN
China
Prior art keywords
sodium
film
cuins
steps
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910412544.1A
Other languages
English (en)
Other versions
CN110255603A (zh
Inventor
陈桂林
蔡慧玲
刀春燕
陈水源
黄志高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201910412544.1A priority Critical patent/CN110255603B/zh
Publication of CN110255603A publication Critical patent/CN110255603A/zh
Application granted granted Critical
Publication of CN110255603B publication Critical patent/CN110255603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/385Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种CuInS2薄膜均匀掺钠的方法。该方法是将硝酸铜、硝酸铟、碳酸氢铵和碳酸氢钠混合研磨并烧结,合成含有NaInO2中间相的混合氧化物纳米颗粒,并分散于乙醇溶剂中获得浆料,并涂覆在清洗干净的玻璃衬底上,形成氧化物前驱膜;随后将氧化物前驱膜与硫粉加热进行退火处理,得到均匀掺钠的CuInS2薄膜。本发明方法具有掺钠工艺简单、原料来源丰富、绿色环保等优点,适用于大规模的工业生产。

Description

一种CuInS2薄膜均匀掺钠的方法
技术领域
本发明涉及太阳能电池材料与器件技术领域,具体涉及一种CuInS2薄膜均匀掺钠的方法。
背景技术
太阳能电池解决能源危机及环境污染的有效途径,可分为:硅基太阳能电池、有机太阳能电池和化合物薄膜太阳能电池。其中化合物薄膜太阳能电池具有轻便、可柔性等优点,受到广泛的关注。铜铟镓硒(CIGS)系列薄膜太阳能电池作为其中一种较为成功的化合物薄膜太阳能电池,已被商业化生产了。CIGS体系包括CuInS2、CuGaS2、CuInSe2、CuGaSe2及其混合物等。其中CuInS2薄膜是一类能带合适、光学性能优异的吸收层材料。
为了获得高质量的CuInS2薄膜,众多科研工作者已开展了包括:退火条件、掺杂优化等薄膜生长条件的探索。其中碱金属Na的掺杂被证明是一种有效减少薄膜缺陷、改善薄膜结晶性,提高太阳能电池效率的有效方法。经对现有技术专利申请文献检索发现,对CuInS2薄膜进行掺钠的专利申请有很多,例如在背电极Mo上形成厚度均匀掺Na的IGS膜后,制备富铜CIGS膜,从而实现在卷对卷柔性PI衬底上制备掺钠吸收层(申请号201210480635.7);再如先采用硒化热处理掺钠铜铟镓硒预制层实现对单层薄膜进行掺钠,周期循环获得由n层不同带隙的掺钠铜铟镓硒薄膜层(申请号201610841978.X)。同时,经过检索现有文献发现,当前通常采用NaF或Na2S等钠源对CuInS2薄膜进行钠掺杂。如通过热蒸发Cu、In和NaF形成Na掺杂的Cu-In前驱膜后,对其进行硫化获得掺钠的CuInS2薄膜(ThinSolid Films 519 (2010) 1712-1716);再如使用CuCl2、InCl3、CS(NH2)2和Na2S为起始溶液进行热喷涂镀膜,调节Na2S的含量实现钠掺杂量的控制(Physica B: Condensed Matter388 (2008) 1-9)。然而,现有叠层沉积工艺复杂,NaF或Na2S等钠源的掺杂易造成元素偏聚,这些都不利于CuInS2薄膜的大规模化生产。
发明内容
本发明的目的在于提供一种操作简单、可避免钠偏聚的CuInS2薄膜均匀掺钠的方法。该方法是以碳酸氢钠为反应物,通过低温固相反应合成NaInO2中间化合物,硫化混合氧化物前驱膜制备出均匀、高质量的太阳能电池吸收层CuInS2薄膜。
为实现上述目的,本发明所采用的技术方案是:
一种CuInS2薄膜均匀掺钠的方法,包括以下步骤:
1)使用硝酸铜、硝酸铟、碳酸氢铵和碳酸氢钠为起始反应物,混合研磨后烧结获得掺钠的混合氧化物;
2)将上述掺钠的混合氧化物分散于乙醇溶剂中,得到包含CuO、In2O3和NaInO2的混合浆料;
3)将上述浆料涂覆在洁净的玻璃衬底上,形成氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉加热进行退火处理,得到掺钠的CuInS2薄膜。
上述步骤1)中掺钠混合氧化物纳米颗粒的合成是以碳酸氢钠为反应物,在低温固相反应过程中,在使碳酸氢根被分解获得纯相氧化物的同时,可获得钠与铜、铟的均匀混合。
步骤4)硫化退火过程中,NaInO2在与硫反应后立即与Cu和In反应生成均匀分布钠的CuInS2薄膜。
进一步,步骤1)所述硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵按照摩尔比n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.01~0.1,n(NH4HCO3)/n(Cu+In+Na)=1.5进行混合研磨。
步骤1)所述烧结是在380-400℃烧结30-40min。
步骤2)所述浆料的浓度为180-200mg/ml,浆料中未引入有机粘结剂或分散剂。
步骤3)所述涂覆前,先将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,得到洁净的玻璃衬底。
步骤3)所述涂覆的方法为刀刮法或旋涂法。
步骤3)所述氧化物前驱膜的厚度为1~3微米。
步骤4)所述退火处理,是使氧化物前驱膜与硫粉同时从室温开始升温,升温速率为30-50℃/min,最终保持在400~600℃,保温10~180min,然后冷却得到掺钠的CuInS2薄膜。
本发明采用以上技术方案,具有掺杂工艺简单、设备不复杂、原料成本低廉、材料利用率高等优点,适用于大规模的工业生产。本发明的原理是:
1)将硝酸盐、碳酸氢钠与碳酸氢铵通过低温固相反应合成含有NaInO2中间产物的混合氧化物,以此作为钠源。
2)高温硫化过程中,钠的提供来源是均匀分布在氧化物前驱膜中的NaInO2。因此,CuInS2薄膜成相过程中,钠可均匀掺杂在该吸收层中,进而提高薄膜的结晶质量及电池效率。
本发明具有以下突出的有益效果:本发明提出了一种成本低、制备过程简单的CuInS2薄膜均匀掺钠的方法。根据相关专利文献报道,其它CuInS2系列薄膜的掺钠通常需要繁琐的多叠层沉积工艺或使用单相钠源,这些方法或者过程复杂,或者造成钠的偏聚。因此本发明采用了NaInO2中间产物为钠源,经过高温硫化退火获得了均匀掺Na的CuInS2薄膜。
附图说明
下面结合附图,对本发明作进一步说明。
图1为本发明实施例1掺钠量为5%(Na/Cu+In+Na)的氧化物纳米颗粒XRD图。
图2为本发明实施例1掺钠量为5%(Na/Cu+In+Na)的CuInS2薄膜Raman图。
图3为本发明实施例1掺钠量为5%(Na/Cu+In+Na)的CuInS2薄膜光谱图。
具体实施方式
为了对本发明有更好的理解,现以实施例的方式对本发明做进一步的说明。
一种CuInS2薄膜均匀掺钠的方法,包括以下步骤:
1)将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,备用;
2)将硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵(n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.01~0.1, n(NH4HCO3)/n(Cu+In+Na)=1.5)进行混合研磨,再将产物置于空气中进行380-400℃烧结30-40min获得掺钠的混合氧化物纳米颗粒;
3)将混合氧化物分散于乙醇溶剂中得到CuO、In2O3和NaInO2的混合浆料(浓度为180-200mg/ml)通过刀刮法或旋涂法涂覆在上述玻璃衬底上,形成厚度为1~3微米的氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉进行高温退火处理,选择常规管式炉或者快速升温退火炉为加热源,使氧化物前驱膜与硫粉同时从室温开始升温,升温速率为30-50℃/min,最终保持在400~600℃,保温10~180min,随后缓慢冷却到室温,得到掺钠的CuInS2薄膜。
本发明所涉及到的化学试剂均采购于国药集团化学试剂公司,硫粉采购于Aladdin Chemistry co.ltd,玻璃衬底采购于洛阳龙耀玻璃有限公司。
实施例1
一种CuInS2薄膜均匀掺钠的方法:
1)将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,备用;
2)将硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵(n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.05, n(NH4HCO3)/n(Cu+In+Na)=1.5)进行混合研磨,再将产物置于空气中进行380℃烧结30min获得掺钠混合氧化物纳米颗粒;
3)将混合氧化物纳米颗粒分散于乙醇溶剂中得到CuO、In2O3和NaInO2的混合浆料(浓度为200mg/ml)通过刀刮法或旋涂法涂覆在上述玻璃衬底上,形成厚度为2微米的氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉进行高温退火处理,选择常规管式炉为加热源,使氧化物前驱膜与硫粉同时从室温开始升温,升温速率为40℃/min,最终保持在550℃,保温30min,随后缓慢冷却到室温,得到CuInS2薄膜。
利用XRD对本实施例合成的氧化物纳米颗粒进行测试,从图1可以看出,所获得的氧化物纳米颗粒包含CuO、In2O3和NaInO2等;利用XRD对本实施例制备的均匀掺钠CuInS2薄膜进行测试,从图2可以看出,所获得的吸收层薄膜为纯相CuInS2;利用SEM对本实施例制备的均匀掺钠CuInS2薄膜进行测试,从图3可以看出,所获得的CuInS2薄膜致密平整、均匀性高。
实施例2
一种CuInS2薄膜均匀掺钠的方法:
1)将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,备用;
2)将硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵(n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.08, n(NH4HCO3)/n(Cu+In+Na)=1.5)进行混合研磨,再将产物置于空气中进行380℃烧结30min获得掺钠混合氧化物纳米颗粒;
3)将混合氧化物分散于乙醇溶剂中得到CuO、In2O3和NaInO2的混合浆料(浓度为200mg/ml)通过刀刮法或旋涂法涂覆在上述玻璃衬底上,形成厚度为2微米的氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉进行高温退火处理,选择常规管式炉为加热源,使氧化物前驱膜与硫粉同时从室温开始升温,升温速率30℃/min,最终保持在580℃,保温60min,随后缓慢冷却到室温,得到CuInS2薄膜。
实施例3
一种CuInS2薄膜均匀掺钠的方法:
1)将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,备用;
2)将硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵(n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.1, n(NH4HCO3)/n(Cu+In+Na)=1.5)进行混合研磨,再将产物置于空气中进行380℃烧结30min获得掺钠混合氧化物纳米颗粒;
3)将混合氧化物分散于乙醇溶剂中得到CuO、In2O3和NaInO2的混合浆料(浓度为200mg/ml)通过刀刮法或旋涂法涂覆在上述玻璃衬底上,形成厚度为2微米的氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉进行高温退火处理,选择常规管式炉为加热源,使氧化物前驱膜与硫粉同时从室温开始升温,升温速率为40℃/min,最终保持在500℃,保温20min,随后缓慢冷却到室温,得到CuInS2薄膜。
实施例4
一种CuInS2薄膜均匀掺钠的方法:
1)将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,备用;
2)将硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵(n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.01 n(NH4HCO3)/n(Cu+In+Na)=1.5)进行混合研磨,再将产物置于空气中进行400℃烧结30min获得掺钠的混合氧化物纳米颗粒;
3)将混合氧化物分散于乙醇溶剂中得到CuO、In2O3和NaInO2的混合浆料(浓度为180mg/ml)通过刀刮法或旋涂法涂覆在上述玻璃衬底上,形成厚度为1微米的氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉进行高温退火处理,选择常规管式炉或者快速升温退火炉为加热源,使氧化物前驱膜与硫粉同时从室温开始升温,升温速率为30℃/min,最终保持在400℃,保温180min,随后缓慢冷却到室温,得到掺钠的CuInS2薄膜。
实施例5
一种CuInS2薄膜均匀掺钠的方法:
1)将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,备用;
2)将硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵(n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.1, n(NH4HCO3)/n(Cu+In+Na)=1.5)进行混合研磨,再将产物置于空气中进行380℃烧结40min获得掺钠的混合氧化物纳米颗粒;
3)将混合氧化物分散于乙醇溶剂中得到CuO、In2O3和NaInO2的混合浆料(浓度为180-200mg/ml)通过刀刮法或旋涂法涂覆在上述玻璃衬底上,形成厚度为~3微米的氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉进行高温退火处理,选择常规管式炉或者快速升温退火炉为加热源,使氧化物前驱膜与硫粉同时从室温开始升温,升温速率为50℃/min,最终保持在600℃,保温10min,随后缓慢冷却到室温,得到掺钠的CuInS2薄膜。

Claims (9)

1.一种CuInS2薄膜均匀掺钠的方法,其特征在于:其包括以下步骤:
1)使用硝酸铜、硝酸铟、碳酸氢铵和碳酸氢钠为起始反应物,混合研磨后烧结获得掺钠的混合氧化物;
2)将上述掺钠的混合氧化物分散于乙醇溶剂中获得浆料;
3)将上述浆料涂覆在洁净的玻璃衬底上,形成氧化物前驱膜;
4)将上述氧化物前驱膜与硫粉加热进行退火处理,得到掺钠的CuInS2薄膜。
2.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤1)所述硝酸铜、硝酸铟、碳酸氢钠和碳酸氢铵按照摩尔比n(Cu)/n(In)=1,n(Na)/n(Cu+In+Na)=0.01~0.1,n(NH4HCO3)/n(Cu+In+Na)=1.5进行混合研磨。
3.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤1)所述烧结是在380-400℃烧结30-40min。
4.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤2)所述浆料的浓度为180-200mg/ml。
5.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤3)所述涂覆前,先将玻璃衬底依次浸入普通洗涤剂、去离子水、乙醇、丙酮溶液中,然后用去离子水超声并冲洗干净,得到洁净的玻璃衬底。
6.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤3)所述涂覆的方法为刀刮法或旋涂法。
7.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤3)所述氧化物前驱膜的厚度为1~3微米。
8.根据权利要求1所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:步骤4)所述退火处理,是使氧化物前驱膜与硫粉同时从室温开始升温,最终保持在400~600℃,保温10~180min,然后冷却得到掺钠的CuInS2薄膜。
9.根据权利要求8所述的一种CuInS2薄膜均匀掺钠的方法,其特征在于:所述退火处理过程的升温速率为30-50℃/min。
CN201910412544.1A 2019-05-17 2019-05-17 一种CuInS2薄膜均匀掺钠的方法 Active CN110255603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910412544.1A CN110255603B (zh) 2019-05-17 2019-05-17 一种CuInS2薄膜均匀掺钠的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910412544.1A CN110255603B (zh) 2019-05-17 2019-05-17 一种CuInS2薄膜均匀掺钠的方法

Publications (2)

Publication Number Publication Date
CN110255603A CN110255603A (zh) 2019-09-20
CN110255603B true CN110255603B (zh) 2021-09-07

Family

ID=67913295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910412544.1A Active CN110255603B (zh) 2019-05-17 2019-05-17 一种CuInS2薄膜均匀掺钠的方法

Country Status (1)

Country Link
CN (1) CN110255603B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721699A (zh) * 2014-01-03 2014-04-16 长沙学院 一种NaInO2光催化剂及其制备方法
CN106057973A (zh) * 2016-07-01 2016-10-26 福建师范大学 一种氧化物纳米颗粒制备太阳能电池吸收层cts薄膜的方法
CN106098814A (zh) * 2016-07-01 2016-11-09 福建师范大学 一种氧化物纳米颗粒制备太阳能电池吸收层CTSSe薄膜的方法
CN107134507A (zh) * 2016-12-08 2017-09-05 福建师范大学 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN109678123A (zh) * 2018-11-30 2019-04-26 中国科学院物理研究所 铜锌锡硫硒薄膜太阳能电池及其前驱体溶液制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721699A (zh) * 2014-01-03 2014-04-16 长沙学院 一种NaInO2光催化剂及其制备方法
CN106057973A (zh) * 2016-07-01 2016-10-26 福建师范大学 一种氧化物纳米颗粒制备太阳能电池吸收层cts薄膜的方法
CN106098814A (zh) * 2016-07-01 2016-11-09 福建师范大学 一种氧化物纳米颗粒制备太阳能电池吸收层CTSSe薄膜的方法
CN107134507A (zh) * 2016-12-08 2017-09-05 福建师范大学 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN109678123A (zh) * 2018-11-30 2019-04-26 中国科学院物理研究所 铜锌锡硫硒薄膜太阳能电池及其前驱体溶液制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Solvent-free synthesis of oxides for CuInSe2 thin films fabrication;Guilin Chen等;《Applied Surface Science》;20111209;3428-3432 *
Sulfurization and post-selenization of oxides precursors for high quality CuIn(S,Se)2 thin films;Miaoju Wu等;《Materials Science in Semiconductor Processing》;20160315;33-38 *
氧化物纳米颗粒墨水法制备CuIn(S,Se)2和Cu2ZnSn(S,Se)4薄膜及其表征;吴缪菊;《中国优秀硕士学位论文全文数据库 基础科学辑》;20170515;11-13 *

Also Published As

Publication number Publication date
CN110255603A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
KR100989077B1 (ko) 페이스트를 이용한 태양전지용 박막의 제조방법 및 이에의해 수득된 태양전지용 박막
KR101075873B1 (ko) 페이스트 또는 잉크를 이용한 구리인듐셀렌계 또는 구리인듐갈륨셀렌계 박막의 제조 방법
CN105932114A (zh) 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
US8815123B2 (en) Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells
CN102181847A (zh) 一种醇热沉积铜锌锡硫薄膜的方法
CN114086126B (zh) 一种单晶太阳能电池薄膜材料及其制备方法
CN113372012A (zh) 一种掺杂金属元素提高无机无铅CsSnI3钙钛矿稳定性的方法
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
CN101127308A (zh) 一种室温条件下沉积非晶硫化锌薄膜的方法
CN109802011B (zh) 一种空气中硫化退火制备铜锌锡硫薄膜的方法
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN103400894B (zh) 一种制备硫化锌光电薄膜的方法
CN110255603B (zh) 一种CuInS2薄膜均匀掺钠的方法
CN102344166B (zh) 一种Cu2ZnSnS4太阳能吸收层材料的制备方法
JP2009290202A (ja) 光エネルギー変換触媒及びその作製方法
CN106098814A (zh) 一种氧化物纳米颗粒制备太阳能电池吸收层CTSSe薄膜的方法
CN106057973A (zh) 一种氧化物纳米颗粒制备太阳能电池吸收层cts薄膜的方法
WO2012174551A2 (en) Inorganic solution and solution process for electronic and electro-optic devices
CN111816770B (zh) 钙钛矿薄膜的制备方法、钙钛矿薄膜以及太阳能电池器件
Chen et al. Facile fabrication of Cu2ZnSnS4 thin film based on a novel metal–salt precursor printing route
CN110212042B (zh) 一种Cu3Sb(S,Se)4薄膜及其制备方法、应用
CN106082690A (zh) 一种由硫酸铜制备铜铟硫光电薄膜的方法
CN105932081A (zh) 一种由氯化铜制备铜铟硫光电薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant