CN110194471B - 一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法 - Google Patents

一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法 Download PDF

Info

Publication number
CN110194471B
CN110194471B CN201910533975.3A CN201910533975A CN110194471B CN 110194471 B CN110194471 B CN 110194471B CN 201910533975 A CN201910533975 A CN 201910533975A CN 110194471 B CN110194471 B CN 110194471B
Authority
CN
China
Prior art keywords
temperature
desulfurization
liquid phase
concentration
salt lake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910533975.3A
Other languages
English (en)
Other versions
CN110194471A (zh
Inventor
马艳芳
张志宏
李成宝
董生发
张永明
庞登科
李志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghai Institute of Salt Lakes Research of CAS
Original Assignee
Qinghai Institute of Salt Lakes Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghai Institute of Salt Lakes Research of CAS filed Critical Qinghai Institute of Salt Lakes Research of CAS
Priority to CN201910533975.3A priority Critical patent/CN110194471B/zh
Publication of CN110194471A publication Critical patent/CN110194471A/zh
Application granted granted Critical
Publication of CN110194471B publication Critical patent/CN110194471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明公开一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,包括:步骤1,计算第一次脱硫温度,根据公式Y1=0.112X1+2.38计算第一次脱硫温度,步骤2,将所述硫酸钠亚型盐湖卤水降温至所述X1℃,待温度稳定后,在X1℃下进行固液分离,步骤3,计算第n次脱硫温度,根据公式Yn=0.112Xn+2.38计算第n次脱硫温度;步骤4,将所述第n‑1次脱硫后液相降温至所述Xn℃,在Xn℃下进行固液分离;步骤5,当Yn大于最终目标硫酸根质量浓度时,重复步骤3和步骤4,当Yn小于等于最终目标硫酸根质量浓度时,即为脱硫富锂卤水。该方法实现了硫酸钠亚型盐湖卤水在蒸发过程中对卤水温度和硫酸根浓度的精确控制。

Description

一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法
技术领域
本发明属于无机化学技术领域,具体涉及一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法。
背景技术
我国西藏地区的盐湖中,大部分盐湖的水化学类型为硫酸钠亚型,在卤水蒸发浓缩过程中,主要析出的固体矿物为硫酸盐,对于卤水中的稀贵元素,如锂、铷、铯、硼等元素再卤水的蒸发浓缩过程中,以矿物形式或者木叶夹带等原因,普遍存在资源损失严重,收率低。其中,锂离子在卤水蒸发浓缩过程的损失分为两部分:第一,盐田固、液相分离过程中的母液夹带;第二,锂离子浓度达到饱和之后,硫酸锂盐析出。使得锂离子在盐田阶段的损失高达50%。
对于硫酸钠亚型盐湖卤水来说,现有的技术是在盐田工艺中进行多次固液分离,减少母液夹带损失,同时,采用降温的方式,除冰和硫酸根。现有技术采用的降温方式和温度范围对于很多硫酸钠亚型盐湖卤水并不能适应,因为每一个盐湖所在地域的气候条件并不相同,不能保证每一个盐湖卤水的温度都能在冬季期间达到现有技术中的温度范围内,同时,现有技术在富集锂的过程控制中,对温度和硫酸根的控制停留在半经验模式的状态,实际卤水蒸发依靠自然能进行,由于对卤水蒸发与气候环境之间客观规律的不足,自然能未得到充分高效的利用,盐田生产、管理自动化程度较低,获取数据滞后,无法对蒸发过程作出精准预判和控制。因此,针对卤水蒸发周期长生产效率低、获得的卤水和矿物品位差、自然能利用不充分及自动化程度低等问题,迫切需要对卤水蒸发过程中的锂富集行为需要精确控制和升级。而且,现有技术仅仅控制卤水温度的实现锂的富集,实际生产中存在诸多的障碍和不可控因素。
发明内容
本发明的目的在于克服现有技术的不足,提供一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,该方法实现了硫酸钠亚型盐湖卤水在蒸发过程中对卤水温度和硫酸根浓度的精确控制。
本发明是通过以下技术方案实现的:
一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,包括以下步骤,
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度,单位为wt%;
步骤2,将所述硫酸钠亚型盐湖卤水降温至所述X1℃,待温度稳定后,在X1℃下进行固液分离,得到液相为第一次脱硫后液相;
步骤3,计算第n次脱硫温度,根据公式(Ⅱ)计算第n次脱硫温度,
Yn=0.112Xn+2.38 (Ⅱ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中硫酸根质量浓度,单位为wt%;所述n≥2,Yn<Yn-1
步骤4,将所述第n-1次脱硫后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为第n次脱硫后液相;
步骤5,当Yn大于最终目标硫酸根质量浓度时,重复步骤3和步骤4,当Yn小于等于最终目标硫酸根质量浓度时,所述第n次脱硫后液相即为脱硫富锂卤水;
所述硫酸钠亚型盐湖卤水当中常温下钾离子浓度为0.80~2.0wt%、镁离子浓度为0.09~0.40wt%、氯离子浓度为8.00~11.4wt%,硫酸根浓度为3.5~4.0wt%,锂离子浓度为0.05~0.10wt%,钠离子浓度为5~10wt%。
上述技术方案中,所述Xn-1-Xn<5。
上述技术方案中,所述Xn-1-Xn<3。
上述技术方案中,所述目标硫酸根质量浓度为≤3.50wt%。
上述技术方案中,所述固液分离过程,分离出来的固体为芒硝和冰。
一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,包括以下步骤,
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度,单位为wt%;
步骤2,将重量为Mkg的所述硫酸钠亚型盐湖卤水降温至所述X1℃,待温度稳定后,在X1℃下进行固液分离,得到液相为第一次脱硫后液相;
步骤3,将所述第一次脱硫后液相在X蒸1℃下进行第一次蒸发,当液相中硫酸根的质量浓度大于等于Y蒸1时,第一次蒸发后的液相进入步骤4;
所述Y蒸1通过公式(Ⅱ)计算,
Y蒸1=0.112X蒸1+2.38 (Ⅱ)
其中X蒸1为第一次蒸发温度,单位为℃,Y蒸1为第一次蒸发温度下硫酸根临界质量浓度,单位为wt%;
步骤4,计算第n次脱硫温度,根据公式(Ⅲ)计算第n次脱硫温度,
Yn=0.112Xn+2.38 (Ⅲ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中硫酸根质量浓度,单位为wt%;所述n≥2;
步骤5,将所述第n-1次蒸发后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为n次脱硫后液相,所述第n次脱硫后液相重量为Mn kg,当(1-Mn/M)<95%时,进入步骤6,当(1-Mn/M)≥95%时,所述第n次脱硫后液相即为脱硫富锂卤水;
步骤6,将所述第n次脱硫后液相在X蒸n℃下进行第n次蒸发,当所述液相中硫酸根的质量浓度大于等于Y蒸n时,且(1-Mn’/M)<95%时,重复步骤4~步骤6;当(1-Mn’/M)≥95%时,第n次蒸发后的液相即为即为脱硫富锂卤水;所述Mn’为第n次蒸发后的液相质量,单位为kg;
所述Y蒸n通过公式(Ⅳ)计算,
Y蒸n=0.112X蒸n+2.38 (Ⅳ)
其中X蒸n为第n次蒸发温度,单位为℃,Y蒸n为第n次蒸发温度下硫酸根临界质量浓度,单位为wt%;
所述硫酸钠亚型盐湖卤水当中常温下钾离子浓度为0.80~2.0wt%、镁离子浓度为0.09~0.40wt%、氯离子浓度为8.00~11.4wt%,硫酸根浓度为3.5~4.0wt%,锂离子浓度为0.05~0.10wt%,钠离子浓度为5~10wt%。
上述技术方案中,所述固液分离过程,分离出来的固体为芒硝和冰。
上述技术方案中,所述X蒸n与X蒸1均为自然环境温度,优选为均为夏季和秋季盐湖卤水自然环境温度,优选20℃。
本发明的优点和有益效果为:
本发明针对该类型的盐湖特征,将卤水中的硫酸根浓度进行控制,使盐田蒸发过程中硫酸锂盐矿物不被析出。硫酸根在卤水中的浓度小于等于4.0%时,硫酸根不会影响到锂离子在卤水中的富集,同时给出了温度与硫酸根浓度的模型,控制硫酸根在卤水中的含量,按照模型预测提前将卤水进行系列变温处理,实现盐湖卤水在盐田蒸发过程中的脱硫和富集锂的双重目标,解决硫酸钠亚型盐湖卤水中的硫害问题。
此外,现有技术中对硫酸钠亚型盐湖卤水进行降温往往需要的能量较多,属于高耗能流程,在本发明的技术方案中,将一次降温过程变为温度逐渐降低的多阶段降温,并在每次降温过程都进行固液分离,或者固液分离加再次蒸发的过程,此工艺可以大大减少降温的物料量,实现大幅降低能耗的工艺过程。并且固液分离过程分离出去的大量为固体冰,对环境无污染,是环境友好的工艺过程。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。
实施例1
以西藏拉果错盐湖卤水为原料,其化学组成钾0.80%、氯离子含量8.00%,硫酸根含量4.0%,锂离子含量0.05%,钠离子含量10.04%。
一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,包括以下步骤,
步骤1,计算第一次目标脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次目标脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中目标硫酸根质量浓度为2.94wt%;计算得到X1为5℃;
步骤2,将所述硫酸钠亚型盐湖卤水降温至所述5℃,待温度稳定后,在5℃下进行固液分离,得到液相为第一次脱硫后液相,所述第一次脱硫后液相中实测硫酸根质量浓度为3.04%;
步骤3,计算第2~10次脱硫温度,根据公式(Ⅱ)计算一次脱硫温度,
Yn=0.112Xn+2.38 (Ⅱ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中目标硫酸根质量浓度,单位为wt%;所述n≥2,Yn<Yn-1
步骤4,将所述第n-1次脱硫后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为第n次脱硫后液相;
步骤5,第10次降温后,Y10降至0.64%,小于最终目标硫酸根质量浓度,所述第10次脱硫后液相即为脱硫富锂卤水;
实施例1中X1~X10、Y1~Y10以及每次固液分离后液相中实测硫酸根含量、锂离子含量见表1.
表1不同温度下的硫酸根含量
Figure BDA0002100609240000051
实施例2
以西藏拉果错盐湖卤水为原料,其化学组成钾0.20%、氯离子含量11.4%,硫酸根含量4.0%,锂离子含量0.10%,钠离子含量10.04%。
一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,包括以下步骤,
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中目标硫酸根质量浓度为2.94wt%;计算得到X1为5℃
步骤2,将所述硫酸钠亚型盐湖卤水降温至所述5℃,待温度稳定后,在5℃下进行固液分离,得到液相为第一次脱硫后液相,其中实测硫酸根浓度为2.84wt%;
步骤3,计算第2~10次脱硫温度,根据公式(Ⅱ)计算一次脱硫温度,
Yn=0.112Xn+2.38 (Ⅱ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中目标硫酸根质量浓度,单位为wt%;所述n≥2,Yn<Yn-1
步骤4,将所述第n-1次脱硫后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为第n次脱硫后液相;
步骤5,第10次降温后,Y10降至0.72%,小于最终目标硫酸根质量浓度,所述第10次脱硫后液相即为脱硫富锂卤水;
实施例2中X1~X10、Y1~Y10以及每次固液分离后液相中实测硫酸根含量、锂离子含量见表2.
表2不同温度下的硫酸根含量
Figure BDA0002100609240000061
实施例3
以西藏拉果错盐湖卤水为原料,其化学组成钾1.20%、氯离子含量10.5%,硫酸根含量4.12%,锂离子含量0.18%,钠离子含量8.48%。
一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,包括以下步骤,
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中目标硫酸根质量浓度为2.94wt%;计算得到X1为5℃
步骤2,将所述硫酸钠亚型盐湖卤水降温至所述5℃,待温度稳定后,在5℃下进行固液分离,得到液相为第一次脱硫后液相,其中实测硫酸根浓度为3.00wt%;
步骤3,计算第2~10次脱硫温度,根据公式(Ⅱ)计算一次脱硫温度,
Yn=0.112Xn+2.38 (Ⅱ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中目标硫酸根质量浓度,单位为wt%;所述n≥2,Yn<Yn-1
步骤4,将所述第n-1次脱硫后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为第n次脱硫后液相;
步骤5,第10次降温后,Y10降至0.68%,小于最终目标硫酸根质量浓度,所述第10次脱硫后液相即为脱硫富锂卤水;
实施例3中X1~X10、Y1~Y10以及每次固液分离后液相中锂离子含量见表3。
表3不同温度下的硫酸根含量
Figure BDA0002100609240000071
实施例4
以西藏拉果错盐湖硫酸锂盐饱和卤水为原料,其化学组成钾0.98%、氯离子含量10.91%,硫酸根含量4.32%,锂离子含量0.20%,钠离子含量8.97%。
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度,单位为wt%;
卤水中硫酸根浓度1.58%,利用公式(Ⅰ)计算的到,卤水温控应调节至-7℃。
步骤2,将重量为30kg的所述硫酸钠亚型盐湖卤水降温至所述-7℃,待温度稳定后,在-7℃下进行固液分离,得到液相为第一次脱硫后液相;液相中的锂离子含量为:0.2110%。
步骤3,将所述第一次脱硫后液相在18.9℃下进行第一次蒸发,当液相中硫酸根的质量浓度大于等于4.50%时,第一次蒸发后的液相进入步骤4;
所述Y蒸1通过公式(Ⅱ)计算,
Y蒸1=0.112X蒸1+2.38 (Ⅱ)
其中X蒸1为第一次蒸发温度18.9℃,单位为℃,Y蒸1为第一次蒸发温度下硫酸根临界质量浓度,4.5wt%;
步骤4,计算第二次脱硫温度,根据公式(Ⅲ)计算二次脱硫温度。
Y2=0.112X2+2.38 (Ⅲ)
其中,X2为第二次脱硫温度,单位为℃,Y2为所述硫酸钠亚型盐湖卤水第二次脱硫后液相中硫酸根质量浓度,2.24wt%;
第二次脱硫降温后卤水中硫酸根浓度控制为2.24%,卤水温度调节至-1.3℃。
步骤5,将所述第一次蒸发后液相降温至所述-1.3℃,待温度稳定后,在-1.3℃下进行固液分离,得到液相为二次脱硫后液相,所述第二次脱硫后液相重量为M2=6.41kg,
步骤6,将所述第二次脱硫后液相在14.5℃下进行第二次蒸发,当液相中硫酸根的质量浓度大于等于4.00%时,第二次蒸发后的液相重量M2’=1.5kg,锂离子含量3.2%,即为获得的富锂溶液。
实施例5
以西藏拉果错盐湖硫酸锂盐饱和卤水为原料,其化学组成钾1.45%、氯离子含量10.10%,硫酸根含量4.47%,锂离子含量0.18%,钠离子含量7.87%。
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度,单位为wt%;
控制降温后卤水中硫酸根浓度0.87%,利用公式(Ⅰ)计算的到,卤水温控应调节至-13.5℃。
步骤2,将重量为30kg的所述硫酸钠亚型盐湖卤水降温至所述-13.5℃,待温度稳定后,在-13.5℃下进行固液分离,得到液相为第一次脱硫后液相;液相中的锂离子含量为0.5589%。
步骤3,将所述第一次脱硫后液相在13.1℃下进行第一次蒸发,当液相中硫酸根的质量浓度大于等于3.85%时,第一次蒸发后的液相进入步骤4;
所述Y蒸1通过公式(Ⅱ)计算,
Y蒸1=0.112X蒸1+2.38 (Ⅱ)
其中X蒸1为第一次蒸发温度,单位为13.1℃,Y蒸1为第一次蒸发温度下硫酸根临界质量浓度3.85wt%;
步骤4,计算第二次脱硫温度,根据公式(Ⅲ)计算一次脱硫温度。
Y2=0.112X2+2.38 (Ⅲ)
其中,X2为第二次脱硫温度,单位为℃,Y2为所述硫酸钠亚型盐湖卤水第二次脱硫后液相中硫酸根质量浓度2.00wt%;
控制二次降温后卤水中硫酸根浓度控制为2.00%,卤水温度调节至-3.4℃。
步骤5,将所述第一次蒸发后液相降温至所述-3.4℃,待温度稳定后,在-3.4℃下进行固液分离,得到液相为二次脱硫后液相,所述第二次脱硫后液相重量为M2=5.50kg,
步骤6,将所述第二次脱硫后液相在14.5℃下进行第二次蒸发,当液相中硫酸根的质量浓度大于等于4.00%时,第二次蒸发后的液相重量M2’=1.39kg,锂离子含量3.9%,即为获得的富锂溶液。
实施例6
以西藏拉果错盐湖硫酸锂盐饱和卤水为原料,其化学组成钾0.87%、氯离子含量9.14%,硫酸根含量4.15%,锂离子含量0.19%,钠离子含量8.00%。
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度1.10wt%;
控制第一次脱硫降温后卤水中硫酸根浓度1.10%,利用公式(Ⅰ)计算的到,卤水温控应调节至-11.4℃。
步骤2,将重量为30kg的所述硫酸钠亚型盐湖卤水降温至所述-11.4℃,待温度稳定后,在-11.4℃下进行固液分离,得到液相为第一次脱硫后液相;液相中的锂离子含量为0.3587%。
步骤3,将所述第一次脱硫后液相在10.3℃下进行第一次蒸发,当液相中硫酸根的质量浓度大于等于4.23%时,第一次蒸发后的液相进入步骤4;
所述Y蒸1通过公式(Ⅱ)计算,
Y蒸1=0.112X蒸1+2.38 (Ⅱ)
其中X蒸1为第一次蒸发温度10.3℃,Y蒸1为第一次蒸发温度下硫酸根临界质量浓度为4.23wt%;
步骤4,计算第二次脱硫温度,根据公式(Ⅲ)计算一次脱硫温度。
Y2=0.112X2+2.38 (Ⅲ)
其中,X2为第二次脱硫温度,单位为℃,Y2为所述硫酸钠亚型盐湖卤水第二次脱硫后液相中硫酸根质量浓度2.47wt%;
第二次脱硫降温后卤水中硫酸根浓度控制为2.47%,卤水温度调节至0.8℃。
步骤5,将所述第一次蒸发后液相降温至所述0.8℃,待温度稳定后,在0.8℃下进行固液分离,得到液相为二次脱硫后液相,所述第二次脱硫后液相重量为M2=4.87kg,
步骤6,将所述第二次脱硫后液相在18.5℃下进行第二次蒸发,当液相中硫酸根的质量浓度大于等于4.45%时,第二次蒸发后的液相重量M2’=1.28kg,锂离子含量3.14%,即为获得的富锂溶液。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (7)

1.一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,包括以下步骤,
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度,单位为wt%;
步骤2,将所述硫酸钠亚型盐湖卤水降温至所述X1℃,待温度稳定后,在X1℃下进行固液分离,得到液相为第一次脱硫后液相;
步骤3,计算第n次脱硫温度,根据公式(Ⅱ)计算第n次脱硫温度,
Yn=0.112Xn+2.38 (Ⅱ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中硫酸根质量浓度,单位为wt%;所述n≥2,Yn<Yn-1;所述Xn-1-Xn<5;
步骤4,将所述第n-1次脱硫后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为第n次脱硫后液相;
步骤5,当Yn大于最终目标硫酸根质量浓度时,重复步骤3和步骤4,当Yn小于等于最终目标硫酸根质量浓度时,所述第n次脱硫后液相即为脱硫富锂卤水;
所述硫酸钠亚型盐湖卤水当中常温下钾离子浓度为0.80~2.0wt%、镁离子浓度为0.09~0.40wt%、氯离子浓度为8.00~11.4wt%,硫酸根浓度为3.5~4.0wt%,锂离子浓度为0.05~0.10wt%,钠离子浓度为5~10wt%。
2.根据权利要求1所述的一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,所述Xn-1-Xn<3。
3.根据权利要求1所述的一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,所述目标硫酸根质量浓度为≤3.50wt%。
4.根据权利要求1所述的一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,所述固液分离过程,分离出来的固体为芒硝和冰。
5.一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,包括以下步骤,
步骤1,计算第一次脱硫温度,根据公式(Ⅰ)计算第一次脱硫温度,
Y1=0.112X1+2.38 (Ⅰ)
其中,X1为第一次脱硫温度,单位为℃,Y1为所述硫酸钠亚型盐湖卤水第一次脱硫后液相中硫酸根质量浓度,单位为wt%;
步骤2,将重量为Mkg的所述硫酸钠亚型盐湖卤水降温至所述X1℃,待温度稳定后,在X1℃下进行固液分离,得到液相为第一次脱硫后液相;
步骤3,将所述第一次脱硫后液相在X蒸1℃下进行第一次蒸发,当液相中硫酸根的质量浓度大于等于Y蒸1时,第一次蒸发后的液相进入步骤4;
所述Y蒸1通过公式(Ⅱ)计算,
Y蒸1=0.112X蒸1+2.38 (Ⅱ)
其中X蒸1为第一次蒸发温度,单位为℃,Y蒸1为第一次蒸发温度下硫酸根临界质量浓度,单位为wt%;
步骤4,计算第n次脱硫温度,根据公式(Ⅲ)计算第n次脱硫温度,
Yn=0.112Xn+2.38 (Ⅲ)
其中,Xn为第n次脱硫温度,单位为℃,Yn为所述硫酸钠亚型盐湖卤水第n次脱硫后液相中硫酸根质量浓度,单位为wt%;所述n≥2;
步骤5,将所述第n-1次蒸发后液相降温至所述Xn℃,待温度稳定后,在Xn℃下进行固液分离,得到液相为n次脱硫后液相,所述第n次脱硫后液相重量为Mn kg,当(1-Mn/M)<95%时,进入步骤6,当(1-Mn/M)≥95%时,所述第n次脱硫后液相即为脱硫富锂卤水;
步骤6,将所述第n次脱硫后液相在X蒸n℃下进行第n次蒸发,当所述液相中硫酸根的质量浓度大于等于Y蒸n时,且(1-Mn /M)<95%时,重复步骤4~步骤6;当(1-Mn /M)≥95%时,第n次蒸发后的液相即为即为脱硫富锂卤水;所述Mn 为第n次蒸发后的液相质量,单位为kg;
所述Y蒸n通过公式(Ⅳ)计算,
Y蒸n=0.112X蒸n+2.38 (Ⅳ)
其中X蒸n为第n次蒸发温度,单位为℃,Y蒸n为第n次蒸发温度下硫酸根临界质量浓度,单位为wt%;
所述硫酸钠亚型盐湖卤水当中常温下钾离子浓度为0.80~2.0wt%、镁离子浓度为0.09~0.40wt%、氯离子浓度为8.00~11.4wt%,硫酸根浓度为3.5~4.0wt%,锂离子浓度为0.05~0.10wt%,钠离子浓度为5~10wt%。
6.根据权利要求5所述的一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,所述固液分离过程,分离出来的固体为芒硝和冰。
7.根据权利要求5所述的一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法,其特征在于,所述X蒸n与X蒸1均为自然环境温度。
CN201910533975.3A 2019-06-19 2019-06-19 一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法 Active CN110194471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910533975.3A CN110194471B (zh) 2019-06-19 2019-06-19 一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910533975.3A CN110194471B (zh) 2019-06-19 2019-06-19 一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法

Publications (2)

Publication Number Publication Date
CN110194471A CN110194471A (zh) 2019-09-03
CN110194471B true CN110194471B (zh) 2020-11-06

Family

ID=67754889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910533975.3A Active CN110194471B (zh) 2019-06-19 2019-06-19 一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法

Country Status (1)

Country Link
CN (1) CN110194471B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789159B1 (en) * 2005-05-27 2010-09-07 Bader Mansour S Methods to de-sulfate saline streams
CN102730723A (zh) * 2012-07-17 2012-10-17 中国科学院青海盐湖研究所 硫酸盐型盐湖卤水中Li+的高浓度富集盐田方法
CN102910652A (zh) * 2012-10-18 2013-02-06 中国科学院青海盐湖研究所 高原硫酸盐型硼锂盐湖卤水的清洁生产工艺
CN103387244A (zh) * 2013-07-29 2013-11-13 中国科学院青海盐湖研究所 一种碳酸盐型盐湖卤水富集锂的方法
CN109019641A (zh) * 2018-10-12 2018-12-18 中国科学院青海盐湖研究所 从硫酸钠亚型盐湖卤水中分离镁锂并富集锂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789159B1 (en) * 2005-05-27 2010-09-07 Bader Mansour S Methods to de-sulfate saline streams
CN102730723A (zh) * 2012-07-17 2012-10-17 中国科学院青海盐湖研究所 硫酸盐型盐湖卤水中Li+的高浓度富集盐田方法
CN102910652A (zh) * 2012-10-18 2013-02-06 中国科学院青海盐湖研究所 高原硫酸盐型硼锂盐湖卤水的清洁生产工艺
CN103224244A (zh) * 2012-10-18 2013-07-31 中国科学院青海盐湖研究所 采用自然能富集分离硫酸盐型盐湖卤水中有益元素的方法
CN103387244A (zh) * 2013-07-29 2013-11-13 中国科学院青海盐湖研究所 一种碳酸盐型盐湖卤水富集锂的方法
CN109019641A (zh) * 2018-10-12 2018-12-18 中国科学院青海盐湖研究所 从硫酸钠亚型盐湖卤水中分离镁锂并富集锂的方法

Also Published As

Publication number Publication date
CN110194471A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
CN103194622B (zh) 从硫酸盐型盐湖卤水中富集硼锂元素的方法
CN105502440B (zh) 硫酸锂盐粗矿的精制方法
CN101850991B (zh) 用海水制取氯化钾的工艺方法
CN103103339B (zh) 一种从明矾石精矿中选择性回收明矾和镓的方法
CN104843749A (zh) 一种利用氧化镁脱硫废液、废渣制备胶凝材料原料的方法
CN110283001B (zh) 一种硫酸镁亚型盐湖卤水盐田自然蒸发分段成矿工艺
CN108640130B (zh) 由盐湖硫酸锂盐粗矿制备硫酸锂的方法
CN108358221A (zh) 一种用硫酸镁亚型盐湖卤水制取氯化锂的工艺
CN110194471B (zh) 一种硫酸钠亚型盐湖卤水脱硫并富集锂的方法
CN108439436B (zh) 一种一水硫酸锂的制备工艺
CN108584995B (zh) 一种从油田卤水中综合提取锂钾硼的方法
CN103553090B (zh) 利用自然能从混合卤水中提取Mg、K 、B、Li的方法
CN109019641B (zh) 从硫酸钠亚型盐湖卤水中分离镁锂并富集锂的方法
CN115806301B (zh) 一种吸附法从高钙型深层卤水中制取碳酸锂的方法
CN103553088B (zh) 利用自然能从混合卤水中制备锂硼盐矿的方法
CN103771460B (zh) 利用含硝酸盐的硫酸镁亚型卤水制取钾混盐矿及生产硝酸钾的方法
CN103553065B (zh) 利用自然能从混合卤水中制备硼矿的方法
CN103553087B (zh) 利用自然能从混合卤水中制备硫酸锂盐矿的方法
CN105858690A (zh) 从高原碳酸盐型卤水中快速富集锂的方法
CN103638808A (zh) 利用碳酸酐酶催化石灰乳富集糖厂烟道气中二氧化碳的方法
CN107226569B (zh) 含锂废水的处理方法
CN110713195A (zh) 提高氯化物型盐田生产效率的方法以及氯化物型盐田产物
CN110106372B (zh) 一种结晶法富集粉煤灰碱法提铝过程含镓淋洗液中镓离子的方法
CN103771458A (zh) 一种硼酸生产尾液制取硫酸钾的方法
CN107720784B (zh) 一种采用混盐溶液制碱的工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant