CN110190335B - 一种固态电解质界面修饰方法及其应用 - Google Patents

一种固态电解质界面修饰方法及其应用 Download PDF

Info

Publication number
CN110190335B
CN110190335B CN201910477170.1A CN201910477170A CN110190335B CN 110190335 B CN110190335 B CN 110190335B CN 201910477170 A CN201910477170 A CN 201910477170A CN 110190335 B CN110190335 B CN 110190335B
Authority
CN
China
Prior art keywords
solid electrolyte
electrostatic spinning
solid
modification
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910477170.1A
Other languages
English (en)
Other versions
CN110190335A (zh
Inventor
范立双
孙逊
张乃庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lingrong New Energy Technology Nantong Co ltd
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910477170.1A priority Critical patent/CN110190335B/zh
Publication of CN110190335A publication Critical patent/CN110190335A/zh
Application granted granted Critical
Publication of CN110190335B publication Critical patent/CN110190335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • D01D5/0084Coating by electro-spinning, i.e. the electro-spun fibres are not removed from the collecting device but remain integral with it, e.g. coating of prostheses
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种固态电解质界面修饰方法及其应用,所述方法包括如下步骤:步骤一、称取金属盐和PAN溶于DMF中,磁力搅拌直至溶液变为透明粘稠且均匀的溶液,得到静电纺丝前驱体溶液;步骤二、将静电纺丝前驱体溶液转入注射器内进行静电纺丝;步骤三、将静电纺丝后的固态电解质片取下,烘干后在空气中煅烧,得到表面包覆修饰层的固体电解质。上述方法制备得到的表面包覆修饰层的固体电解质可应用于全固态电池中。本发明在固态电解质的表面通过静电纺丝的方法包覆一层交联网状结构的氧化物纳米线,可以在抑制空间电荷层的同时改善电极与电解质之间的接触问题,增大接触面积。

Description

一种固态电解质界面修饰方法及其应用
技术领域
本发明属于全固态锂电池技术领域,涉及一种固态电解质界面修饰方法及其应用。
背景技术
自1991年日本索尼公司首次实现锂离子电池商业化以来,液态锂离子电池被看作是最有潜力的能量存储装置,并且在电池市场中占据重要位置。但常见的液态锂离子电池使用的都是有机体系的电解液,在过充或者短路情况下会导致电池的温度升高。电池的温度升高会加剧电解液与电极之间的反应,从而产生更多的热量和气体,造成电解液泄漏,易燃的有机电解液碰到氧气,在高温下容易着火甚至是爆炸。因此,目前,安全性是阻碍液态锂离子电池广泛应用的一个重要因素。此外,液态锂离子电池的工作温区比较窄,液态电解液在低温下容易转化为固体,电池内阻增大,低温下的离子电导率明显下降,严重影响电池性能。采用固体电解质则可以从根本上避免液体电解液带来的副反应、泄露、腐蚀等问题,从而有望显著延长服役寿命并从根本上保证锂离子电池的安全性,提高能量密度、循环性、服役寿命,降低电池成本。但由于全固态锂电池正极与电解质之间的界面接触属于固体与固体接触,产生严重的界面效应以及界面处的元素扩散问题,导致界面阻抗大大增加,严重影响了全固态电池的性能。所以降低固态电池的界面接触阻抗是提升全固态锂电池放电性能的关键。现在最常用的办法是对正极材料进行表面包覆来抑制空间电荷层的形成和元素之间的相互扩散,其中包覆物通常为氧化物、含锂的过渡金属氧化物或氟化物等。
CN103633329A公开了一种全固态锂离子电池复合型正极材料的制备方法,包覆层的材料为一种或多种含锂过渡金属氧化物,包覆层能有效抑制空间电荷层的形成,改善电极/无机固态电解质界面,有助于降低全固态锂离子电池界面电阻,从而提高全固态电池的循环稳定性和耐久性。但是这种对正极材料的包覆虽然对缓解界面效应有所帮助,但不能解决电极材料与电解质固体之间接触不良的问题。
综上所述,本领域急需寻求一种可以显著降低全固态锂电池界面电阻的方法,改善界面问题一直是本领域的热门研究课题。
发明内容
为了解决现有的全固态锂电池正极界面接触问题,降低界面电阻,提高全固态锂电池的放电性能与能量密度,本发明提供了一种固态电解质界面修饰方法及其应用。本发明在固态电解质的表面通过静电纺丝的方法包覆一层交联网状结构的氧化物纳米线,可以在抑制空间电荷层的同时改善电极与电解质之间的接触问题,增大接触面积。
本发明的目的是通过以下技术方案实现的:
一种固态电解质界面修饰方法,包括如下步骤:
步骤一、称取2~4g金属盐和1.2~2.4g聚丙烯腈(PAN)溶于40~80mL二甲基甲酰胺(DMF)中,60~90℃下磁力搅拌6~10h,直至溶液变为透明粘稠且均匀的溶液,得到静电纺丝前驱体溶液;
步骤二、将静电纺丝前驱体溶液转入20mL注射器内,然后将置于静电纺丝设备的推注架上,以铝箔为接收板,将固态电解质片固定在铝箔上,正高压置于针头上,负高压置于接收板上,开始进行静电纺丝;
步骤三、将静电纺丝后的固态电解质片取下,置于80~120℃干燥箱内6~8h,烘干后的固体电解质片在空气中煅烧,烧结程序为250~350℃烧结2~4h,然后在650~850℃下烧结3~6h,得到表面包覆修饰层的固体电解质。
上述方法制备得到的表面包覆修饰层的固体电解质可应用于全固态电池中,所述修饰层位于正极和固态电解质层之间,所述全固态锂电池的制备方法如下:将正极材料与导电剂和粘结剂混合,加入NMP为溶剂和成浆料,涂覆在表面包覆修饰层的固体电解质一侧,以金属锂片为负极,在手套箱中装配全固态锂电池。
本发明中,所述修饰层的厚度为20~1000nm。
本发明中,所述正极材料为LiCoO2、LiNiO2、LiMn2O4、LiNi0.8Co0.1Mn0.1O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.5Co0.2Mn0.3O2和LiFePO4中的一种或几种。
本发明中,所述固态电解质为石榴石型、钙钛矿型、NASICON型、硫化物型中的一种或几种。
本发明中,所述修饰层为Al2O3、ZnO、TiO2、SnO2和CeO2中的一种或几种。
本发明中,所述金属盐可以为ZnCl2、AlCl3、Ti(OBu)4、CeCl3、ZnAc·2H2O中的一种。
本发明中,所述注射器配有0.6mm不锈钢针头,针头与接收板的距离设置为10~20cm。
本发明中,所述正高压设置为10~20kV,负高压设置为1~3kV,静电纺丝推进速度为1~3mL/h。
相比于现有技术,本发明具有如下优点:
1、本发明采用静电纺丝的方法在固态电解质的表面包覆一层交联网状多孔结构的金属氧化物纳米线,可有效抑制空间电荷层的形成,阻碍活性物质与电解质之间的元素扩散,同时包覆层的网状结构还可以提高正极与电解质之间的接触面积,降低接触阻抗,提高电池放电性能与能量密度。
2、本发明的方法操作简单,包覆均匀。
附图说明
图1为实施例1得到的金属三氧化二铝修饰前后的全固态电解质的SEM图片,(a)修饰前固体电解质SEM图片,(b)修饰后SEM图片;
图2为实施例1制备的三氧化二铝修饰前后的全固态电池的循环放电曲线。
具体实施方式
下面结合实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
本实施例按照以下步骤修饰固态电解质界面:
(1)配置静电纺丝前驱体溶液:称取2gAlCl3和1.2g聚丙烯腈(PAN)溶于50mL二甲基甲酰胺(DMF)中,80℃下磁力搅拌6h,直至溶液变为透明粘稠且均匀的溶液。
(2)将前驱体溶液转入20mL注射器内,注射器配有0.6mm不锈钢针头,然后将置于静电纺丝设备的推注架上,以铝箔为接收板,将固态电解质片固定在铝箔上,针头与接收板的距离设置为15cm,正高压置于针头上,负高压置于接收板上,正高压设置为15kV,负高压设置为3kV,固体电解质为石榴石型固体电解质(Li7La3Zr2O12);开始进行静电纺丝,推进速度为1mL/h。
(3)将静电纺丝后的电解质片取下,置于80℃干燥箱内8h,烘干后的固体电解质片在空气中煅烧,烧结程序为250℃烧结2h,然后在850℃下烧结6h得到Al2O3修饰固体电解质。
图1为修饰前后的石榴石固态电解质的SEM图片,从图中可以看出通过静电纺丝法成功将金属氧化物包覆在石榴石固态电解质表面。
图2为全电池恒流充放电曲线,从图中可以看到修饰后电池的放电比容量得到明显提升,说明金属氧化物包覆可以降低固态电解质与正极间的界面电阻。
实施例2
本实施例按照以下步骤修饰固态电解质界面:
(1)配置静电纺丝前驱体溶液:称取2.4gAlCl3和1.2g聚丙烯腈(PAN)溶于50mL二甲基甲酰胺(DMF)中,80℃下磁力搅拌6h,直至溶液变为透明粘稠且均匀的溶液。
(2)将前驱体溶液转入20mL注射器内,注射器配有0.6mm不锈钢针头,然后将置于静电纺丝设备的推注架上,以铝箔为接收板,将固态电解质片固定在铝箔上,针头与接收板的距离设置为20cm,正高压置于针头上,负高压置于接收板上,正高压设置为15kV,负高压设置为3kV,固体电解质为石榴石型固体电解质(Li7La3Zr2O12);开始进行静电纺丝,推进速度为1mL/h。
(3)将静电纺丝后的电解质片取下,置于80℃干燥箱内8h,烘干后的固体电解质片在空气中煅烧,烧结程序为250℃烧结2h,然后在850℃下烧结6h得到Al2O3修饰固体电解质。
实施例3
本实施例按照以下步骤修饰固态电解质界面:
(1)配置静电纺丝前驱体溶液:称取3gAlCl3和1.5g聚丙烯腈(PAN)溶于40mL二甲基甲酰胺(DMF)中,80℃下磁力搅拌6h,直至溶液变为透明粘稠且均匀的溶液。
(2)将前驱体溶液转入20mL注射器内,注射器配有0.6mm不锈钢针头,然后将置于静电纺丝设备的推注架上,以铝箔为接收板,将固态电解质片固定在铝箔上,针头与接收板的距离设置为10cm,正高压置于针头上,负高压置于接收板上,正高压设置为15kV,负高压设置为3kV,固体电解质为石榴石型固体电解质(Li7La3Zr2O12);开始进行静电纺丝,推进速度为1mL/h。
(3)将静电纺丝后的电解质片取下,置于80℃干燥箱内8h,烘干后的固体电解质片在空气中煅烧,烧结程序为250℃烧结2h,然后在750℃下烧结6h得到Al2O3修饰固体电解质。
实施例4
本实施例按照以下步骤修饰固态电解质界面:
(1)配置静电纺丝前驱体溶液:称取3gZnAc·2H2O和1.5g聚丙烯腈(PAN)溶于40mL二甲基甲酰胺(DMF)中,80℃下磁力搅拌6h,直至溶液变为透明粘稠且均匀的溶液。
(2)将前驱体溶液转入20mL注射器内,注射器配有0.6mm不锈钢针头,然后将置于静电纺丝设备的推注架上,以铝箔为接收板,将固态电解质片固定在铝箔上,针头与接收板的距离设置为10cm,正高压置于针头上,负高压置于接收板上,正高压设置为15kV,负高压设置为3kV,固体电解质为石榴石型固体电解质(Li7La3Zr2O12);开始进行静电纺丝,推进速度为1mL/h。
(3)将静电纺丝后的电解质片取下,置于80℃干燥箱内8h,烘干后的固体电解质片在空气中煅烧,烧结程序为250℃烧结2h,然后在750℃下烧结6h得到ZnO修饰固体电解质。
实施例5
电池的制备及性能测试:以上述实施实例1、2、3、4中制备的修饰后的固体电解质作为电解质,以LiNi0.8Co0.1Mn0.1O2为正极活性物质,NMP为溶剂和成浆料,涂覆在固体电解质表面,涂覆银浆作为集流体,金属锂片为负极,在手套箱中装配成全电池。采用Neware 池测试系统进行恒流充放电测试,充放电电压范围为 2.8 ~4.3 V。

Claims (7)

1.一种固态电解质界面修饰方法,其特征在于所述方法包括如下步骤:
步骤一、称取2~4g金属盐和1.2~2.4g聚丙烯腈溶于40~80mL二甲基甲酰胺中,磁力搅拌直至溶液变为透明粘稠且均匀的溶液,得到静电纺丝前驱体溶液,所述金属盐为ZnCl2、AlCl3、Ti(OBu)4、CeCl3、ZnAc·2H2O中的一种;
步骤二、将静电纺丝前驱体溶液转入20mL注射器内,然后将注射器置于静电纺丝设备的推注架上,以铝箔为接收板,将固态电解质片固定在铝箔上,正高压置于针头上,负高压置于接收板上,开始进行静电纺丝,所述固态电解质为石榴石型、钙钛矿型、NASICON型、硫化物型中的一种或几种;
步骤三、将静电纺丝后的固态电解质片取下,烘干后在空气中煅烧,得到表面包覆修饰层的固体电解质,所述修饰层位于正极和固态电解质层之间。
2.根据权利要求1所述的固态电解质界面修饰方法,其特征在于所述修饰层为Al2O3、ZnO、TiO2、SnO2和CeO2中的一种或几种,厚度为20~1000nm。
3.根据权利要求1所述的固态电解质界面修饰方法,其特征在于所述注射器配有0.6mm不锈钢针头,针头与接收板的距离设置为10~20cm,正高压设置为10~20kV,负高压设置为1~3kV,静电纺丝推进速度为1~3mL/h。
4.根据权利要求1所述的固态电解质界面修饰方法,其特征在于所述煅烧程序为250~350℃烧结2~4h,然后在650~850℃下烧结3~6h。
5.根据权利要求1所述的固态电解质界面修饰方法,其特征在于所述烘干温度为80~120℃,时间为6~8h。
6.权利要求1-5任一权利要求所述方法制备得到的表面包覆修饰层的固体电解质在全固态电池中的应用。
7.根据权利要求6所述的表面包覆修饰层的固体电解质在全固态电池中的应用,其特征在于正极材料为LiCoO2、LiNiO2、LiMn2O4、LiNi0.8Co0.1Mn0.1O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.5Co0.2Mn0.3O2和LiFePO4中的一种或几种。
CN201910477170.1A 2019-06-03 2019-06-03 一种固态电解质界面修饰方法及其应用 Active CN110190335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910477170.1A CN110190335B (zh) 2019-06-03 2019-06-03 一种固态电解质界面修饰方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910477170.1A CN110190335B (zh) 2019-06-03 2019-06-03 一种固态电解质界面修饰方法及其应用

Publications (2)

Publication Number Publication Date
CN110190335A CN110190335A (zh) 2019-08-30
CN110190335B true CN110190335B (zh) 2021-06-25

Family

ID=67719963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910477170.1A Active CN110190335B (zh) 2019-06-03 2019-06-03 一种固态电解质界面修饰方法及其应用

Country Status (1)

Country Link
CN (1) CN110190335B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370708B (zh) * 2020-03-20 2021-09-07 四川轻化工大学 一种固体氧化物燃料电池电极及其制备方法
CN113694692B (zh) * 2021-07-16 2022-08-16 西安交通大学 一种含金属镍的单原子流体制备方法
CN113809390B (zh) * 2021-07-30 2022-10-18 福建巨电新能源股份有限公司 一种锂电池的复合负极的制备方法
CN114695858A (zh) * 2022-04-28 2022-07-01 北京郅航科技有限公司 一种高性能锂离子电池负极材料及制备方法
CN116169345B (zh) * 2022-12-02 2024-03-22 重庆太蓝新能源有限公司 一种固态电解质材料及其制备方法和电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009267A1 (en) * 2006-09-29 2010-01-14 The University Of Akron Metal oxide fibers and nanofibers, method for making same, and uses thereof
US9853324B2 (en) * 2013-09-11 2017-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Nanowire-based solid electrolytes and lithium-ion batteries including the same
CN104466188B (zh) * 2014-12-25 2016-09-14 江苏清陶能源科技有限公司 多层复合正极极片和该极片制备方法及应用其的锂离子电池
CN105552434B (zh) * 2015-12-17 2019-02-05 北京科技大学 一种三层结构的全固态聚合物电解质膜的制备方法
KR20190139911A (ko) * 2017-03-29 2019-12-18 유니버시티 오브 매릴랜드, 칼리지 파크 고체 상태 하이브리드 전해질, 이의 제조 방법 및 이의 용도
CN108493478B (zh) * 2018-04-11 2020-12-04 桑顿新能源科技有限公司 一种全固态电池及其制备方法

Also Published As

Publication number Publication date
CN110190335A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN110190335B (zh) 一种固态电解质界面修饰方法及其应用
JP2021048142A (ja) 二次電池用負極
US20170365876A1 (en) Methods and compositions for lithium ion batteries
CN109755448A (zh) 一种带有补锂涂层的锂电池隔膜及其制备方法
US10305096B2 (en) Method for producing electrode active material and electrode active material
CN100399603C (zh) 一种非水溶液电化学器件极片及其制造方法
CN112397762B (zh) 一种固态电池
WO2020073915A1 (zh) 锂离子电池负极材料及非水电解质电池
CN110098432B (zh) 一种碳纤维包覆固体电解质材料的制备方法及其应用
WO2020134763A1 (zh) 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
WO2020130442A1 (ko) 전고체 전지 및 이의 제조방법
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN103500823B (zh) 一种钛酸锂材料及其制备方法和在锂离子电池中的应用
CN111883725A (zh) 一种锂离子电池补锂陶瓷隔膜及其制备方法
CN105552369A (zh) 利用模板法制备三维多孔铌酸钛氧化物的方法及其在锂离子电池中的应用
US20210111425A1 (en) Secondary battery
CN103094567A (zh) 一种锂快离子导体复合的锂电池正极材料及其制备方法
JP5849543B2 (ja) リチウムイオン二次電池用電極体、リチウムイオン二次電池用電極体の製造方法およびリチウムイオン二次電池
JP2008305688A (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
KR101816416B1 (ko) 졸겔법과 슬러리캐스팅법을 이용한 전고체 전지용 양극의 제조방법
JP2010015852A (ja) 二次電池
JP4430778B2 (ja) リチウムイオン二次電池とその製造方法
KR100749626B1 (ko) 이차전지
CN210200886U (zh) 一种具有较高电化学性能的固态锂电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230322

Address after: 226503 No.118 Qifeng West Road, Chengbei street, Rugao City, Nantong City, Jiangsu Province

Patentee after: Lingrong new energy technology (Nantong) Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY