CN110187432B - 一种有源微晶光纤的制备方法及装置 - Google Patents

一种有源微晶光纤的制备方法及装置 Download PDF

Info

Publication number
CN110187432B
CN110187432B CN201910365060.6A CN201910365060A CN110187432B CN 110187432 B CN110187432 B CN 110187432B CN 201910365060 A CN201910365060 A CN 201910365060A CN 110187432 B CN110187432 B CN 110187432B
Authority
CN
China
Prior art keywords
optical fiber
laser
magnetic field
active optical
drawing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910365060.6A
Other languages
English (en)
Other versions
CN110187432A (zh
Inventor
文建湘
刘正
王廷云
董艳华
庞拂飞
赵子文
陈振宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201910365060.6A priority Critical patent/CN110187432B/zh
Publication of CN110187432A publication Critical patent/CN110187432A/zh
Priority to US17/606,707 priority patent/US11502475B2/en
Priority to PCT/CN2020/082912 priority patent/WO2020220924A1/zh
Application granted granted Critical
Publication of CN110187432B publication Critical patent/CN110187432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/026Drawing fibres reinforced with a metal wire or with other non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/12Non-chemical treatment of fibres or filaments during winding up
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1605Solid materials characterised by an active (lasing) ion rare earth terbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/161Solid materials characterised by an active (lasing) ion rare earth holmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Laser Surgery Devices (AREA)

Abstract

本发明公开了一种有源微晶光纤的制备方法及装置,将预制棒放置于拉丝炉中进行拉丝,拉制出的光纤在未涂覆状态下引入磁场诱导作用并结合激光处理技术,激光光束经过聚焦整形作用在光纤上,经激光处理再结晶后获得有源微晶光纤。合适的激光处理功率直接影响着硅酸盐玻璃光纤中晶体结构、种类、结晶度、晶粒尺寸、含量和玻璃残余相的多少。外加磁场诱导,改变了结晶过程的热力学与动力学,使得到的晶体粒度分布更佳均匀,减小了凝聚现象,使得晶粒尺寸更小。

Description

一种有源微晶光纤的制备方法及装置
技术领域
本发明涉及属于特种光纤技术领域,更具体地,涉及一种利用磁场诱导和激光处理有源微晶光纤的方法和装置。
背景技术
稀土离子掺杂光纤具有丰富的能级及独特的电子构型,广泛地用于光纤激光器与放大器的增益介质,掺杂稀土离子的晶体称为有源晶体。掺镱光纤因具有能级结构简单,宽的吸收和发射截面,长的荧光寿命,高的量子效率等优点,作为光纤激光器的核心元件,用于工业加工,对推动“智能制造”的发展具有重大意义。光纤激光器最早由Sniter提出,就引起了人们极大的关注,双包层光纤的提出,使光纤激光器的输出功率实现了从毫瓦量级到瓦级,甚至百瓦级的转变;半导体激光器技术的成熟又进一步提升了光纤激光器功率输出。但随着光纤激光器输出功率的不断提升,产生的热效应、非线性效应、光子暗化效应、模式不稳定等严重制约了激光器输出功率的提升。目前掺镱石英光纤,主要基于改进化学气相沉积法的气相和液相掺杂两种技术,具有掺杂浓度低,已经接近石英基质光纤的极限,制约了激光输出功率进一步的提升。
微晶光纤由于具有强的晶体场,低的声子能量,减少了非辐射弛豫跃迁概率,减小了热量的产生。微晶光纤中传输损耗主要是由于晶粒造成的光散射,当微晶的晶粒尺寸在发光波长的1/20以下时,微晶颗粒所造成的散射可忽略不计。研究表明,镱离子在钇铝石榴石(YAG)晶体中具有掺杂浓度高,能级结构简单,无激发态吸收和上转换,较长的荧光寿命和吸收发射带宽等特点,使得Yb:YAG晶体可以作为高浓度掺杂激光材料。但Yb:YAG晶体具有固定的熔点,不易拉制成光纤,因此产生的热效应较大。
在已经公开专利文献中,已有申请公开号CN104609722A提出了一种管-熔体共拉铋掺杂光纤的制备方法,并不适用于热处理温度较高的材料制备方法,存在局限性。
申请公开号CN102010123A提出了一种光纤热处理方法及装置,采用的是加保温炉去除应力。
高功率光纤激光器在工业加工、军事国防、科学研究等领域发挥的作用越来越大,因此一种新型的有源微晶光纤材料制备也变得尤为重要。
发明内容
本发明要解决的技术问题是:针对有源晶体在拉丝后热效应大的问题,提供了一种利用磁场诱导和激光处理有源微晶光纤的制备方法及制备装置。
本发明的技术方案是:一种有源微晶光纤的制备方法,包括:将拉制出的光纤引入磁场,并用激光照射光纤。
具体步骤为将预制棒放置于拉丝炉中进行拉丝,拉制出的光纤在未涂覆状态下引入磁场诱导作用并结合激光处理技术,激光光束经过聚焦整形作用在光纤上,经激光处理再结晶后获得有源微晶光纤。
所述磁场为稳恒磁场、交变磁场或脉冲磁场。
所述磁场的强度为0-5T。
所述激光的功率为0-5W。
所述激光光束光斑为环行光斑或圆形光斑,光斑直径为0.1~5mm。
一种有源微晶光纤,包括纤芯和包层,纤芯所用的材料为钇铝石榴石、锗酸铋、钨酸铅、或碘化钠,内部析出晶体的尺寸为2~100nm,包层为石英材料。
所述纤芯单掺或共掺了:镱、钕、铒、铋、铥、钬、铈、铽、钆。
纤芯的直径为5~100um,包层的直径为120~800um。
有源微晶光纤通过激光性能测试,产生激光输出,转换效率为30~80%。
一种有源微晶光纤的制备装置,包括拉丝炉,拉丝炉的出口方向设有磁场发生装置和激光发生器。
所述磁场发生装置产生的磁场为稳恒磁场、交变磁场或脉冲磁场。
所述激光发生器为光纤激光器、气体激光器或半导体激光器。
所述拉丝炉为石墨拉丝炉或激光拉丝炉。
本发明技术的原理:
合适的激光处理功率直接影响着硅酸盐玻璃光纤中晶体结构、种类、结晶度、晶粒尺寸、含量和玻璃残余相的多少。外加磁场诱导,改变了结晶过程的热力学与动力学,使得到的晶体粒度分布更佳均匀,减小了凝聚现象,使得晶粒尺寸更小。当晶粒尺寸在发光波长1/20以下时,由晶粒导致的散射损耗可忽略不计,对制得性能更佳有源微晶光纤具有重要意义。
本发明技术的有益效果:
激光处理技术,激光作用光斑区域小,激光处理功率和光斑大小可调,可精确控制析晶区域。
磁场诱导作用,可控制晶粒的长大,且磁场发生装置灵活,操作简单方便,效果明显。
该方法获得有源微晶光纤具有掺杂浓度高、发光效率高、荧光寿命长,光束质量好,转换效率高等特点,作为光纤激光器与放大器的增益介质将有广泛的应用前景。
附图说明
图1是本发明制备装置结构示意图。
其中:1-预制棒,2-拉丝炉,3-磁场发生装置,4-激光发生器,5-有源微晶光纤 。
图2是本发明有源微晶光纤截面结构示意图。
具体实施方式
下面结合附图进一步描述本发明的具体实施例,但要求保护的范围并不局限于此。
如图1所示,一种利用磁场诱导和激光处理有源微晶光纤的制备方法及装置,具有如下过程:将预制棒1放置于拉丝炉2中进行拉丝,拉制出的光纤在未经涂覆的状态下经过磁场发生装置3和激光发生器4,即引入磁场诱导作用并结合激光处理技术,激光光束经过聚焦整形作用在光纤上,激光处理再结晶,制得了有源微晶光纤5。所述磁场诱导并结合激光处理技术,包括光纤在线拉丝引入磁场作用并结合激光处理与拉丝完成对掺杂光纤在磁场作用下激光处理。
所述拉丝炉2采用石墨拉丝炉或激光拉丝炉。
所述磁场发生装置3生成的磁场为稳恒磁场、交变磁场、脉冲磁场中任意一种,磁场强度为0~5T。
所述激光发生器4采用光纤激光器、气体激光器、半导体激光器中任意一种,激光处理功率为0~5W。
所述激光处理的激光光束为环行光斑或圆形光斑,光斑直径为0.1~5mm。
如图2所示,微晶光纤截面结构,包括纤芯11和包层22,纤芯11置于包层22中心处。
所述光纤纤芯的直径为5~100um,包层的直径为120~800um。
所述光纤纤芯11为各种钇铝石榴石,锗酸铋,钨酸铅,碘化钠等硅酸盐材料,有源晶体析出,其晶体尺寸为2~100nm,包层22为石英材料。
所述有源晶体包括镱,钕,铒,铋,铥,钬,铈,铽,钆单掺或共掺石榴石晶体,锗酸铋晶体,钨酸铅晶体,碘化钠晶体材料等。
所述有源微晶光纤通过激光性能测试,产生激光输出,转换效率为30~80%。
实施例一:
如图1所示,一种磁场诱导激光处理有源微晶光纤制备方法,具有如下过程:将掺杂浓度为10at%的Yb:YAG晶体加工成微米级小棒,表面进行抛光处理,将其插入清洗干燥的石英套管中制成预制棒,将预制棒通过铝制夹具固定在激光拉丝炉上进行拉丝,拉制出的掺杂光纤在未经涂覆的状态下,在线拉丝时,使光纤通过交变磁场,交变磁场的两个磁极竖直放在光纤两侧,光纤与两个磁极的中心轴重合,磁场强度为0.2T,同时打开二氧化碳激光器,激光处理功率设为1.5W,激光光束经过聚焦整形为环行光斑作用在光纤的四周,使光纤处理受热均匀,光斑直径为200um。
如图2所示,有源微晶光纤纤芯直径为15~20um,包层直径为130~200um,纤芯位于包层的中心处。
纤芯为钇铝硅酸盐材料,通过电子扫描显微镜,观察纤芯处,明显观察到有晶体析出,其晶体尺寸为30~50nm,且分布相对均匀。
通过激光性能测试,产生激光输出,转换效率大于30%。
实施例二:
一种磁场诱导激光处理有源微晶光纤制备方法,具有如下过程:将掺杂浓度为10at%的Er:YAG晶体加工成微米级小棒,表面进行抛光处理,将其插入清洗干燥的石英套管中制成预制棒,将预制棒通过铝制夹具固定在激光拉丝炉上进行拉丝,拉制出的掺杂光纤在未经涂覆的状态下,在线拉丝时,使光纤通过交变磁场,交变磁场竖直放在光纤两侧,光纤与磁极中心轴重合,磁场强度为0.1T,同时打开二氧化碳激光器,激光处理功率设为2W,激光光束经过聚焦整形为环行光斑作用在光纤的四周,使光纤处理受热均匀,光斑直径为200um。
有源微晶光纤纤芯直径为6~12um,包层直径为120~150um,纤芯位于包层的中心处。
纤芯为钇铝硅酸盐材料,通过电子扫描显微镜,观察纤芯处,明显观察到有晶体析出,其晶体尺寸为40~60nm,且分布相对均匀。
通过激光性能测试,产生激光输出,转换效率大于30%。
实施例三:
如图1所示,一种磁场诱导激光处理有源微晶光纤制备方法,具有如下过程:将掺杂浓度为10at%的Yb:YAG晶体加工成微米级小棒,表面进行抛光处理,将其插入清洗干燥的石英套管中制成预制棒,将预制棒通过铝制夹具固定在激光拉丝炉上进行拉丝,拉丝完成后,将掺杂光纤放置于交变磁场中,光纤与磁极中心轴重合,磁场强度为0.5T,打开二氧化碳激光器,激光处理功率设为3W,激光光束经过聚焦整形为圆形光斑作用在光纤上,使光纤处理受热均匀,光斑直径为500um。
有源微晶光纤纤芯直径11为20~40um,包层22直径为200~400um,纤芯11位于包层22的中心处。
纤芯11为钇铝硅酸盐材料,通过电子扫描显微镜,观察纤芯处,明显观察到有晶体析出,其晶体尺寸为50~80nm,且分布相对均匀。
通过激光性能测试,产生激光输出,转换效率大于30%。
实施例四:
将掺杂浓度为10at%的Yb:YAG晶体加工成微米级小棒,表面进行抛光处理,将其插入清洗干燥的石英套管中制成预制棒,将预制棒通过铝制夹具固定在激光拉丝炉上进行拉丝,拉丝完成后,将掺杂光纤放置于恒稳磁场中,光纤与磁极中心轴重合,磁场强度为3T,打开半导体激光器,激光处理功率设为4W,激光光束经过聚焦整形为圆形光斑作用在光纤上,使光纤处理受热均匀,光斑直径为600um。
有源微晶光纤纤芯直径11为20~40um,包层22直径为200~400um,纤芯11位于包层22的中心处。
纤芯11为钇铝硅酸盐材料,通过电子扫描显微镜,观察纤芯处,明显观察到有晶体析出,其晶体尺寸为50~80nm,且分布相对均匀。
通过激光性能测试,产生激光输出,转换效率大于30%。
实施例五:
将掺杂浓度为10at%的Er:YAG晶体加工成微米级小棒,表面进行抛光处理,将其插入清洗干燥的石英套管中制成预制棒,将预制棒通过铝制夹具固定在激光拉丝炉上进行拉丝,拉制出的掺杂光纤在未经涂覆的状态下,在线拉丝时,使光纤通过脉冲磁场,交变磁场的两个磁极竖直放在光纤两侧,光纤与磁极中心轴重合,磁场强度为0.1T,同时打开光纤激光器,激光处理功率设为0.3W,激光光束经过聚焦整形为环行光斑作用在光纤的四周,使光纤处理受热均匀,光斑直径为150um。
有源微晶光纤纤芯直径为6~12um,包层直径为120~150um,纤芯位于包层的中心处。
纤芯为钇铝硅酸盐材料,通过电子扫描显微镜,观察纤芯处,明显观察到有晶体析出,其晶体尺寸为40~60nm,且分布相对均匀。
通过激光性能测试,产生激光输出,转换效率大于30%。

Claims (13)

1.一种有源光纤的制备方法,其特征在于包括:将拉制出的光纤引入磁场,并用激光照射光纤;将预制棒放置于拉丝炉中进行拉丝,拉制出的光纤在未涂覆状态下引入磁场诱导作用并结合激光处理技术,激光光束经过聚焦整形作用在光纤上,经激光处理再结晶后获得有源光纤。
2.根据权利要求1所述有源光纤的制备方法,其特征在于:所述磁场为稳恒磁场、交变磁场或脉冲磁场。
3.根据权利要求1所述的有源光纤的制备方法,其特征在于:所述磁场的强度为0-5T。
4.根据权利要求1所述的有源光纤的制备方法,其特征在于:所述激光的功率为0-5W。
5.根据权利要求1所述的有源光纤的制备方法,其特征在于:所述激光光束光斑为环行光斑或圆形光斑,光斑直径为0.1~5mm。
6.一种利用权利要求1所述方法制备的有源光纤,包括纤芯和包层,其特征在于:纤芯为钇铝石榴石、锗酸铋、钨酸铅或碘化钠,内部析出晶体,晶体尺寸为2~100nm,包层为石英材料。
7.根据权利要求6所述的有源光纤,其特征在于所述纤芯单掺或共掺了:镱、钕、铒、铋、铥、钬、铈、铽、钆。
8.根据权利要求6所述的有源光纤,其特征在于:纤芯的直径为5~100um,包层的直径为120~800um。
9.根据权利要求6所述的有源光纤,其特征在于:有源光纤通过激光性能测试,产生激光输出,转换效率为30~80%。
10.一种有源光纤的制备装置,包括拉丝炉(2),其特征在于: 拉丝炉(2)的出口方向设有磁场发生装置(3)和激光发生器(4),将预制棒放置于拉丝炉中进行拉丝,拉制出的光纤在未涂覆状态下引入磁场诱导作用并结合激光处理技术,完成对掺杂光纤在磁场作用下激光处理,激光光束经过聚焦整形作用在光纤上,经激光处理再结晶后获得有源光纤。
11.根据权利要求10所述有源光纤的制备装置,其特征在于:所述磁场发生装置(3)产生的磁场为稳恒磁场、交变磁场或脉冲磁场。
12.根据权利要求10所述有源光纤的制备装置,其特征在于:所述激光发生器(4)为光纤激光器、气体激光器或半导体激光器。
13.根据权利要求10所述有源光纤的制备装置,其特征在于:所述拉丝炉为石墨拉丝炉或激光拉丝炉。
CN201910365060.6A 2019-04-30 2019-04-30 一种有源微晶光纤的制备方法及装置 Active CN110187432B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910365060.6A CN110187432B (zh) 2019-04-30 2019-04-30 一种有源微晶光纤的制备方法及装置
US17/606,707 US11502475B2 (en) 2019-04-30 2020-04-02 Method and device for processing active microcrystalline fiber by magnetic field induction and lasering
PCT/CN2020/082912 WO2020220924A1 (zh) 2019-04-30 2020-04-02 一种有源微晶光纤的制备方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910365060.6A CN110187432B (zh) 2019-04-30 2019-04-30 一种有源微晶光纤的制备方法及装置

Publications (2)

Publication Number Publication Date
CN110187432A CN110187432A (zh) 2019-08-30
CN110187432B true CN110187432B (zh) 2020-11-03

Family

ID=67715462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910365060.6A Active CN110187432B (zh) 2019-04-30 2019-04-30 一种有源微晶光纤的制备方法及装置

Country Status (3)

Country Link
US (1) US11502475B2 (zh)
CN (1) CN110187432B (zh)
WO (1) WO2020220924A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424318B (zh) * 2020-06-10 2020-10-16 眉山博雅新材料有限公司 一种用于制备掺杂yag单晶光纤的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987543A (zh) * 2005-12-22 2007-06-27 株式会社拓普康 光导纤维电缆
CN108418085A (zh) * 2017-10-27 2018-08-17 同济大学 一种全晶体光纤及包层制作工艺

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917455A (en) * 1987-09-18 1990-04-17 Soane David S Field-assisted fiber spinning for the preparation of optical fibers having non-linear optical activity
US5226101A (en) * 1992-06-15 1993-07-06 Siecor Corporation Method of laser polishing fiber optic connectors
US5314519A (en) * 1992-08-31 1994-05-24 At&T Bell Laboratories Methods and apparatus for increasing optical fiber draw speed
AU3633901A (en) * 1999-10-18 2001-05-08 Corning Incorporated Method for making nanocrystalline glass-ceramic fibers
JP2004203708A (ja) * 2002-12-26 2004-07-22 Sumitomo Electric Ind Ltd ガラスの製造方法
US7536877B2 (en) 2003-04-04 2009-05-26 Fitel Ush Corp. Optical fiber fabrication and product
CN2938146Y (zh) * 2006-05-12 2007-08-22 南开大学 具有折射率凹陷层的光子晶体光纤
JP4851996B2 (ja) * 2007-06-14 2012-01-11 日立電線株式会社 光ファイバ及びその製造方法
CN102122019A (zh) 2010-10-13 2011-07-13 成都亨通光通信有限公司 稀土离子掺杂的氧氟化物微晶玻璃光纤
JP5643936B2 (ja) * 2011-06-29 2014-12-24 フルウチ化学株式会社 コリメータおよびコリメータ付き光アイソレータ
CN203621741U (zh) * 2013-11-29 2014-06-04 刘天镐 一种微型喇叭支架的激光打孔装置
CN105826805B (zh) * 2016-05-24 2023-12-19 中国计量大学 一种可磁调控的随机光纤激光器
CN106082684B (zh) * 2016-06-11 2019-07-16 华南理工大学 一种高掺杂Tb3+磷酸盐玻璃芯复合材料光纤及其制备方法
CN106477874B (zh) 2016-09-19 2019-02-22 上海大学 一种光纤纤芯折射率调制方法
CN106950642B (zh) * 2017-04-12 2019-07-16 东北大学 一种用于磁性纳米粒子自组装光子晶体光纤的装置
CN207933273U (zh) 2017-11-29 2018-10-02 中天科技光纤有限公司 一种光纤拉丝炉
CN108483899A (zh) * 2018-03-20 2018-09-04 华南理工大学 一种掺有半导体β-Ga2O3纳米晶体的有源光纤及其制备方法
CN108899752A (zh) * 2018-09-19 2018-11-27 山东大学 一种基于晶体光纤的绿光单频光纤激光器及其工作方法
CN109158563B (zh) * 2018-10-31 2019-10-01 燕山大学 带复合磁场的连铸结晶器电磁搅拌器
CN109669232B (zh) 2019-01-17 2021-01-12 上海大学 单晶半导体芯光纤及其制备方法
CN112645584B (zh) * 2020-12-11 2023-08-08 华南师范大学 一种用于特种光纤拉制的激光拉丝塔

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987543A (zh) * 2005-12-22 2007-06-27 株式会社拓普康 光导纤维电缆
CN108418085A (zh) * 2017-10-27 2018-08-17 同济大学 一种全晶体光纤及包层制作工艺

Also Published As

Publication number Publication date
US11502475B2 (en) 2022-11-15
WO2020220924A1 (zh) 2020-11-05
US20220149581A1 (en) 2022-05-12
CN110187432A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
Fornasiero et al. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3
CN1326790C (zh) 稀土离子掺杂的yag微晶玻璃及其制备方法
US9195002B2 (en) Double cladding crystal fiber and manufacturing method thereof
CA2380313C (en) Method of amplifying optical signals using erbium-doped materials with extremely broad bandwidths
CN110187432B (zh) 一种有源微晶光纤的制备方法及装置
CN112430847A (zh) 铥铒镝三掺杂氟化铅中红外激光晶体、制备方法及应用
Wang et al. Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er: SrF2 single-crystal fibers
Sun et al. Spectroscopic and laser properties of Er 3+, Pr 3+ co-doped LiYF 4 crystal
CN107572778A (zh) 一种用于中红外激光器的硫系玻璃光纤材料及其制备方法以及一种光纤
CN114634311B (zh) 一种提高铋掺杂石英玻璃的近红外荧光强度的方法
CN109112633B (zh) 一种高效中红外激光晶体Er,Pr:YSAG及其制备和实现中红外激光输出的方法
CN107287659A (zh) 激光晶体及其制备方法
CN109023524B (zh) 一种铒钬镨三掺杂氟化铅中红外激光晶体及其制备方法
Xiong et al. Crystal growth, spectroscopic characterization, and laser performance of Tm: LiLuF4 crystal
CN100362420C (zh) 一种利用激光退火提高掺稀土氧化铝薄膜光学特性的方法
CN115189211A (zh) 具有o波段激光发射性能的镍掺杂透明微晶玻璃微球激光器
CN1326297C (zh) 掺镱硅酸钆激光晶体及其制备方法
Pan et al. Enhanced 1.5 µm emission of Tm3+ ions by co-doping Tb3+ ions in Y3Al5O12 ceramics
CN102603190A (zh) 稀土掺杂硫系(卤)薄膜材料、制备方法及应用
Simondi-Teisseire et al. Spectroscopic Properties and Laser Oscillation of Yb: Er: Ca2Al2SiO7 in the 1.55 μm eye-safe range
Peyghambarian et al. Short fiber lasers produce record power/length of 1.33 W/cm
JP2002057396A (ja) 光増幅器および光利得媒質
Zhang et al. Research status of rare-earth-ion-doped infrared laser
Wang et al. Optimized Growth and Laser Application of Yb: LuAG Single-Crystal Fibers by Micro-Pulling-Down Technique. Crystals 2021, 11, 78
Xu et al. Enhanced Photoluminescence of Bi/Er Co-doped Fiber by Quenching and Cooling under 830 nm Pumping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant