CN110136971A - 用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法 - Google Patents

用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法 Download PDF

Info

Publication number
CN110136971A
CN110136971A CN201910324308.4A CN201910324308A CN110136971A CN 110136971 A CN110136971 A CN 110136971A CN 201910324308 A CN201910324308 A CN 201910324308A CN 110136971 A CN110136971 A CN 110136971A
Authority
CN
China
Prior art keywords
pani
electrode material
doping carbon
carbon gels
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910324308.4A
Other languages
English (en)
Other versions
CN110136971B (zh
Inventor
辛青
郭志成
臧月
林君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhihui Huasheng Technology Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910324308.4A priority Critical patent/CN110136971B/zh
Publication of CN110136971A publication Critical patent/CN110136971A/zh
Application granted granted Critical
Publication of CN110136971B publication Critical patent/CN110136971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法;本发明将间苯二酚、甲醛做为前驱体,三聚氰胺做为氮源,碳酸钠为催化剂,制得氮掺杂炭凝胶电极材料;将PANI滴入氮掺杂炭凝胶材料上,重复n次;压成凝胶薄膜,得到电极材料;将电极材料在切割成正方体,将固态电解质加压制成长方体,然后在长方体中切割两个与电极材料相同大小的槽,并将正方体电极材料放入槽中,并在电极材料上压柔性的镍薄片,得到电容器。该方法提高材料整体的比电容,拥有较大的功率密度,较宽的工作电压窗口,快速充放电等特点,适用于蓝牙耳机等需要小型轻质的供电电源的电子设备。

Description

用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的 制备方法
技术领域
本发明属于超级电容新材料能源存储领域,涉及一种基于逐层组装氮掺杂炭凝胶@(PANI/GO)n材料的超级电容的制备方法,用于无线蓝牙耳机供电。
技术背景
随着科学技术的进步,工业化和信息化的迅速发展,电子产品在日常生活中使用的越来越多,其中无线蓝牙耳机的使用需求日益增长。但是这类耳机普遍的情况就是储能问题,由于耳机要求小巧适合人体的入耳式设计,又要质量轻,所以传统的储能设备难以满足需求,而全固态的柔性超级电容器则能提供较好的解决方案。与传统超级电容器相比,柔性超级电容器具有以下优点:可选用性能稳定的电极材料,提高安全性;超薄的电极材料和精简的组装过程,大大缩减了体积,使整个器件小型轻质;材料用量少,降低了生产成本,且安全环保。
氮掺杂炭凝胶@(PANI/GO)n是聚苯胺和氧化石墨烯n层自组装包覆氮掺杂炭凝胶材料。该凝胶材料具有很好的导电性,较高的比电容,制备工艺简单,与传统的炭凝胶相比,加入聚苯胺与石墨烯使得材料有丰富的纳米孔道,且石墨烯片层的柔性使其具有较好的机械特性,氮掺杂进一步的提高了材料的电导率。该复合材料作为全固态超级电容的电极材料可以提高电容器的比电容。
发明内容
本发明针对无线蓝牙耳机供电问题,制备具有高比电容的氮掺杂炭凝胶@(PANI/GO)n材料,制备对称的固态柔性超级电容。
氮掺杂炭凝胶@(PANI/GO)n材料,其制作步骤是:
(1)、将间苯二酚、甲醛做为前驱体,三聚氰胺做为氮源,碳酸钠为催化剂,其中间苯二酚和甲醛的摩尔比为1:2,间苯二酚和碳酸钠的摩尔比为400:1-600:1,氮含量为1-3wt.%。将上述溶液装入外径为1-2cm的密闭的圆柱体玻璃管中30℃老化2天,80℃老化5天,放入丙酮中萃取2天,即得氮掺杂炭凝胶电极材料;
(2)、将质量比为1:47的PANI和DMAc,搅拌12h,再将HCl加入上述混合物中使得混合液pH值为2.5,且使得PANI的浓度为0.5mg/ml,接着在1-4℃下超声3h;PANI为聚苯胺;DMAc为二甲基乙酰胺;
(3)、将步骤(2)中PANI的混合液逐滴滴入(1)中的氮掺杂炭凝胶材料上,静置15min后,真空抽滤去除多余的PANI,然后将氧化石墨烯溶液逐滴滴入氮掺杂炭凝胶上,静置15min后,真空抽滤去除多余的氧化石墨烯溶液;其中氧化石墨烯溶液的浓度为2-10mg/ml;
(4)重复步骤(3)n次,即可得到氮掺杂炭凝胶@(PANI/GO)n材料。
(5)将凝胶材料置于水中去除杂质,在85℃放置5天。在1Mpa的压力下,将凝胶电极压成凝胶薄膜,即可得到电极材料;
(6)将上述所得电极材料在切割成正方体,用PVA/KOH凝胶材料做为固态电解质,将固态电解质加压制成长方体,然后在长方体中切割两个与电极材料相同大小的槽,并将正方体电极材料放入槽中,并在电极材料上压柔性的镍薄片,得到电容器。
作为优选,重复步骤(3)的次数n为5-30。
作为优选,电容器尺寸为直径0.5-1cm,高度为1-2cm的圆柱体。
本发明的有益效果在于:该方法具有简单高效、重现性好、可规模化制备等优点。该方法提高材料整体的比电容,拥有较大的功率密度,较宽的工作电压窗口,快速充放电等特点,适用于蓝牙耳机等需要小型轻质的供电电源的电子设备。
附图说明
图1:电容器的正视图;
图2:电容器的俯视图。
具体实施方式
具体实施方式一:将间苯二酚、甲醛做为前驱体,三聚氰胺做为氮源,碳酸钠为催化剂,其中间苯二酚和甲醛的摩尔比为1:2,间苯二酚和碳酸钠的摩尔比为400:1,氮含量为1wt.%。将上述溶液装入外径为1cm的密闭的圆柱体玻璃管中30℃老化2天,80℃老化5天,放入丙酮中萃取2天,即得氮掺杂炭凝胶电极材料。将1g的PANI和50mlDMAc混合,搅拌12h,再将HCl加入上述混合物中使得混合液pH值为2.5,且使得PANI的浓度为0.5mg/ml,接着在4℃下超声3h得到PANI的混合液。将PANI的混合液逐滴滴入氮掺杂的炭凝胶材料上,静置15min后,真空过滤去除多余的PANI,然后将2mg/ml氧化石墨烯溶液逐滴滴入在材料上,静置15min后,真空过滤去除多余的氧化石墨烯溶液。再重复操作4次,即可得到氮掺杂炭凝胶@(PANI/GO)5材料。将凝胶材料置于水中去除杂质,在85℃放置5天。在1Mpa的压力下,将凝胶电极压成凝胶薄膜,即可得到电极材料。
电容器结构制备:
如图1所示,将氮掺杂炭凝胶@(PANI/GO)5电极材料切割成4*4*4mm的正方体1、2。用PVA/KOH凝胶材料做为固态电解质,将固态电解质加压制成5*5*15mm的长方3,然后在长方体中切割两个4*4*4mm的槽,并将正方体电极材料1和2的放入槽中,盖上柔性的镍薄片6、7,在镍薄片6、7表面点焊极耳4、5,将其余部分用绝缘材料包裹,即可得到无线蓝牙耳机的供电电容,比电容为250F/g。
具体实施方试二:将间苯二酚、甲醛做为前驱体,三聚氰胺做为氮源,碳酸钠为催化剂,其中间苯二酚和甲醛的摩尔比为1:2,间苯二酚和碳酸钠的摩尔比为500:1,氮含量为2wt.%。将上述溶液装入外径为1cm的密闭的圆柱体玻璃管中30℃老化2天,80℃老化5天,放入丙酮中萃取2天,即得氮掺杂炭凝胶电极材料。将1g的PANI和50ml DMAc混合,搅拌12h,再将HCl加入上述混合物中使得混合液pH值为2.5,且使得PANI的浓度为0.5mg/ml,接着在4℃下超声3h得到PANI的混合液。将PANI的混合液逐滴滴入氮掺杂的炭凝胶材料上,静置15min后,真空过滤去除多余的PANI,然后将5mg/ml氧化石墨烯溶液逐滴滴入在材料上,静置15min后,真空过滤去除多余的氧化石墨烯溶液。再重复操作19次,即可得到氮掺杂炭凝胶@(PANI/GO)20材料。将凝胶材料置于水中去除杂质,在85℃放置5天。在1Mpa的压力下,将凝胶电极压成凝胶薄膜,即可得到电极材料。
电容器结构制备:
如图1所示,将氮掺杂炭凝胶@(PANI/GO)20电极材料切割成4*4*4mm的正方体1、2。用PVA/KOH凝胶材料做为固态电解质,将固态电解质加压制成5*5*15mm的长方3,然后在长方体中切割两个4*4*4mm的槽,并将正方体电极材料1和2的放入槽中,盖上柔性的镍薄片6、7,在镍薄片6、7表面点焊极耳4、5,将其余部分用绝缘材料包裹,即可得到无线蓝牙耳机的供电电容,比电容为370F/g。
具体实施方式三:将间苯二酚、甲醛做为前驱体,三聚氰胺做为氮源,碳酸钠为催化剂,其中间苯二酚和甲醛的摩尔比为1:2,间苯二酚和碳酸钠的摩尔比为600:1,氮含量为3wt.%。将上述溶液装入外径为1cm的密闭的圆柱体玻璃管中30℃老化2天,80℃老化5天,放入丙酮中萃取2天,即得氮掺杂炭凝胶电极材料。将1g的PANI和50ml DMAc混合,搅拌12h,再将HCl加入上述混合物中使得混合液pH值为2.5,且使得PANI的浓度为0.5mg/ml,接着在4℃下超声3h得到PANI的混合液。将PANI的混合液逐滴滴入氮掺杂的炭凝胶材料上,静置15min后,真空过滤去除多余的PANI,然后将10mg/ml氧化石墨烯溶液逐滴滴入在材料上,静置15min后,真空过滤去除多余的氧化石墨烯溶液。再重复操作29次,即可得到氮掺杂炭凝胶@(PANI/GO)30材料。将凝胶材料置于水中去除杂质,在85℃放置5天。在1Mpa的压力下,将凝胶电极压成凝胶薄膜,即可得到电极材料。
电容器结构制备:
如图1所示,将氮掺杂炭凝胶@(PANI/GO)30电极材料切割成4*4*4mm的正方体1、2。用PVA/KOH凝胶材料做为固态电解质,将固态电解质加压制成5*5*15mm的长方3,然后在长方体中切割两个4*4*4mm的槽,并将正方体电极材料1和2的放入槽中,盖上柔性的镍薄片6、7,在镍薄片6、7表面点焊极耳4、5,将其余部分用绝缘材料包裹,即可得到无线蓝牙耳机的供电电容,比电容为510F/g。

Claims (3)

1.用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法,包括以下步骤:
(1)、制备氮掺杂的炭凝胶材料
将间苯二酚、甲醛做为前驱体,三聚氰胺做为氮源,碳酸钠为催化剂,其中间苯二酚和甲醛的摩尔比为1:2,间苯二酚和碳酸钠的摩尔比为400:1-600:1,氮含量为1-3wt.%;将上述溶液装入密闭的圆柱体玻璃管中30℃老化2天,80℃老化5天,放入丙酮中萃取2天,即得氮掺杂炭凝胶电极材料;
(2)、将质量比为1:47的PANI和DMAc,搅拌12h,再将HCl加入上述混合物中使得混合液pH值为2.5,且使得PANI的浓度为0.5mg/ml,接着在1-4℃下超声3h;PANI为聚苯胺;DMAc为二甲基乙酰胺;
(3)、将步骤(2)中PANI的混合液逐滴滴入步骤(1)中的氮掺杂炭凝胶材料上,静置15min后,真空抽滤去除多余的PANI的混合液,然后将氧化石墨烯溶液逐滴滴入氮掺杂炭凝胶上,静置15min后,真空抽滤去除多余的氧化石墨烯溶液;其中氧化石墨烯溶液的浓度为2-10mg/ml;
(4)重复步骤(3)n次,即可得到氮掺杂炭凝胶@(PANI/GO)n材料;
(5)将凝胶材料置于水中去除杂质,在85℃放置5天;在1Mpa的压力下,将凝胶电极压成凝胶薄膜,即可得到电极材料;
(6)将上述所得电极材料在切割成正方体,用PVA/KOH凝胶材料做为固态电解质,将固态电解质加压制成长方体,然后在长方体中切割两个与电极材料相同大小的槽,并将正方体电极材料放入槽中,并在电极材料上压柔性的镍薄片,得到电容器。
2.根据权利要求1所述的用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法,其特征在于:重复步骤(3)的次数n为5-30。
3.根据权利要求1所述的用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法,其特征在于:电容器尺寸为直径0.5-1cm,高度为1-2cm的圆柱体。
CN201910324308.4A 2019-04-22 2019-04-22 用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法 Active CN110136971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910324308.4A CN110136971B (zh) 2019-04-22 2019-04-22 用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910324308.4A CN110136971B (zh) 2019-04-22 2019-04-22 用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法

Publications (2)

Publication Number Publication Date
CN110136971A true CN110136971A (zh) 2019-08-16
CN110136971B CN110136971B (zh) 2021-03-16

Family

ID=67570574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910324308.4A Active CN110136971B (zh) 2019-04-22 2019-04-22 用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法

Country Status (1)

Country Link
CN (1) CN110136971B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864302A (zh) * 2022-05-09 2022-08-05 晋江瑞碧科技有限公司 一种氮掺杂氧化石墨烯基柔性超级电容器的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786705A (zh) * 2012-09-04 2012-11-21 江南大学 一种基于层层自组装技术制备石墨烯/聚苯胺复合薄膜的方法
CN108440753A (zh) * 2018-04-20 2018-08-24 武汉科技大学 碳纳米管/聚苯胺/石墨烯复合柔性薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786705A (zh) * 2012-09-04 2012-11-21 江南大学 一种基于层层自组装技术制备石墨烯/聚苯胺复合薄膜的方法
CN108440753A (zh) * 2018-04-20 2018-08-24 武汉科技大学 碳纳米管/聚苯胺/石墨烯复合柔性薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUMIN WANG等: "High-Performance Layer-by-Layer Self-Assembly PANI/GQD-rGO/CFC Electrodes for a Flexible Solid-State Supercapacitor by a Facile Spraying Technique", 《APPL. ENERGY MATER.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864302A (zh) * 2022-05-09 2022-08-05 晋江瑞碧科技有限公司 一种氮掺杂氧化石墨烯基柔性超级电容器的制备方法
CN114864302B (zh) * 2022-05-09 2023-08-18 武夷学院 一种氮掺杂氧化石墨烯基柔性超级电容器的制备方法

Also Published As

Publication number Publication date
CN110136971B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Yin et al. 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors
US20150030968A1 (en) Aerogel based on doped graphene
CN103227324B (zh) 一种锂离子电池氧化铁负极材料的制备方法
CN103745836A (zh) g-C3N4/碳量子点复合电极的制备方法
CN103219491B (zh) 一种硫化铜正极及其制备方法
CN112490438B (zh) 一种Mo-VS4/N-GNTs镁离子电池正极材料
CN104934610A (zh) 一种锂离子电池用自支撑柔性复合电极材料制备方法
WO2018209912A1 (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
Han et al. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons
CN110265226B (zh) 一种硫化镍/碳化三聚氰胺泡沫复合电极材料及其制备方法
CN110010374B (zh) 一种氮硫共掺杂石墨烯泡沫电极的制备方法
CN110211812B (zh) 一种MnS@CoMn-LDH复合材料及其制备方法与应用
CN107958794A (zh) 超薄柔性全固态石墨烯水凝胶超级电容器及其制备方法
CN102664269B (zh) 一种锂离子电池负极材料的制备方法
CN109300698B (zh) 一种锂离子电容器及其制备方法
CN102623687A (zh) 一种高容量二氧化钼负极材料的制备方法及其应用
CN111952539A (zh) 一种高载量电极的制备方法及金属锂电池
CN105742572A (zh) 一种三维导电网络支撑的多孔硅纳米材料及其制备方法和用途
CN110136971A (zh) 用于无线蓝牙耳机的氮掺杂炭凝胶@(PANI/GO)n超级电容的制备方法
CN103367765B (zh) 多层石墨的制备方法和应用该多层石墨制备锂空气电池阴极的方法
CN104282883A (zh) 锂离子电池用复合负极材料及其制备方法、锂离子电池负极片和锂离子电池
CN108649207B (zh) 一种锂离子电池负极导电剂及含有该导电剂电池的制备方法
CN107464934A (zh) 一种基于石墨烯/碳纳米管复合导电剂正极浆料制备方法
CN103606656A (zh) 一种用于铅炭超级电池的氧化铅/石墨烯纳米复合材料的制备方法
CN111525140B (zh) 一种锂离子电池碳基纳米复合材料电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230130

Address after: 518000 1518J24, Building A, Xinghe Century, No. 3069, Caitian Road, Gangxia Community, Futian District, Shenzhen, Guangdong Province

Patentee after: Guangdong Huasheng Xingcheng Intellectual Property Agency Co.,Ltd.

Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231110

Address after: 308, Building 47, Dayun Software Town, No. 8288 Longgang Avenue, He'ao Community, Yuanshan Street, Longgang District, Shenzhen City, Guangdong Province, 518000

Patentee after: Shenzhen Zhihui Huasheng Technology Co.,Ltd.

Address before: 518000 1518J24, Building A, Xinghe Century, No. 3069, Caitian Road, Gangxia Community, Futian District, Shenzhen, Guangdong Province

Patentee before: Guangdong Huasheng Xingcheng Intellectual Property Agency Co.,Ltd.

TR01 Transfer of patent right