CN110117817A - 一种塑性半导体材料以及其制备方法 - Google Patents

一种塑性半导体材料以及其制备方法 Download PDF

Info

Publication number
CN110117817A
CN110117817A CN201810117079.4A CN201810117079A CN110117817A CN 110117817 A CN110117817 A CN 110117817A CN 201810117079 A CN201810117079 A CN 201810117079A CN 110117817 A CN110117817 A CN 110117817A
Authority
CN
China
Prior art keywords
semiconductor material
inorganic semiconductor
temperature
preparation
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810117079.4A
Other languages
English (en)
Other versions
CN110117817B (zh
Inventor
史迅
刘睿恒
郝峰
王拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201810117079.4A priority Critical patent/CN110117817B/zh
Priority to US16/967,119 priority patent/US11136692B2/en
Priority to JP2020540435A priority patent/JP7028985B2/ja
Priority to PCT/CN2018/076460 priority patent/WO2019153335A1/zh
Priority to EP18905300.2A priority patent/EP3751024A4/en
Publication of CN110117817A publication Critical patent/CN110117817A/zh
Application granted granted Critical
Publication of CN110117817B publication Critical patent/CN110117817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/10Solid or liquid components, e.g. Verneuil method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种塑性半导体材料以及其制备方法。该半导体材料包括如下式(I)所示的辉银矿基化合物:Ag2‑δXδS1‑ηYη(I),式中,0≤δ<0.5,0≤η<0.5;X为Cu、Au、Fe、Co、Ni、Zn、Ti、V中的至少一种;Y为N、P、As、Sb、Se、Te、O、Br、Cl、I和F中的至少一种。

Description

一种塑性半导体材料以及其制备方法
技术领域
本发明涉及一种塑性无机半导体材料以及其制备方法,属于半导体材料领域。
背景技术
近年来,随着柔性显示技术以及可穿戴电子产品的蓬勃发展,柔性电子器件受到广泛关注,而作为柔性电子产品的核心处理器件的柔性半导体芯片也越来越成为各科研机构及公司的研究热点。一般来说,柔性半导体芯片有两种技术路线,一是采用有机半导体为基材,因为有机物本身具有一定的可变形性,通过对其进行N型和P型的调控从而制成的芯片元件也可以承受一定的变形量;但是该路线由于有机半导体较低的迁移率,使得器件性能的提升有非常大的限制;同时有机半导体材料还极易受到氧气和湿度的影响,导致半导体器件的可靠性存在严重问题(Park S K,Jackson T N,Anthony J E,et al.Highmobility solution processed 6,13-bis(triisopropyl-silylethynyl)pentaceneorganic thin film transistors[J].Applied Physics Letters,2007,91(6):063514-063514-3.)。第二种技术路线为采用有机聚合物如PI等为衬底,在其上制备无机半导体如Si/Ge等薄膜或者纳米线半导体元器件(Münzenrieder N,Salvatore G A,Kinkeldei T,etal.InGaZnO TFTs on a flexible membrane transferred to a curved surface with aradius of 2mm[J].2013:165-166.),当无机半导体材料的维度在一定范围之内时,可以承受一定程度的弯曲变形,结合可变形有机聚合物衬底,从而制得可承受一定变形的半导体芯片。这种方法可保持无机半导体器件的高性能,但是由于无机/有机材料的结合问题,导致芯片多次变形后会发生剥离以及性能衰减。同时,受限于工艺条件和制备能力,该种无机/有机结合的柔性半导体器件的制备成本高且产量较低。
发明内容
针对上述问题,本发明的目的在于提供一种材料,既能够像有机材料那样可承受一定的变形,而且还具有电性能可调的优异半导体性能,从而实现高效柔性半导体器件的制备。
第一方面,本发明提供了一种具有塑性变形能力的电性能可调的无机半导体材料,包括如下式(I)所示的辉银矿基化合物:
Ag2-δXδS1-ηYη (I),
式中,
0≤δ<0.5,0≤η<0.5;
X为Cu、Au、Fe、Co、Ni、Zn、Ti、V其中的至少一种;
Y为N、P、As、Sb、Se、Te、O、Br、Cl、I和F中的至少一种。
本发明的无机半导体材料除具有电性能可调的半导体电学性能之外,在承受压缩、拉伸及弯曲应力时具有非常强的塑性变形能力,能够满足柔性电子器件对于可变形半导体材料的要求,可为新一代柔性半导体器件提供一种新的解决方案。
所述无机半导体材料的带隙能够在0.5到1.5eV范围内调节,电导率能够在0.001到250000S/m范围内调节。
所述无机半导体材料能够承受3%以上的拉伸变形、13%以上的弯曲变形以及30%以上的压缩变形。
优选地,0≤δ<0.05,0≤η<0.05。
优选地,0.1≤δ<0.5,0.1≤η<0.5。
所述半导体材料可以是单晶体。
所述半导体材料也可以是多晶体。
所述多晶体的晶粒尺度可在1μm到5mm之间,致密度可在95%以上。
另一方面,本发明提供上述无机半导体材料的制备方法,包括以下步骤:
在惰性气体下或者真空中,将原料按照式(I)的化学计量比在850~1200℃保温1~20小时形成原料均匀混合的熔体后冷却得到块状固体;以及
将所得块状固体通过制粉烧结工艺得到多晶材料或者通过坩埚下降法生长得到单晶材料。
本发明工艺简单、容易控制、产业化前景好。
较佳地,所述冷却后还包括退火步骤,优选地,退火温度为400~650℃,退火时间为1~300小时。
较佳地,所述烧结为放电等离子烧结或者热压烧结,优选地,烧结温度为100~400℃,压力为10~100MPa,烧结时间为5~120分钟。
较佳地,所述坩埚下降法包括:
将装有所述块状固体的坩埚置于晶体下降炉的恒温区,恒温区温度为830℃到950℃;
待所述块状固体完全熔化后,将所述坩埚以0.1mm/h~10mm/h的下降速度下降,并控制温度梯度为1℃/cm~100℃/cm。
附图说明
图1:实施例1中制得的Ag2-δXδSηY1-η材料断口的FESEM(场发射扫描电镜)照片,晶粒尺度在5~10μm。
图2:实施例1-4所得Ag2-δXδSηY1-η材料的光谱数据。
图3:实施例1和2中半导体材料电导率随温度变化关系。随着温度的升高,电导率明显提升,显现出典型的半导体特性,且随着掺杂组分的增加,Ag1.8Cu0.2S0.9Se0.1材料的电导率较基体提升了近两个数量级。
图4:实施例1和2中半导体材料弯曲测试应力-应变曲线。
图5:实施例1和2中半导体材料压缩测试应力-应变曲线。
图6:实施例1和2中半导体材料拉伸测试应力-应变曲线。
图7:制备一个实施例多晶塑性半导体材料的工艺流程图。
图8:制备一个实施例单晶塑性半导体材料的工艺流程图。
图9:顶端带有尖顶的晶体生长管的结构示意图。
图10:实施例2所得Ag2S半导体材料晶体铸锭实物照片。
图11:实施例3和4所得样品电导率与温度的关系图。
图12:实施例3和4所得样品弯曲测试应力-应变曲线图。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明的发明人在经过广泛深入研究之后,针对现有半导体材料的不足,新开发了一种具有塑性变形能力的无机半导体材料以及其制备方法,从而改善了半导体材料不能抵抗变形、易碎的特性。
本公开提供一种半导体材料,以辉银矿半导体化合物为主体。所述半导体材料包括如下式(I)所示的辉银矿基化学式;
Ag2-δXδS1-ηYη (I)。
式中,X可为Cu、Au、Fe、Co、Ni、Zn、Ti、V其中的任意一种或几种的组合。Y可为N、P、As、Sb、Se、Te、O、Br、Cl、I和F中的任意一种或几种的组合。通过掺杂X、Y,可以调节材料的带隙、电导率等性能。
本发明的发明人首次发现Ag2S具有塑性性能,而且可以利用其独特的可变形塑性且电性能在很大范围内可调的性能,得到多种可变形半导体器件。
优选地,X可为Cu,Zn,Ni其中的任意一种或几种的组合。
优选地,Y可为Se,Te,Cl,Br,I其中的任意一种或几种的组合。
式中,0≤δ<0.5。优选地,0<δ<0.5。一个优选的示例中,0≤δ<0.05。另一优选的示例中,0.1≤δ<0.5。
式中,0≤η<0.5。优选地,0<η<0.5。一个优选的示例中,0≤η<0.05。另一优选的示例中,0.1≤η<0.5。
在一个优选实施方式中,0≤δ<0.05,0≤η<0.05。
在另一个优选实施方式中,δ=0,η=0。即,式(1)为Ag2S。
在另一个优选实施方式中,0.1≤δ<0.5,0.1≤η<0.5。
在另一个优选实施方式中,δ=0.2,η=0.1。即,式(1)为Ag1.8Cu0.2S0.9Se0.1
所述半导体材料的晶体结构呈现类层状结构。也就是说,掺杂原子X、Y可均匀的分布在相应的格点位置,不影响辉银矿本身类层状结构。
所述半导体材料可以是单晶材料(或称“单晶体”)。所谓单晶材料,是指整块材料由单一晶粒构成。
所述半导体材料也可以是多晶材料(或称“多晶体”)。所谓多晶材料,是指整个物体是由许多杂乱无章的排列着的小晶体组成的。该多晶材料的晶粒尺度可在1μm到5mm之间。另,该多晶材料的致密度可在95%以上,甚至98%以上。多晶材料在保持良好的塑性和其他性能的同时,制备过程更加简单。
所述半导体材料可以是N型掺杂半导体材料,也可以是P型掺杂半导体材料。
在一个优选实施方式中,所述半导体材料中的其他杂质含量在1at%以下。
所述半导体材料的带隙可在0.5到1.5eV范围内调节,优选在0.5到1.2eV范围内调节。
所述半导体材料的电导率可在0.001到250000S/m范围内调节,优选在0.01到1000S/m范围内调节,更优选在1到1000S/m范围内调节。
所述半导体材料具有良好的塑性。例如,可承受3%以上的拉伸变形;13%以上甚至20%以上的弯曲变形以及30%以上的压缩变形。
在此公开的半导体材料既能够像有机材料那样可承受一定的变形,而且还具有优异的半导体电传输性能,从而实现高效柔性半导体器件的制备。
以下,作为示例,说明所述半导体材料的制备方法。
(实施形态一)
图7示出实施形态一中制备塑性半导体多晶材料的工艺流程。
如图7所示,首先,将原料通过固相反应制成各组分均匀分布的块状固体(例如晶棒)。
采用的原料可为式(1)的组成元素的单质原料或者元素之间的化合物原料。原料优选为高纯,例如纯度为99%以上。原料形态没有特别限定,可以是块状、粉状或者片状。原料的配比可按式(1)的化学计量比。
将原料混合,熔融,得到熔融混合物。一个示例中,将原料混合后升温至850~1200℃,以使原料熔融。可在该温度下保温1~20小时。升温速率可为0.5~3℃/分钟。
一个示例中,将原料封装在密封容器中进行熔融。所述密封容器可为石英管。密封容器可为普通管状,也可为顶端带有尖顶的晶体生长管。当采用石英管作为密封容器时,为阻止原料和石英管反应,可以在石英管内壁涂上一层均匀碳膜,或者将原料装入石墨质坩埚后再放入石英管中封装。
熔融时的气氛可为惰性气氛或者为真空。真空度可为0.1~40000Pa,优选为0.1~1000Pa。
将所得熔融混合物冷却,得到块状固体。冷却方式可以是采用淬火介质淬火或者缓冷方式。淬火介质可以是空气、水、饱和盐水、油、或液氮。
冷却后,还可以将块状固体进行退火,以使成分掺杂更加均匀,并提升材料的结晶性。退火温度可为400~650℃,优选为550~650℃。退火时间可为1~300小时,优选为200~300小时。
将块状固体研磨为粉料。粉料粒径可为1~100微米。
将粉料进行烧结,得到多晶材料。烧结方式可为加压烧结,例如放电等离子烧结或者热压烧结。烧结温度可为100~400℃,优选为200~300℃。施加的压力可为10~100MPa,优选为30~60MPa。烧结时间可为5~120分钟,优选为5~30分钟。
(实施形态二)
图8示出实施形态二中制备单晶塑性半导体材料的工艺流程。
如图8所示,首先,将原料通过固相反应制成各组分均匀分布的块状固体(例如晶棒)。该步骤可采用与实施形态一相同的方法,在此不再赘述。
然后,由块状固体制备单晶材料。一个示例中,采用坩埚下降法进行生长得到所述单晶半导体材料。
将所得的块状固体放入顶端带有尖顶的晶体生长管(见图9)中。所述晶体生长管例如可为石英管。另外,为了简化步骤,可以在制备块状固体时即采用顶端带有尖顶的晶体生长管作为密封容器(即,在初始熔融前即采用尖顶晶体生长管)。这样无需将块状固体取出再放置于晶体生长管中。
将装有所述块状固体的晶体生长管置于晶体下降炉的恒温区。恒温区温度可为830℃到950℃。恒温区下温度梯度可为1℃/cm~100℃/cm,优选为1℃/cm~5℃/cm。坩埚下降速度可为0.1mm/h~10mm/h,优选为0.1mm/h~1mm/h。
所得的单晶半导体材料的尺寸可为直径1mm~直径50mm,高5mm~50mm。
本公开的半导体材料可用于制备柔性半导体器件,例如柔性半导体芯片等。本公开的制备方法工艺过程可控,适合批量产业生产。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
Ag1.8Cu0.2S0.9Se0.1多晶块体材料
将单质原料Ag,Cu,S,Se按照1.8:0.2:0.9:0.1摩尔比在手套箱中配料,把原料封入到内壁蒸镀有碳膜的石英管中,边抽取真空边用氩气等离子火焰进行封装,石英管内充少量Ar气保护。将混合后的原料以3℃每分钟的速率升温至900℃熔融12小时。熔融完成后进行淬火,淬火介质为盐水。淬冷得到的晶棒连同石英管一起在500℃下退火100小时,将块体磨成细粉后进行放电等离子烧结,烧结温度为400℃,保温时间2分钟,压力为30MPa,得到Ag1.8Cu0.2S0.9Se0.1多晶块体材料。
通过排水法方法测试,表明Ag1.8Cu0.2S0.9Se0.1致密度达到99.2%。图1示出实施例1中制得的Ag2-δXδS1-ηYη材料断口的FESEM(场发射扫描电镜)照片,可以看出晶粒尺寸在5微米-10微米。通过光谱吸收方法测试,带隙为0.73eV(见图2)。通过四探针方法测试,室温电导率为20S/m(见图3)。通过三点弯曲方法测试弯曲应力-应变曲线,样品尺寸为4mm×4mm×30mm,最大弯曲形变达到了15%,室温压缩形变样品尺寸为直径20mm×高度20mm,最大压缩形变量40%,拉伸样品尺寸为哑铃状,颈部尺寸直径5mm×30mm,最大伸长率为3.2%(见图4-图6)。
实施例2
Ag2S半导体材料晶体铸锭
将单质原料Ag和S按照2:1摩尔比在手套箱中配料,把原料封入到底部呈尖顶状石英坩埚之中,边抽取真空边用氩气等离子火焰进行封装,石英管内充少量Ar气保护。将混合后的原料在1000℃下熔融12小时冷却。之后的石英管放入晶体下降炉中,恒温区温度为830℃,温度梯度为2℃/cm,坩埚下降速度为1mm/h,得到Ag2S半导体材料晶体铸锭,其照片见图10。
通过光谱吸收方法测试,带隙为0.90eV(见图2)。经测试,实施例2所得材料室温电导率为0.15S/m。室温力学性能检测结果表明该材料具有良好塑性,最大弯曲形变达到了20%,压缩形变达到50%,拉伸伸长率达到4.2%(见图4-图6)。
实施例3:Ag1.9Zn0.1S0.85I0.15
将单质原料Ag,Zn,S,I按照1.9:0.1:0.85:0.15摩尔比在手套箱中配料,把原料封入到内壁蒸镀有碳膜的石英管中,边抽取真空边用氩气等离子火焰进行封装,石英管内充少量Ar气保护。将混合后的原料以0.5℃每分钟的速率升温至1000℃熔融12小时。熔融完成后进行淬火,淬火介质为盐水。淬冷得到的晶棒连同石英管一起在450℃下退火200小时,将块体磨成细粉后进行放电等离子烧结,烧结温度为380℃,保温时间5分钟,压力为40MPa,得到Ag1.9Zn0.1S0.85I0.15多晶块体材料。
通过光谱吸收方法测试,带隙为0.78eV(见图2)。通过排水法方法测试,表明Ag1.9Zn0.1S0.85I0.15致密度达到98.5%。通过四探针方法测试,室温电导率为0.1S/m(见图11)。通过三点弯曲方法测试弯曲应力-应变曲线,样品尺寸为4mm×4mm×30mm,最大弯曲形变达到了13%(见图12)。
实施例4:Ag1.85Ni0.15S0.6Te0.4
将单质原料Ag,Ni,S,Te按照1.85:0.15:0.6:0.4摩尔比在手套箱中配料,把原料封入到内壁蒸镀有碳膜的石英管中,边抽取真空边用氩气等离子火焰进行封装,石英管内充少量Ar气保护。将混合后的原料以3℃每分钟的速率升温至850℃熔融20小时。熔融完成后缓冷。缓冷得到的晶棒连同石英管一起在550℃下退火20小时,将块体磨成细粉后进行热压烧结,烧结温度为300℃,升温速度10℃每分钟,保温时间30分钟,压力为30MPa,得到Ag1.85Ni0.15S0.6Te0.4多晶块体材料。
通过光谱吸收方法测试,带隙为0.65eV(见图2)。通过排水法方法测试,表明Ag1.85Ni0.15S0.6Te0.4致密度达到99.6%,通过四探针方法测试,室温电导率为250S/m,200℃电导率达到201050S/m(见图11)。通过三点弯曲方法测试弯曲应力-应变曲线,样品尺寸为4mm×4mm×30mm,最大弯曲形变达到了17%(见图12)。

Claims (10)

1.一种具有塑性变形能力的无机半导体材料,包括如下式(I)所示的辉银矿基化合物:
Ag2-δXδS1-ηYη (I),
式中,
0≤δ<0.5,0≤η<0.5;
X为Cu、Au、Fe、Co、Ni、Zn、Ti、V中的至少一种;
Y为N、P、As、Sb、Se、Te、O、Br、Cl、I和F中的至少一种。
2.根据权利要求1所述的无机半导体材料,其特征在于,所述无机半导体材料的带隙能够在0.5到1.5 eV范围内调节,电导率能够在0.001到250000 S/m范围内调节。
3.根据权利要求1或2所述的无机半导体材料,其特征在于,所述无机半导体材料能够承受3%以上的拉伸变形、13%以上的弯曲变形以及30%以上的压缩变形。
4.根据权利要求1至3中任一项所述的无机半导体材料,其特征在于,0≤δ<0.05,0≤η<0.05;或者0.1≤δ<0. 5,0.1≤η<0.5。
5.根据权利要求1至4中任一项所述的无机半导体材料,其特征在于,所述半导体材料是单晶体或者多晶体。
6.根据权利要求5所述的无机半导体材料,其特征在于,所述多晶体的晶粒尺度在1μm到5mm之间,致密度在95%以上。
7.一种权利要求1至6中任一项所述的无机半导体材料的制备方法,其特征在于,包括以下步骤:
在惰性气体下或者真空中,将原料按照式(I)的化学计量比在850~1200℃保温1~20小时形成原料均匀混合的熔体后冷却得到块状固体;以及
将所得块状固体通过制粉烧结工艺得到多晶材料或者通过坩埚下降法生长得到类单晶材料。
8.根据权利要求7所述的制备方法,其特征在于,所述冷却后还包括退火步骤,优选地,退火温度为400~650℃,退火时间为1~300小时。
9.根据权利要求7或8所述的制备方法,其特征在于,所述烧结为放电等离子烧结或者热压烧结,优选地,烧结温度为100~400℃,压力为10~100MPa,烧结时间为5~120分钟。
10.根据权利要求7或8所述的制备方法,其特征在于,所述坩埚下降法包括:
将装有所述块状固体的坩埚置于晶体下降炉的恒温区,恒温区温度为830℃到950℃;
待所述块状固体完全熔化后,将所述坩埚以0.1mm/h~10mm/h的下降速度下降,并控制温度梯度为1℃/cm~100℃/cm。
CN201810117079.4A 2018-02-06 2018-02-06 一种塑性半导体材料以及其制备方法 Active CN110117817B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810117079.4A CN110117817B (zh) 2018-02-06 2018-02-06 一种塑性半导体材料以及其制备方法
US16/967,119 US11136692B2 (en) 2018-02-06 2018-02-12 Plastic semiconductor material and preparation method thereof
JP2020540435A JP7028985B2 (ja) 2018-02-06 2018-02-12 可塑性半導体材料及びその製造方法
PCT/CN2018/076460 WO2019153335A1 (zh) 2018-02-06 2018-02-12 一种塑性半导体材料以及其制备方法
EP18905300.2A EP3751024A4 (en) 2018-02-06 2018-02-12 PLASTIC SEMICONDUCTOR MATERIAL AND METHOD FOR ITS MANUFACTURING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810117079.4A CN110117817B (zh) 2018-02-06 2018-02-06 一种塑性半导体材料以及其制备方法

Publications (2)

Publication Number Publication Date
CN110117817A true CN110117817A (zh) 2019-08-13
CN110117817B CN110117817B (zh) 2021-01-12

Family

ID=67519902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810117079.4A Active CN110117817B (zh) 2018-02-06 2018-02-06 一种塑性半导体材料以及其制备方法

Country Status (5)

Country Link
US (1) US11136692B2 (zh)
EP (1) EP3751024A4 (zh)
JP (1) JP7028985B2 (zh)
CN (1) CN110117817B (zh)
WO (1) WO2019153335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397633A (zh) * 2020-11-16 2021-02-23 昆明理工大学 一种硫化铜基塑性热电复合材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469316B2 (ja) 2019-08-30 2024-04-16 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041178A2 (en) * 2012-09-15 2014-03-20 Novozymes A/S Enzymatic oxidation of sulfide minerals
CN105293561A (zh) * 2015-11-05 2016-02-03 南昌航空大学 一种有机熔盐法制备针状Ag2S微米颗粒的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424677B2 (zh) * 1972-08-10 1979-08-22
JP4119950B2 (ja) * 2000-09-01 2008-07-16 独立行政法人科学技術振興機構 コンダクタンスの制御が可能な電子素子
CA2491144C (en) * 2003-12-30 2013-06-11 National Research Council Of Canada Method of synthesizing colloidal nanocrystals
US20050238546A1 (en) 2004-04-23 2005-10-27 Holmes Keith J Canister for an oxygen generation cell
CN101786650B (zh) 2010-02-08 2011-11-02 许昌学院 一种低温下原位合成片状硫化银纳米晶光电薄膜的化学方法
JP5505237B2 (ja) 2010-10-01 2014-05-28 パナソニック株式会社 ドラム式洗濯機
KR101631858B1 (ko) 2014-06-24 2016-06-20 한국전기연구원 침입형 도핑재 첨가에 의해 복합결정구조가 형성된 Te계 열전재료
CN105544971A (zh) 2015-12-30 2016-05-04 青建集团股份公司 一种后浇带早拆模板体系
CN105696080A (zh) 2016-01-29 2016-06-22 浙江大学 一种四元硫属化合物半导体材料及其制备方法和用途
CN105543971B (zh) * 2016-02-04 2017-11-21 中国科学院理化技术研究所 一种AgZnPS4非线性光学晶体及其制备方法和非线性光学器件
CN107235477A (zh) 2017-07-04 2017-10-10 中国科学院上海硅酸盐研究所 一种n型高性能硫银锗矿热电材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041178A2 (en) * 2012-09-15 2014-03-20 Novozymes A/S Enzymatic oxidation of sulfide minerals
CN105293561A (zh) * 2015-11-05 2016-02-03 南昌航空大学 一种有机熔盐法制备针状Ag2S微米颗粒的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUN SHI ET AL.: "Room-temperature ductile inorganic semiconductor", 《NATURE MATERIALS》 *
龚国洪等: "Ag2S高温相变的初步研究", 《矿物学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397633A (zh) * 2020-11-16 2021-02-23 昆明理工大学 一种硫化铜基塑性热电复合材料及其制备方法
CN112397633B (zh) * 2020-11-16 2024-06-28 昆明理工大学 一种硫化铜基塑性热电复合材料及其制备方法

Also Published As

Publication number Publication date
EP3751024A1 (en) 2020-12-16
JP7028985B2 (ja) 2022-03-02
US20200362471A1 (en) 2020-11-19
CN110117817B (zh) 2021-01-12
JP2021511279A (ja) 2021-05-06
US11136692B2 (en) 2021-10-05
EP3751024A4 (en) 2021-11-10
WO2019153335A1 (zh) 2019-08-15

Similar Documents

Publication Publication Date Title
EP2639344B1 (en) METHOD FOR PRODUCING n-TYPE SiC MONOCRYSTAL
JP4083449B2 (ja) CdTe単結晶の製造方法
CN106571422B (zh) 一种碲化铋基n型热电材料及其制备方法
CN1396300A (zh) 物理气相沉积制备大面积氧化锌纳米线膜层的方法
JP2013525254A (ja) 制御された炭化ケイ素成長方法およびその方法により作製された構造
CN107140681A (zh) β‑Ga2O3微米带的制备方法
CN110117817A (zh) 一种塑性半导体材料以及其制备方法
CN109056057B (zh) 一种大尺寸单晶氧化镓纳米片的制备方法
JP4507690B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶
CN116200831A (zh) 一类钴基全赫斯勒合金材料其制备方法和多晶体器件
US4721539A (en) Large single crystal quaternary alloys of IB-IIIA-SE2 and methods of synthesizing the same
CN113279058B (zh) 一种低对称性层状材料Te的可控制备方法
CN109023296A (zh) 一种在氟金云母衬底上化学气相沉积生长钼钨硒合金的方法
JP2021511279A5 (zh)
JPH11268998A (ja) GaAs単結晶インゴットおよびその製造方法ならびにそれを用いたGaAs単結晶ウエハ
Liu et al. Control synthesis of octahedral In2O3 crystals, belts, and nanowires
JP2517803B2 (ja) Ii−vi族化合物半導体多結晶の合成方法
KR101118743B1 (ko) 구리 인듐 갈륨 셀레늄 박막을 제조하는 장치 및 방법
KR20110086986A (ko) 단결정 잉곳 제조방법
US20150275354A1 (en) Variable diameter nanowires
CN109208070B (zh) 一种大规模晶体硅颗粒的制备方法
CN117210940A (zh) 一种反铁磁单晶的生长方法
CN117166061A (zh) 一种具有超高电子迁移率的体绝缘拓扑绝缘体单晶及其制备方法
Liu et al. Growth of Amorphous SiO2 Net-Like Nanobelts via a Simple Thermal Evaporation of CdS Powder
US20010004876A1 (en) Method for forming a solid solution alloy crystal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant