CN110105481A - 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用 - Google Patents

一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用 Download PDF

Info

Publication number
CN110105481A
CN110105481A CN201910396604.5A CN201910396604A CN110105481A CN 110105481 A CN110105481 A CN 110105481A CN 201910396604 A CN201910396604 A CN 201910396604A CN 110105481 A CN110105481 A CN 110105481A
Authority
CN
China
Prior art keywords
quantum dot
bromine
carbonamidine lead
carbonamidine
lead bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910396604.5A
Other languages
English (en)
Other versions
CN110105481B (zh
Inventor
蒋阳
程敏
杨苏鹏
朱汉文
李鹏程
仲洪海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Zhaoyangneng Technology Co ltd
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910396604.5A priority Critical patent/CN110105481B/zh
Publication of CN110105481A publication Critical patent/CN110105481A/zh
Application granted granted Critical
Publication of CN110105481B publication Critical patent/CN110105481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/12Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种通过原位聚合包覆获得甲脒铅溴/PMMA复合材料的方法及其应用,首先,采用热注射工艺合成获得高质量甲脒铅溴量子点,并利用乙腈和甲苯来提纯量子点;其次,将量子点与MMA溶液按一定比例混合,在光照条件下反应一段时间聚合,得到具有一定粘度的流体产物;最后,利用刮膜法制备均匀的绿色荧光薄膜。本发明甲脒铅溴/PMMA复合材料可以用于构筑白光LED。本发明可制得耐水氧的甲脒铅溴量子点复合膜材料,并可获得高效的白光LED器件。

Description

一种通过原位聚合包覆获得甲脒铅溴/PMMA复合材料的方法 及其应用
技术领域
本发明涉及到一种甲脒铅卤钙钛矿量子点与聚合物单体复合并制备均匀薄膜的方法,并利用量子点/聚合物复合产物作为发光材料构建高效的白光LED器件
背景技术
在国际电信联盟提出了新的超高清显示标准Rec.2020的前提下,当前商业化的绿光荧光粉由于其低量子产率以及宽半峰宽已经无法满足其发光材料的标准,迫切得需要寻找其他发光材料(波长525nm-535nm,半峰宽小于25nm)来替代。钙钛矿量子点由于其高量子产率、窄半峰宽、强吸光能力以及发光波长可调等优异的性能使得其自从2015年由Kovaleno报道以来就受到广泛的关注,并不断完善其发光性能并应用于光学器件。
然而钙钛矿量子点由于其离子晶体属性,使得稳定性成为其在应用道路上最大障碍。在高水氧的环境(或极性溶剂中),其离子晶体结构容易发生坍塌,其发光性能均会迅速衰退。目前文献中报道的提高其稳定性的方法,通常采用钙钛矿量子点与PMMA直接混合,通过旋涂的方法涂覆于基片上,并利用热蒸发去除溶剂以获得钙钛矿与聚合物的复合材料。这样制备获得的钙钛矿量子点常常会发生团聚现象,导致其量子点发光效率下降,并且旋涂法限制了其在商业化应用。另一方面,当前的工作几乎都致力于铯铅溴量子点,然而铯铅溴量子点其发光波长通常在515nm,尽管可以通过改变其卤素含量可使其波长移动至“最绿”波段,但是这会使得其发光效率大大降低。有机-无机杂化的甲脒铅溴钙钛矿量子点由于其发光性能的优异性,其发光波长在525nm-535nm之间可控,且半峰宽22nm左右,以及高量子产率85%左右,使得其成为一种完美的选择。因此,提出一种制备“最绿”发光并且对水氧稳定的甲脒铅溴量子点与高分子聚合物的复合材料,并且可大面积制备的方法变得至关重要。
发明内容
本发明为了避免上述现有技术所存在的不足,旨在提供一种通过原位聚合包覆获得甲脒铅溴/PMMA复合材料的方法及其应用。本发明方法能够不破坏钙钛矿量子点的光学性能和晶体结构,并且可以获得单独分散的甲脒铅溴量子点/PMMA纳米颗粒,PMMA致密包覆在甲脒铅溴量子点表面,且量子点不会发生团聚现象,其对水氧稳定性优异,更适合工业化生产。相对于未包覆的量子点制备的LED,利用这种复合材料构筑的白光LED具有更高的流明效率。
本发明通过原位聚合包覆获得甲脒铅溴/PMMA复合材料的方法,包括如下步骤:
步骤1:甲脒铅溴钙钛矿量子点的合成与提纯
1a、油胺溴前驱体的合成
以油胺和氢溴酸作为原料,无水乙醇作为反应溶剂,在惰性气体保护下于冰浴中反应8-12h,真空干燥,无水乙醚洗涤并过滤,真空干燥,研磨,即得到油胺溴白色粉末;本步骤1中,油胺、氢溴酸和无水乙醇的体积比为5:4:10~100。
1b、甲脒铅溴量子点的合成
以油酸作为配体,将醋酸甲脒和醋酸铅溶解于十八烯中,将混合溶液加热至50~80℃抽真空反应30min;将步骤1a获得的油胺溴加入甲苯中,加热溶解,然后在70~165℃、氮气保护下,将油胺溴的甲苯溶液加入1b的反应体系中,反应10s后置于冰水中快速冷却至室温,得到量子点原液。
本步骤中,油酸与十八烯体积比为1:4,油酸、醋酸甲脒、醋酸铅摩尔比为2~10:3.75:1;油胺溴与醋酸铅的摩尔比为3~5:1。
1c、甲脒铅溴量子点的提纯
将步骤1d获得的量子点原液用甲苯和乙腈洗涤,离心(4000r/s,20min)除去溶液中的多余有机配体以及溶剂等油相物质,得到沉淀并真空中干燥,获得甲脒铅溴量子点粉末。
其中量子点原液、甲苯、乙腈的体积比为2:2:1。干燥温度为60℃。
步骤2:甲脒铅溴量子点与PMMA复合材料的制备
2a、甲脒铅溴量子点与MMA混合溶液的制备
取步骤1c获得的甲脒铅溴量子点粉末40mg,置入玻璃容器中,加入10mL MMA溶液,通过超声以及搅拌等过程使其充分接触并混合均匀,利用封口膜将其密封保存;
2b、甲脒铅溴量子点与MMA光照聚合反应
将2a获得的混合溶液置于白光下进行光照反应,反应过程中不断搅拌,反应9-12h后反应完成,溶液变得粘稠;
步骤3:甲脒铅溴/PMMA复合膜的制备
将2b获得的粘稠溶液倒在光滑的铜箔上,铜箔固定于玻璃基板上,利用刮刀涂覆均匀,薄膜的厚度由刮刀控制为50um-400um;然后将玻璃基板置于60-100℃的加热板上,以去除多余的MMA单体,2min后取出玻璃基板,利用裁剪工具裁出合适大小绿色量子点复合薄膜。
本发明制备的甲脒铅溴/PMMA复合材料的应用,是以所述甲脒铅溴/PMMA复合材料构筑的白光LED。具体包括如下步骤:
向2b获得的粘稠溶液中加入适量的红光氮化物荧光粉N620,混合均匀;取适量的混合物均匀涂覆于蓝光LED芯片上。
本发明用N620红光荧光粉和光照复合产物混合,并均匀涂敷在蓝光芯片上。这不仅可以去除传统LED制作过程中的封装工艺,降低成本,还具有很优异的透光性和稳定性。
本发明中使用热注射合成获得的甲脒铅溴量子点,具有高量子产率,结晶性好,窄半峰宽,且其光谱可在“最绿”波段可调。
本发明中使用MMA与量子点混合,在量子点表面原位聚合反应生成PMMA,并致密得包覆在量子点表面。PMMA是当前最优良的透光材料,并且无毒、成本低,且机械性能优异。更适合工业化。
本发明利用刮膜法将原位聚合后的具有一定粘度量子点与PMMA混合物制备成膜。这样可以避免因为流体的流动性,使得薄膜的厚度难以控制。从而获得均匀的薄膜材料。
本发明用N620红光荧光粉和光照复合产物混合,并均匀涂敷在蓝光芯片上。这不仅可以去除传统LED制作过程中的封装工艺,降低成本,还具有很优异的透光性和稳定性。
与已有技术相比,本发明的有益效果体现在:
1、本发明成功制备了甲脒铅溴量子点与PMMA复合材料,且量子点不会发生团聚。
2、本发明的绿光材料可以满足超高清显示Rec.2020标准,并且具有优异的稳定性。
3、本发明获得薄膜均匀,并且厚度可控,并且更适合工业化大面积生产。
4、本发明可以很大的提高相应的白光LED流明效率,并且可以去除LED封装步骤。
附图说明
图1是本发明合成PMMA包覆的甲脒铅溴钙钛矿量子点的低分辨和高分辨图片(a)以及量子点溶液的吸收和发射光谱(b)。由图1可知甲脒铅溴量子点的发射峰在530nm,与吸收相对应,并且半峰宽22nm。每个甲脒铅溴量子点外均匀包覆已成较厚的有机物,没有团聚现象。
图2是本发明制备甲脒铅溴量子点的高分子复合膜(a)及其在水中稳定存在并发光的图片(b)置于去离子水中的复合膜材料的发光强度随时间变化图(c)和(d)。由图2可知有机物包覆的甲脒铅溴量子点具有优异的稳定性。
图3是本发明构筑的白光LED的相对光谱(a)及其色坐标位置(b)。由图2可知白光LED具有很高的流明效率(80.4lm/w)和显色指数(90.0),其色坐标在(0.37,0.35),属于暖白光。
具体实施方式
实施例1:甲脒铅溴钙钛矿量子点的合成与提纯
1a、油胺溴前驱体的合成
以油胺和氢溴酸作为原料,无水乙醇作为反应溶剂,在惰性气体保护下于冰浴中反应8-12h,真空干燥,无水乙醚洗涤并过滤,真空干燥,研磨,即得到油胺溴白色粉末。其中油胺、氢溴酸、无水乙醇的体积比为5:4:10~100。
1b、甲脒铅溴量子点的合成
以油酸作为配体,将醋酸甲脒和醋酸铅溶解于十八烯中,将混合溶液加热至50~80℃抽真空反应30min;将步骤1a获得的油胺溴加入甲苯中,加热溶解,然后在130℃、氮气保护下,将油胺溴的甲苯溶液加入1b的反应体系中,反应10s后置于冰水中快速冷却至室温,得到量子点原液。
本步骤中,油酸与十八烯体积比为1:4,油酸、醋酸甲脒、醋酸铅摩尔比为2~10:3.75:1;油胺溴与醋酸铅的摩尔比为3~5:1。
1c、甲脒铅溴量子点的提纯
将步骤1d获得的量子点原液用甲苯和乙腈洗涤,离心(4000r/s,20min)除去溶液中的多余有机配体以及溶剂等油相物质,得到沉淀并于真空中干燥。其中量子点原液、甲苯、乙腈的体积比为2:2:1。干燥温度60℃。
实施例2:甲脒铅溴量子点与PMMA复合材料制备
2a、甲脒铅溴量子点与MMA混合溶液制备
取步骤1c中的量子点粉末40mg,置入玻璃容器中,加入10mL MMA溶液,通过超声以及搅拌等过程使其充分接触并混合均匀,利用封口膜将其密封。
2b、甲脒铅溴量子点与MMA光照聚合反应
将步骤2a中的混合溶液置于白光下进行光照反应,反应过程中不断搅拌,待反应9-12h后反应完成,溶液变得粘稠。
实施例3:甲脒铅溴量子点/PMMA复合膜制备
将步骤2b中的反应后的溶液倒在光滑的铜箔上(铜箔固定于玻璃基板上),利用刮刀将反应产物均匀得覆盖在铜箔上,同时薄膜的厚度由刮刀控制为400um。将均匀覆盖有反应产物的玻璃基板置于60℃加热板上,以去除多余的MMA单体。2min后取出玻璃基板,利用裁剪工具裁出合适大小绿色量子点复合薄膜。
实施例4:高效白光LED构筑
在步骤2b中的反应产物中加入适量的红光氮化物荧光粉N620,混合均匀;取适量的混合物,均匀得涂敷在蓝光LED芯片上。

Claims (8)

1.一种通过原位聚合包覆获得甲脒铅溴/PMMA复合材料的方法,其特征在于包括如下步骤:
步骤1:甲脒铅溴钙钛矿量子点的合成与提纯
1a、油胺溴前驱体的合成
以油胺和氢溴酸作为原料,无水乙醇作为反应溶剂,在惰性气体保护下于冰浴中反应8-12h,真空干燥,无水乙醚洗涤并过滤,真空干燥,研磨,即得到油胺溴白色粉末;
1b、甲脒铅溴量子点的合成
以油酸作为配体,将醋酸甲脒和醋酸铅溶解于十八烯中,将混合溶液加热至50~80℃抽真空反应30min;将步骤1a获得的油胺溴加入甲苯中,加热溶解,然后在70~165℃、氮气保护下,将油胺溴的甲苯溶液加入1b的反应体系中,反应10s后置于冰水中快速冷却至室温,得到量子点原液;
1c、甲脒铅溴量子点的提纯
将步骤1d获得的量子点原液用甲苯和乙腈洗涤,离心除去溶液中的多余有机配体以及溶剂等油相物质,得到沉淀并真空中干燥,获得甲脒铅溴量子点粉末;
步骤2:甲脒铅溴量子点与PMMA复合材料的制备
2a、甲脒铅溴量子点与MMA混合溶液的制备
取步骤1c获得的甲脒铅溴量子点粉末40mg,置入玻璃容器中,加入10mL MMA溶液,混合均匀,利用封口膜将其密封保存;
2b、甲脒铅溴量子点与MMA光照聚合反应
将2a获得的混合溶液置于白光下进行光照反应,反应过程中不断搅拌,反应9-12h后反应完成,溶液变得粘稠;
步骤3:甲脒铅溴/PMMA复合膜的制备
将2b获得的粘稠溶液倒在光滑的铜箔上,铜箔固定于玻璃基板上,利用刮刀涂覆均匀;然后将玻璃基板置于60-100℃的加热板上,以去除多余的MMA单体,2min后取出玻璃基板,利用裁剪工具裁出合适大小绿色量子点复合薄膜。
2.根据权利要求1所述的方法,其特征在于:
步骤1a中,油胺、氢溴酸和无水乙醇的体积比为5:4:10~100。
3.根据权利要求1所述的方法,其特征在于:
步骤1b中,油酸与十八烯体积比为1:4,油酸、醋酸甲脒、醋酸铅摩尔比为2~10:3.75:1;油胺溴与醋酸铅的摩尔比为3~5:1。
4.根据权利要求1所述的方法,其特征在于:
步骤1c中,量子点原液、甲苯、乙腈的体积比为2:2:1。
5.根据权利要求1所述的方法,其特征在于:
步骤1c中,干燥温度为60℃。
6.根据权利要求1所述的方法,其特征在于:
步骤3中,薄膜的厚度由刮刀控制为50um-400um。
7.权利要求1-6中任一种方法制备的甲脒铅溴/PMMA复合材料的应用,其特征在于:是以所述甲脒铅溴/PMMA复合材料构筑的白光LED。
8.根据权利要求7所述的应用,其特征在于包括如下步骤:
向2b获得的粘稠溶液中加入红光氮化物荧光粉N620,混合均匀;取所得混合物均匀涂覆于蓝光LED芯片上。
CN201910396604.5A 2019-05-14 2019-05-14 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用 Active CN110105481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910396604.5A CN110105481B (zh) 2019-05-14 2019-05-14 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910396604.5A CN110105481B (zh) 2019-05-14 2019-05-14 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用

Publications (2)

Publication Number Publication Date
CN110105481A true CN110105481A (zh) 2019-08-09
CN110105481B CN110105481B (zh) 2021-07-23

Family

ID=67489977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910396604.5A Active CN110105481B (zh) 2019-05-14 2019-05-14 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用

Country Status (1)

Country Link
CN (1) CN110105481B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139058A (zh) * 2019-12-15 2020-05-12 宁波博旭光电科技有限公司 一种钙钛矿量子点结构及其制备方法
CN113913181A (zh) * 2021-11-17 2022-01-11 西北工业大学 一种甲脒碘化铅钙钛矿纳米晶的尺寸调控方法
CN114058067A (zh) * 2021-11-23 2022-02-18 南昌大学 一种制备钙钛矿量子点-聚合物多孔复合材料的方法
CN114316944A (zh) * 2021-12-07 2022-04-12 西安交通大学 一种制备高稳定性氧化锆包覆的量子点的方法
CN116535896A (zh) * 2023-05-19 2023-08-04 北京大学深圳研究生院 一种光固化墨水及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408984A (zh) * 2013-08-22 2013-11-27 广东普加福光电科技有限公司 光学涂层组合物、荧光光学膜片及其制备方法
CN106585061A (zh) * 2016-12-06 2017-04-26 厦门世纳芯科技有限公司 一种高质量量子点荧光薄膜材料及其制备方法
CN107954902A (zh) * 2017-12-13 2018-04-24 合肥工业大学 一种宽光谱的有机-无机杂化钙钛矿量子点荧光材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408984A (zh) * 2013-08-22 2013-11-27 广东普加福光电科技有限公司 光学涂层组合物、荧光光学膜片及其制备方法
CN106585061A (zh) * 2016-12-06 2017-04-26 厦门世纳芯科技有限公司 一种高质量量子点荧光薄膜材料及其制备方法
CN107954902A (zh) * 2017-12-13 2018-04-24 合肥工业大学 一种宽光谱的有机-无机杂化钙钛矿量子点荧光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOREDANA PROTESESCU等: ""Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
张旺喜等: ""原位本体聚合制备聚甲基丙烯酸甲酯/量子点纳米复合材料及其性能"", 《武汉工程大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139058A (zh) * 2019-12-15 2020-05-12 宁波博旭光电科技有限公司 一种钙钛矿量子点结构及其制备方法
CN113913181A (zh) * 2021-11-17 2022-01-11 西北工业大学 一种甲脒碘化铅钙钛矿纳米晶的尺寸调控方法
CN114058067A (zh) * 2021-11-23 2022-02-18 南昌大学 一种制备钙钛矿量子点-聚合物多孔复合材料的方法
CN114316944A (zh) * 2021-12-07 2022-04-12 西安交通大学 一种制备高稳定性氧化锆包覆的量子点的方法
CN114316944B (zh) * 2021-12-07 2023-11-21 西安交通大学 一种制备高稳定性氧化锆包覆的量子点的方法
CN116535896A (zh) * 2023-05-19 2023-08-04 北京大学深圳研究生院 一种光固化墨水及应用

Also Published As

Publication number Publication date
CN110105481B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN110105481A (zh) 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用
CN102403426B (zh) 一种制造宽色域白光led的方法
WO2019153961A1 (zh) 核壳量子点及其制备方法、及含其的电致发光器件
CN110606505B (zh) 一种零维卤族钙钛矿结构材料Cs4PbBr6的制备及应用
CN107815305B (zh) 一种CDs/PVDF复合薄膜的制备方法
TW201728739A (zh) 螢光體組成物、螢光體片以及使用他們的形成物、led晶片、led封裝體、發光裝置、背光單元、顯示器以及led封裝體的製造方法
CN106675550A (zh) 一种钙钛矿量子点凝胶及其制备方法
CN112680213B (zh) 一种正硅酸乙酯包覆的钙钛矿纳米晶的制备方法
CN113755166B (zh) 一种疏水性白光碳点及其制备方法
WO2023065535A1 (zh) 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用
CN108690601A (zh) 一种有机-无机杂化钙钛矿量子点及薄膜的制备方法
CN112745839B (zh) 一种TS-1分子筛包覆的CsPbX3量子点粉末及其制备和应用
CN111676010B (zh) 钙钛矿量子点/Eu-MOF复合发光材料的制备方法
CN108003872A (zh) 蓝光激发白光led用氟化物红色荧光粉及其制备与改性方法
CN108258104A (zh) 一种掺锰的卤化铅铯荧光玻璃薄膜的静电制备方法
CN113072928A (zh) 一种零维锰基金属卤化物超快自组装的制备方法
CN113372909B (zh) 一种可调控固态荧光碳点的制备方法
US8007686B2 (en) Nitride red phosphors and white light emitting diode using rare-earth-co-doped nitride red phosphors
CN107267137B (zh) 一种水相量子点的制备方法
CN113265240B (zh) 高效蓝光发射性Cd基钙钛矿材料及其制备方法和应用
CN112094642B (zh) 一种含有红、绿二元色的黄色碳(氮)量子点的制备方法、产物及其应用
CN110791282B (zh) 一种掺Mn4+碱金属氟铁酸盐红色发光材料及制备方法
CN110776000A (zh) 一种全无机钙钛矿纳米晶及其制备方法和在半导体器件上的应用
CN115057883B (zh) 一种二维钙钛矿白光材料及其制备方法和应用
EP2202284B1 (en) Nitride red phosphors and white light emitting diode using rare-earth-doped nitride red phosphors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240416

Address after: No. 193, Tunxi Road, Hefei City, Anhui Province, 230011

Patentee after: HeFei University of Technology Asset Management Co.,Ltd.

Country or region after: China

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Patentee before: Hefei University of Technology

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240514

Address after: Room 604, Building A, Future Center, University of Science and Technology Research Institute, No. 5089 Wangjiang West Road, High tech Zone, Hefei City, Anhui Province, 230088

Patentee after: Hefei Zhaoyangneng Technology Co.,Ltd.

Country or region after: China

Address before: No. 193, Tunxi Road, Hefei City, Anhui Province, 230011

Patentee before: HeFei University of Technology Asset Management Co.,Ltd.

Country or region before: China