WO2023065535A1 - 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用 - Google Patents

一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用 Download PDF

Info

Publication number
WO2023065535A1
WO2023065535A1 PCT/CN2021/143116 CN2021143116W WO2023065535A1 WO 2023065535 A1 WO2023065535 A1 WO 2023065535A1 CN 2021143116 W CN2021143116 W CN 2021143116W WO 2023065535 A1 WO2023065535 A1 WO 2023065535A1
Authority
WO
WIPO (PCT)
Prior art keywords
cspbbr
quantum dot
cyanuric acid
brightness enhancement
nano
Prior art date
Application number
PCT/CN2021/143116
Other languages
English (en)
French (fr)
Inventor
潘奇
曹暮寒
伏杰
胡静静
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023065535A1 publication Critical patent/WO2023065535A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of luminescent materials, in particular to a preparation method and application of cyanuric acid-coated halogen perovskite nano-mixed crystals.
  • Inorganic halogen perovskite quantum dots have excellent photoelectric properties due to their easy-to-adjust band gap, wide spectral absorption, large light absorption coefficient, long carrier migration distance, and high fluorescence emission efficiency.
  • halogen atoms in the crystal structure and It is widely used in high-performance optoelectronic devices such as solar cells, light-emitting diodes, photodetectors, and lasers to achieve different colors of light.
  • inorganic halogen perovskite material quantum dots have excellent optical properties
  • the stability of perovskite quantum dots is due to the ionicity of its crystal structure, the strong ion migration ability of halogen ions, and the low crystal formation energy. poor.
  • the ionic nature of the crystal structure makes perovskite quantum dots easily degraded by polar solvents and water in the environment and loses their optical properties, which seriously affects the service life of their devices.
  • cyanuric acid polymer forms a coating on the halogen perovskite, plays a role of passivation and protection, greatly improves the stability of the halogen perovskite nanocrystal, and through The adjustment of the treatment temperature and time after heating can realize the adjustment of the emission wavelength of the halogen perovskite nano-mixed crystal coated with cyanuric acid.
  • the mixed crystal has good stability; the above method can be used to prepare nano-mixed crystals of cyanuric acid coated CsPbBr 3 (CsPbBr 3 @CA) with dark green luminescence, high color point, and high quantum yield, which can be used to prepare quantum dots.
  • Bright film, combined with commercial red CdSe@ZnS quantum dot brightness enhancement film, can achieve 96% coverage of Rec.2020.
  • the present invention provides the technical scheme as follows:
  • the first aspect of the present invention provides a preparation method of cyanuric acid-coated halogen perovskite nano-mixed crystals, comprising the following steps:
  • the lead salt is selected from one or more of lead bromide, lead nitrate, lead acetate and hydrates thereof;
  • the CsPbX 3 in the reaction system Lead interacts with the oxygen on the cyanuric acid polymer molecule to form a Pb-O bond, which passivates the surface of CsPbX 3 and forms a stable perovskite structure; Coating is carried out to isolate the CsPbX 3 nanocrystals to avoid agglomeration, and at the same time prevent the influence of the external environment on the structure and performance of the CsPbX 3 nanocrystals.
  • step (1) the molar mass ratio of the lead salt to urea is 1:50-200 mmol/g.
  • step (2) the volume molar ratio of the amount of phosphoric acid added to the lead salt is 0.5-5:1 mL/mmol, and the phosphoric acid is an 85 wt% aqueous solution.
  • Phosphoric acid acts as an acid catalyst to promote the dehydration and carbonization of urea during the reaction process, and at the same time as a cross-linking agent for the polymerization of cyanuric acid, so that the cyanuric acid molecules can form a cross-linked network structure.
  • the power of the microwave heating is 600-850W.
  • the standing time is preferably 5-10 minutes.
  • the cyanuric acid-coated halide perovskite nano-mixed crystals obtained in step (2) are heated to regulate the emission wavelength of the nano-mixed crystals; the temperature of the heat treatment is 50-120°C , the heat treatment time is 2min ⁇ 2h.
  • the microwave heating process may be affected by temperature and humidity
  • the luminescence wavelength of the prepared cyanuric acid-coated halogen perovskite nano-mixed crystal fluctuates within a certain range, and the solid obtained after microwave heating is heated.
  • the emission wavelength of polycyanic acid-coated halogen perovskite nano-mixed crystals can be adjusted within a certain range, so as to obtain nano-mixed crystals with target emission wavelengths.
  • the emission wavelength of the nano-mixed crystals of CsPbBr 3 coated with cyanuric acid can be adjusted between 514 and 532 nm.
  • the second aspect of the present invention provides a cyanuric acid-coated halogen perovskite nano-mixed crystal prepared by the preparation method described in the first aspect.
  • the general chemical formula of the halogen perovskite is CsPbX 3 , and X is selected from One or more of Cl, Br and I.
  • the third aspect of the present invention provides a quantum dot brightness enhancement film, which is composed of two layers of barrier films and a light-emitting layer material, wherein the light-emitting layer material is encapsulated between the two layers of barrier films, and the quantum dot brightness enhancement film is obtained after curing. film; the light-emitting layer material is obtained by mixing the halogen perovskite nano-mixed crystal coated with cyanuric acid and glue as described in the second aspect.
  • the prepared CsPbBr 3 @CA quantum dot brightness enhancement film emits green light under the irradiation of ultraviolet lamp;
  • the halogen perovskite is CsPbBr 1.5 I 1.5
  • the prepared CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film emits red light under the irradiation of ultraviolet lamp.
  • the emission wavelength of the CsPbBr 3 @CA quantum dot brightness enhancement film is 525nm, and the half maximum width is 23nm; the emission wavelength of the CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film is 630nm, and the half maximum width is 46nm .
  • the newly defined International Telecommunication Union (ITU) BT 2020 (Rec.2020) standard requires the emission wavelength of ultra-green luminescent materials to be between 525 and 535 nm, and the half-peak width to be less than 25 nm.
  • the existing dark green CsPbBr 3 luminescent materials have problems such as cumbersome preparation, high cost, and poor stability.
  • the fourth aspect of the present invention provides a quantum liquid crystal display, which is composed of a liquid crystal screen, a brightness enhancement film, a diffusion film, a green light film, a red light film, a light guide plate, and a blue LED from top to bottom, wherein the green light
  • the film is the CsPbBr 3 @CA quantum dot brightness enhancement film described in the third aspect.
  • the green light film is a CsPbBr 3 @CA quantum dot brightness enhancement film with a color point of (0.17, 0.79)
  • the red light film is a CsPbBr 1.5 I 1.5 @CA quantum dot film with a color point of (0.67, 0.30).
  • Dot brightness enhancement film, the color gamut of quantum liquid crystal display is 90% of the Rec.2020 standard.
  • the green film is a CsPbBr 3 @CA quantum dot brightness enhancement film with a color point of (0.17, 0.79)
  • the red light film is a CdSe@ZnS quantum dot brightness enhancement film with a color point of (0.70, 0.29).
  • the color gamut of Quantum LCD is 96% of the Rec.2020 standard.
  • the present invention can prepare cyanuric acid-coated halogen perovskite nano-mixed crystals with different luminous colors and stable properties by microwave heating method. Compared with the traditional preparation method and modification method of halogen perovskite, the preparation The method is simple, short in time, low in cost, good in repeatability and high in output, and is suitable for commercial mass production.
  • cyanuric acid coated halogen perovskite nano-mixed crystals prepared by the present invention cyanuric acid plays a passivation role as a halogen perovskite ligand, and the network structure formed by it simultaneously conducts the halogen perovskite Coating plays the role of protection and isolation, greatly improving the stability of halogen perovskite nanocrystals and increasing the service life of its devices.
  • a CsPbBr 3 @CA nano-mixed crystal prepared by the present invention can produce dark green light under ultraviolet light irradiation, and its wavelength and half-maximum all meet the standards displayed in Rec.2020 (wavelength ⁇ 525nm, half-maximum width ⁇ 25nm ), the green light quantum dot brightness enhancement film prepared by it exhibits an ultra-high color point (0.17,0.79), and can be applied in quantum dot displays.
  • the combined film prepared by the CsPbBr 3 @CA quantum dot brightness enhancement film prepared by the present invention and the red CdSe@ZnS quantum dot brightness enhancement film is applied to the quantum dot display, which can achieve 96% coverage of Rec.2020, which can be used for actual production and application.
  • Fig. 1 is the flowchart of preparing CsPbBr 3 @CA nano-mixed crystals in Example 1;
  • Figure 2a shows the CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Fig. 2b is the luminescent picture of the CsPbBr 3 @CA nano-mixed crystal prepared in Example 1 under the irradiation of ultraviolet lamp;
  • Figure 2c is the fluorescence spectrum of the CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Figure 2d is the XRD overlay of CsPbBr 3 @CA nano-mixed crystals, CsPbBr 3 orthorhombic phase and cyanuric acid prepared in Example 1;
  • Figure 2e is a transmission electron microscope image of CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Figure 2f is the high-angle annular dark field transmission electron microscope image (HAADF-STEM) and elemental mapping energy spectrum image of CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Figure 3a is a diagram of the formation mechanism of CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Figure 3b is the FT-IR image of CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Fig. 3c is the X-ray photoelectron spectrum diagram of CsPbBr 3 @CA nano-mixed crystals prepared in Example 1;
  • Figure 3d is the fluorescence spectrum of CsPbBr 3 @CA nano-mixed crystals prepared in Example 2 with different heat treatment times;
  • Figure 4 is the fluorescence spectrum of CsPbBr 3 @CA nano-mixed crystals prepared in Example 3;
  • Figures 5a and 5b are pictures of CsPbBr 3 @CA nano-mixed crystals impregnated in ethanol, acetone, and dimethyl sulfoxide, and the changes in luminous intensity corresponding to different times of immersion;
  • Figures 5c and 5d are pictures of CsPbBr 1.5 I 1.5 @CA nano-mixed crystals impregnated in ethanol, acetone, and dimethyl sulfoxide, and the changes in luminous intensity corresponding to different times of immersion;
  • Figures 6a and 6b are pictures of CsPbBr 3 nanocrystals impregnated in ethanol, acetone, and dimethyl sulfoxide prepared by hot injection, and the changes in luminous intensity corresponding to different times of immersion;
  • Figure 7a is a schematic diagram of the preparation process of the quantum dot brightness enhancement film
  • Figure 7b is the luminescence picture and fluorescence spectrum of CsPbBr 3 @CA quantum dot brightness enhancement film under the irradiation of ultraviolet lamp;
  • Figure 7c is the luminescent picture and fluorescence spectrum of CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film under the irradiation of ultraviolet lamp;
  • Figure 7d is the luminescent picture and fluorescence spectrum of the CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film under the irradiation of ultraviolet light;
  • Figure 8a is the color point of CsPbBr 3 nanocrystals prepared by different methods
  • Figure 8b is the color point of CsPbBr 1.5 I 1.5 @CA nano-mixed crystals
  • Figure 9 shows the change of luminous intensity of CsPbBr 3 @CA QDEF, CsPbBr 1.5 I 1.5 @CA QDEF and HI-CsPbBr 3 QDEF under ultraviolet light irradiation;
  • Figure 10a is a schematic diagram of a quantum liquid crystal display
  • Figure 10b is the curve of the brightness of the CsPbBr 3 @CA quantum dot brightness enhancement film and the CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film with the display running time;
  • Figure 10c is the fluorescence spectrum of the combined film formed by stacking CsPbBr 3 @CA quantum dot brightness enhancement film and CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film;
  • Figure 10d shows the color gamut values of CsPbBr 3 @CA quantum dot brightness enhancement film combined with CsPbBr 1.5 I 1.5 @CA quantum dot brightness enhancement film and CdSe@ZnS quantum dot brightness enhancement film respectively.
  • Example 1 Microwave method: Preparation of CsPbBr 3 @CA nano-mixed crystals with lead acetate trihydrate as bromine source
  • the prepared yellow-green perovskite powder was characterized by fluorescence, XRD, transmission electron microscopy, high-angle annular dark-field transmission electron microscopy and elemental mapping energy spectroscopy.
  • Figure 2c is the fluorescence spectrum of the yellow-green perovskite powder. It can be seen from the figure that the emission wavelength of the yellow-green perovskite powder is 525nm, the half-peak width is only 23nm, and the quantum yield is as high as 90%.
  • Figure 2d is the XRD overlay of yellow-green perovskite powder, CsPbBr 3 orthorhombic phase (#01-072-7929) and cyanuric acid (#23-1637). It can be seen from the figure that yellow-green perovskite powder The diffraction peak of the body is composed of the diffraction peak of the CsPbBr 3 orthogonal phase and the diffraction peak of cyanuric acid. This phenomenon shows that the yellow-green perovskite powder prepared is a nano-mixed crystal of cyanuric acid and CsPbBr 3 (ie CsPbBr 3 @CA).
  • Figure 2e is a transmission electron microscope image of CsPbBr 3 @CA nano-mixed crystals. It can be seen from the figure that CsPbBr 3 nano-crystals are coated with cyanuric acid polymer, and the average size of CsPbBr 3 is about 7.2nm; the upper right corner of Figure 2e is High-resolution transmission electron microscope images show that the interplanar spacing of CsPbBr 3 is about 058nm and 0.41nm, corresponding to the 100 crystal plane and 110 crystal plane of the CsPbBr 3 orthorhombic phase, which further verifies the formation of CsPbBr 3 .
  • CsPbBr 3 @CA nano-mixed crystals was shown by HAAFD-STEM and elemental mapping energy spectroscopy.
  • CsPbBr 3 is more uniformly distributed inside the polymer, and the CsPbBr 3 in cyanuric acid C, O, N, and P elements are uniformly dispersed on the surface and outside of CsPbBr 3 to form coatings, while Cs, Pb, and Br elements are dispersed in the center of CsPbBr 3 @CA nano-mixed crystals.
  • CsPbBr 3 @CA nano-mixed crystals were prepared in this example, in which CsPbBr 3 was uniformly dispersed inside the cyanuric acid polymer.
  • CsPbBr 3 @CA nano-mixed crystals It was characterized by FT-IR and X-ray photoelectron spectroscopy.
  • Figure 3c is the local X-ray photoelectron energy spectrum of the CsPbBr 3 @CA nano-mixed crystal.
  • the coordination environment of the lead element is analyzed through the energy spectrum of the 4f orbital of Pb. As shown in the figure, it is observed at 142.8eV and 137.9eV.
  • the peaks of the Pb-Br bond, and the peaks attributed to Pb-O were observed at 143.6eV and 138.7eV, which is due to the formation of coordination bonds between the oxygen atoms on the cyanuric acid polymer molecule and the lead in CsPbBr 3 Pb- O.
  • cyanuric acid forms a cross-linked network structure under the action of phosphoric acid, and coats the CsPbBr3 nanocrystals to play a protective role, and the oxygen atoms in the cyanuric acid polymer and the CsPbBr3 Lead forms coordination bond PO, which passivates the surface of CsPbBr 3 and further improves the stability of CsPbBr 3 nanocrystals.
  • Example 1 Repeat the preparation method of Example 1 to prepare yellow-green perovskite powder, divide the obtained powder into 7 equal parts and place them in an oven, and heat them at 85 degrees for 0, 2, 15, 20, 30, 40, After 60 minutes, the fluorescence characterization was performed on the powder without heat treatment and after heat treatment. The characterization results are shown in Figure 3d.
  • the luminescence wavelength of the powder without heat treatment was 514nm. 514nm increased to 532nm.
  • the CsPbBr 3 @CA nano-mixed crystals prepared by microwave method have certain fluctuations in the luminescence wavelength of the product due to the influence of temperature and humidity fluctuations.
  • the luminescence wavelength of the nano-mixed crystal is adjusted between 514-532 nm to obtain the CsPbBr 3 @CA nano-mixed crystal with the target luminescence wavelength.
  • Example 3 Microwave method: Preparation of CsPbBr 3 @CA nano-mixed crystals with lead bromide as bromine source
  • the obtained yellow-green perovskite powder was characterized by fluorescence, and the results are shown in Figure 4, and the emission wavelength is 525nm.
  • Example 4 Microwave method: Preparation of CsPbX 3 @CA nano-mixed crystals with different halogen ratios
  • CsPbBr3 nanocrystals were prepared by thermal injection, and the specific steps are as follows:
  • the nano-mixed crystal prepared by the cyanuric acid-coated halogen perovskite prepared by the microwave method of the present invention has excellent stability against polar solvents.
  • the CsPbBr 3 @CA nano-mixed crystals prepared in Example 1, the CsPbBr 1.5 I 1.5 @CA nano-mixed crystals prepared in Example 4, and the CsPbBr 3 nano-crystals prepared in Comparative Example 1 were used as luminescent materials to prepare quantum dot brightness enhancing films respectively.
  • the method is shown in Figure 7a. After grinding the above-mentioned nano-mixed crystals or directly adding CsPbBr 3 nano-crystalline colloids into the glue to make them evenly dispersed, encapsulate them with two layers of barrier films, and cure them under ultraviolet light to obtain quantum dot brightness-enhancing films. (QDEF).
  • green light CsPbBr 3 @CA QDEF, red light CsPbBr 1.5 I 1.5 @CA QDEF and green light HI-CsPbBr 3 QDEF were prepared respectively, and the emission wavelength and half-peak width of different quantum dot brightness enhancement films were tested ( As shown in Figures 7b to 7d) and color points (as shown in Figures 8a and 8b), the relevant parameters are shown in Table 2 below.
  • CsPbBr 3 @CA QDEF has a super high color point (0.17, 0.79), which is very close to the Rec.2020 standard, and the emission wavelength and half-peak width All meet the requirements of the Rec.2020 standard, and are very suitable for use in quantum liquid crystal displays.
  • the luminescence intensity increases first, then decreases and becomes stable with the increase of UV irradiation time, the luminescence intensity of CsPbBr 3 @CA QDEF increases with the increase of UV irradiation time, while the luminescence intensity of HI-CsPbBr 3 QDEF increases with
  • the luminous intensity of CsPbBr 3 @CA QDEF and CsPbBr 1.5 I 1.5 @CA QDEF prepared by the present invention is higher than the initial luminous intensity after 2 weeks of ultraviolet light irradiation, which also shows that the The quantum dot brightness-enhancing film prepared by the cyanuric acid-coated halogen perovskite nano-mixed crystal has good light stability.
  • the quantum dot brightness enhancement film prepared above is used in a quantum liquid crystal display, and the constructed display structure is shown in Figure 10a, consisting of a liquid crystal screen, a brightness enhancement film, a diffusion film, CsPbBr 3 @CA QDEF green light film, CsPbBr 1.5 I 1.5 @CA QDEF is composed of red light film, light guide plate and blue LED.
  • the luminance of green light film and red light film changes with the running time.
  • Figure 10b within 72 hours of test operation, The luminous brightness of the green light film and the red light film is not weakened, which further shows that the cyanuric acid-coated halogen perovskite nano-mixed crystal prepared by the present invention has excellent luminous performance and stability.
  • FIG. 10c is a fluorescence spectrum diagram of white light produced by blue light irradiation on a composite film prepared by laminating a green light film and a red light film.
  • the color gamut is the ratio of the area of the RGB triangle of the display screen to the area of the Rec.2020 standard
  • CsPbBr 3 @CA QDEF The color gamut of the display combined with the green film and CsPbBr 1.5 I 1.5 @CA QDEF red film is 90% of Rec.2020.
  • the CsPbBr 1.5 I 1.5 @CA QDEF red light film in the display was replaced with CdSe@ZnS red light film, and the color gamut of the prepared display was 96% of Rec.2020.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用,其制备方法包括以下步骤:(1)将卤化铯、铅盐、尿素分散于水中,搅拌均匀得到混合溶液;(2)向上述混合溶液中加入磷酸,进行微波加热,待水蒸干后得到固体,静置得到所述三聚氰酸包覆卤素钙钛矿纳米混晶。上述制备方法简单、重复性好、成本低、可量产,且得到的产物可通过热处理对其发光波长进行一定范围的调控;此外,由于三聚氰酸对卤素钙钛矿的钝化和保护作用,制备得到纳米混晶具有优异的发光性能合稳定性,可用于制备量子点液晶显示器中的高色点量子点增亮膜。

Description

一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用 技术领域
本发明涉及发光材料领域,具体涉及一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用。
背景技术
无机卤素钙钛矿量子点由于其带隙易调节、宽光谱吸收、光吸收系数大、载流子迁移距离长、荧光发射效率高等优异的光电性能,可通过改变晶体结构中卤素原子的种类以及比例实现不同颜色的发光,被广泛应用于太阳能电池、发光二极管、光电探测器、激光器等高性能光电器件中。
虽然无机卤素钙钛矿材料量子点具有优异的光学性能,但由于其晶体结构的离子性、卤素离子较强的离子迁移能力以及较低的晶体形成能等,导致钙钛矿量子点的稳定性较差。晶体结构的离子性使得钙钛矿量子点容易被极性溶剂以及环境中的水降解失去光学性能,严重影响了其器件的使用寿命,目前,通过会采用无机盐或有机物对钙钛矿进行表面钝化,或,使用TMOS/TEOS等对其表面进行包覆以提高钙钛矿量子点的稳定性,但这类处理方法较为繁琐且成本高,难以大规模生产和应用于实际生产中,因此,如何低成本、有效提高卤素钙钛矿量子点的稳定性是亟需解决的问题。
发明内容
为解决上述问题,本发明提供了一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用,将卤化铯、三水合乙酸铅、尿素及磷酸利用微波加热法制备得到三聚氰酸包覆卤素钙钛矿的纳米混晶,其中尿素在微波的作用下形成三 聚氰酸分子,在磷酸的P=O键的作用下三聚氰酸分子聚合形成交联网状结构,三聚氰酸聚合物作为卤素钙钛矿配体的同时对卤素钙钛矿形成包覆,起到钝化和保护的作用,极大的提高了卤素钙钛矿纳米晶的稳定性,且通过加热后处理温度和时间的调控,可实现对三聚氰酸包覆卤素钙钛矿纳米混晶发光波长的调控,上述制备方法简单、重复性好、成本低、产量大,且制备得到的纳米混晶稳定性好;通过上述方法可制备得到深绿色发光、高色点、高量子产率的三聚氰酸包覆CsPbBr 3(CsPbBr 3@CA)的纳米混晶,可用于制备量子点增亮膜,与商业红光CdSe@ZnS量子点增亮膜复合后可实现96%的Rec.2020的覆盖。
本发明提供了如下所述的技术方案:
本发明第一方面提供了一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法,包括以下步骤:
(1)将卤化铯、铅盐、尿素分散于水中,搅拌均匀得到混合溶液;所述铅盐选自溴化铅、硝酸铅、乙酸铅及其水合物中的一种或多种;
(2)向上述混合溶液中加入磷酸,进行微波加热,待水蒸干后得到固体,静置得到所述三聚氰酸包覆卤素钙钛矿的纳米混晶。
尿素在微波的作用下形成三聚氰酸,三聚氰酸分子在含磷酸体系中通过P=O键发生聚合反应,形成了非共轭基团的交联网络结构,反应体系中CsPbX 3的铅与三聚氰酸聚合物分子上的氧发生相互作用,形成Pb-O键,钝化了CsPbX 3表面,形成稳定的钙钛矿结构;此外,三聚氰酸聚合物网络结构对CsPbX 3进行包覆,隔离CsPbX 3纳米晶避免发生团聚,同时阻止外界环境对CsPbX 3纳米晶结构和性能的影响。
进一步地,步骤(1)中,所述铅盐与尿素的摩尔质量比为1:50~200mmol/g。
进一步地,步骤(2)中,磷酸加入量与铅盐的体积摩尔比为0.5~5:1 mL/mmol,所述磷酸为85wt%的水溶液。
磷酸在反应过程中作为促进尿素脱水碳化的酸催化剂,同时作为三聚氰酸聚合的交联剂,使得三聚氰酸分子可形成交联的网状结构。
进一步地,所述微波加热的功率为600~850W。
进一步地,步骤(2)中,静置的时间优选为5~10min。
进一步地,通过对步骤(2)所得三聚氰酸包覆卤素钙钛矿的纳米混晶进行加热处理,以调控所述纳米混晶的发光波长;所述加热处理的温度为50~120℃,加热处理的时间为2min~2h。
由于微波加热过程中可能受到温度和湿度的影响,制备得到的三聚氰酸包覆卤素钙钛矿纳米混晶的发光波长在一定的范围内波动,将微波加热后得到的固体进行加热处理,通过调控加热处理的温度和时间来控制三聚氰酸聚合物的聚合度,从而影响三聚氰酸聚合物的网络结构的大小,进而影响其包覆CsPbX 3纳米晶的尺寸大小,以实现三聚氰酸包覆卤素钙钛矿纳米混晶的发光波长可在一定范围内进行调控,从而获得目标发光波长的纳米混晶。
进一步地,在85℃的加热处理温度下,控制加热处理时间,可实现三聚氰酸包覆CsPbBr 3的纳米混晶的发光波长在514~532nm之间调控。
本发明第二方面提供了由第一方面所述制备方法制备得到的一种三聚氰酸包覆卤素钙钛矿纳米混晶,所述卤素钙钛矿的化学通式为CsPbX 3,X选自Cl、Br和I中的一种或多种。
本发明第三方面提供了一种量子点增亮膜,由两层阻隔膜和发光层材料组成,其中,将发光层材料封装于两层阻隔膜之间,固化后得到所述量子点增亮膜;所述发光层材料由第二方面所述的一种三聚氰酸包覆卤素钙钛矿纳米混晶与胶水混合得到。
进一步地,当所述卤素钙钛矿为CsPbBr 3时,制备得到的CsPbBr 3@CA量子点增亮膜在紫外灯的辐射下发出绿光;当所述卤素钙钛矿为CsPbBr 1.5I 1.5时,制备得到的CsPbBr 1.5I 1.5@CA量子点增亮膜在紫外灯的辐射下发出红光。
进一步地,所述CsPbBr 3@CA量子点增亮膜的发光波长为525nm,半峰宽为23nm;所述CsPbBr 1.5I 1.5@CA量子点增亮膜的发光波长为630nm,半峰宽为46nm。
根据下一代显示要求,新定义的国际电信联盟(ITU)BT 2020(Rec.2020)标准要求超绿色发光材料的发射波长在525~535nm,半峰宽小于25nm,只有达到该标准,才能实现最理想的高色欲显示图像,目前已有的深绿色CsPbBr 3发光材料,存在制备繁琐、成本高、稳定性差等问题。
本发明第四方面提供了一种量子液晶显示器,从上至下依次由液晶屏、增亮膜、扩散膜、绿光膜、红光膜、导光板以及蓝光LED组成,其中,所述绿光膜为第三方面所述的CsPbBr 3@CA量子点增亮膜。
进一步地,所述绿光膜为色点为(0.17,0.79)的CsPbBr 3@CA量子点增亮膜,所述红光膜为色点为(0.67,0.30)的CsPbBr 1.5I 1.5@CA量子点增亮膜,量子液晶显示器的色域为Rec.2020标准的90%。
进一步地,所述绿光膜为色点为(0.17,0.79)的CsPbBr 3@CA量子点增亮膜,所述红光膜为色点为(0.70,0.29)的CdSe@ZnS量子点增亮膜,量子液晶显示器的色域为Rec.2020标准的96%。
与现有技术相比,本发明的有益效果在于:
1.本发明通过微波加热法可制备得到具有不同发光颜色且性质稳定的三聚氰酸包覆卤素钙钛矿纳米混晶,较之传统的卤素钙钛矿的制备方法和修饰手段,该制备方法简单、耗时短、成本低、重复性好且产量高,适于商业化量产。
2.本发明制备的三聚氰酸包覆卤素钙钛矿纳米混晶,三聚氰酸作为卤素钙 钛矿配体起到钝化作用,同时由其形成的网络结构对卤素钙钛矿进行包覆,起到保护和隔离作用,大大提高卤素钙钛矿纳米晶的稳定性,增加其器件的使用寿命。
3.本发明制备的一种CsPbBr 3@CA纳米混晶在紫外光照射下能产生深绿色的光,其波长和半峰均满足Rec.2020显示的标准(波长≥525nm,半峰宽<25nm),由其制备得到的绿光量子点增亮膜,表现出超高的色点(0.17,0.79),可应用于量子点显示器中。
4.将本发明制备的CsPbBr 3@CA量子点增亮膜与红光CdSe@ZnS量子点增亮膜制备的组合膜应用于量子点显示器中,能实现96%的Rec.2020的覆盖,可用于实际生产和应用。
附图说明
图1为实施例1制备CsPbBr 3@CA纳米混晶的流程图;
图2a为实施例1制备得到的CsPbBr 3@CA纳米混晶;
图2b为实施例1制备得到的CsPbBr 3@CA纳米混晶在紫外灯照射下的发光图片;
图2c为实施例1制备得到的CsPbBr 3@CA纳米混晶的荧光光谱图;
图2d为实施例1制备得到CsPbBr 3@CA纳米混晶与CsPbBr 3正交相以及三聚氰酸的XRD叠图;
图2e为实施例1制备得到CsPbBr 3@CA纳米混晶的透射电镜图;
图2f为实施例1制备得到CsPbBr 3@CA纳米混晶的高角度环形暗场透射电子显微镜图(HAADF-STEM)和元素映射能谱图;
图3a为实施例1制备得到CsPbBr 3@CA纳米混晶的形成机理图;
图3b为实施例1制备得到CsPbBr 3@CA纳米混晶的FT-IR图;
图3c为实施例1制备得到CsPbBr 3@CA纳米混晶的X射线光电子能谱图;
图3d为实施例2不同热处理时间制备的CsPbBr 3@CA纳米混晶的荧光光谱图;
图4为实施例3制备得到CsPbBr 3@CA纳米混晶的荧光光谱图;
图5a、5b分为CsPbBr 3@CA纳米混晶在乙醇、丙酮、二甲基亚砜中浸渍的图片以及浸渍不同时间对应的发光强度变化;
图5c、5d分为CsPbBr 1.5I 1.5@CA纳米混晶在乙醇、丙酮、二甲基亚砜中浸渍的图片以及浸渍不同时间对应的发光强度变化;
图6a、6b分别为热注法制备的CsPbBr 3纳米晶在乙醇、丙酮、二甲基亚砜中浸渍的图片以及浸渍不同时间对应的发光强度变化;
图7a为量子点增亮膜的制备过程示意图;
图7b为CsPbBr 3@CA量子点增亮膜在紫外灯照射下的发光图片以及荧光光谱图;
图7c为CsPbBr 1.5I 1.5@CA量子点增亮膜在紫外灯照射下的发光图片以及荧光光谱图;
图7d为CsPbBr 1.5I 1.5@CA量子点增亮膜在紫外灯照射下的发光图片以及荧光光谱图;
图8a为不同方法制备得到的CsPbBr 3纳米晶的色点;
图8b为CsPbBr 1.5I 1.5@CA纳米混晶的色点;
图9为CsPbBr 3@CA QDEF、CsPbBr 1.5I 1.5@CA QDEF及HI-CsPbBr 3QDEF在紫外光照射下发光强度的变化;
图10a为量子液晶显示器的示意图;
图10b为CsPbBr 3@CA量子点增亮膜与CsPbBr 1.5I 1.5@CA量子点增亮膜的 亮度随显示器运行时间的变化曲线;
图10c为CsPbBr 3@CA量子点增亮膜与CsPbBr 1.5I 1.5@CA量子点增亮膜叠放形成的组合膜的荧光光谱图;
图10d为CsPbBr 3@CA量子点增亮膜分别与CsPbBr 1.5I 1.5@CA量子点增亮膜、CdSe@ZnS量子点增亮膜组合后的色域值。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1 微波法:以三水合乙酸铅为溴源制备CsPbBr 3@CA纳米混晶
称取0.3mmol的溴化铯、0.1mmol的三水合乙酸铅以及1.5g尿素溶于10mL去离子水中,在超声条件下搅拌5分钟,得到均匀的混合溶液,再向混合溶液中加入0.2mL的磷酸,将配置好的溶液置于700W的微波炉中加热3分钟,去离子水蒸干,得到白色块状粉末,室温静置5~10min,形成黄绿色钙钛矿粉体(如图2a所示),在紫外灯的照射下发出明亮的绿光(如图2b所示)。
对制备得到的黄绿色钙钛矿粉体进行荧光、XRD、透射电子显微镜、高角度环形暗场透射电子显微镜以及元素映射能谱表征。
图2c为黄绿色钙钛矿粉体的荧光光谱图,由图可知,黄绿色钙钛矿粉体的发光波长为525nm,半峰宽仅为23nm,量子产率高达90%。
图2d为黄绿色钙钛矿粉体与CsPbBr 3正交相(#01-072-7929)以及三聚氰酸(#23-1637)的XRD叠图,由图可知,黄绿色钙钛矿粉体的衍射峰由CsPbBr 3正交相的衍射峰以及三聚氰酸的衍射峰组成,该现象说明制备得到的黄绿色钙钛矿粉体为三聚氰酸及CsPbBr 3的纳米混晶(即CsPbBr 3@CA)。
图2e为CsPbBr 3@CA纳米混晶的透射电子显微镜图,由图可知,CsPbBr 3纳米晶被三聚氰酸聚合物包覆,其中CsPbBr 3的平均尺寸约为7.2nm;图2e右上角为高分辨透射电子显微镜图,测量可知CsPbBr 3的晶面间距约为058nm和0.41nm,分别对应于CsPbBr 3正交相的100晶面和110晶面,进一步验证了CsPbBr 3的形成。此外,通过HAAFD-STEM以及元素映射能谱展示了CsPbBr 3@CA纳米混晶中各元素的分布,如图2f所示,CsPbBr 3较为均匀的分布于聚合物的内部,三聚氰酸中的C,O,N,P元素均匀的分散于CsPbBr 3表面及外部形成包覆物,而Cs,Pb,Br元素分散于CsPbBr 3@CA纳米混晶的中心位置。
通过上述表征结果可知,本实施例制备得到CsPbBr 3@CA纳米混晶,其中CsPbBr 3均匀分散于三聚氰酸聚合物内部,为进一步研究CsPbBr 3@CA纳米混晶的官能团和表面化学状态,对其进行FT-IR以及X射线光电子能谱表征。
如图3b所示,在3209cm -1N-H和3030cm -1C-H能观察到很强烈的伸缩振动带,以及可观察到在1724cm -1C=O和1400cm -1C-N的伸缩振动带的峰,这都归因于三聚氰酸分子的主要伸缩振动峰,此外,在1259cm -1可以看到有明显的P=O键的伸缩振动带峰,推测是由于三聚氰酸分子在磷酸体系中通过P=O键发生聚合反应,生成非共轭基团的交联网络结构(如图3a所示)。
图3c为CsPbBr 3@CA纳米混晶的局部X射线光电子能谱图,通过对Pb的4f轨道的能谱图分析铅元素的配位环境,如图所示,在142.8eV和137.9eV观察到Pb-Br键的峰,另外在143.6eV和138.7eV观察到归属于Pb-O的峰,这是由于三聚氰酸聚合物分子上的氧原子与CsPbBr 3中的铅形成配位键Pb-O。
由上述结果可知,三聚氰酸在磷酸的作用下形成交联网络结构,对CsPbBr 3纳米晶进行包覆,起到保护作用,且三聚氰酸聚合物中的氧原子与CsPbBr 3中的铅形成配位键P-O,钝化了CsPbBr 3表面,进一步提高CsPbBr 3纳米晶的稳定性。
实施例2 加热处理调控CsPbBr 3@CA纳米混晶的发光波长
重复实施例1的制备方法,制备得到黄绿色钙钛矿粉体,将得到的粉体分为7等份放置烘箱中,在85度下分别加热0、2、15、20、30、40、60min,对未进行加热处理和加热处理后粉体进行荧光表征,表征结果如图3d所示,未进行加热处理的粉体的发光波长为514nm,随着加热处理的时间的增加,发光波长由514nm增加至532nm。
由上述结果可知,使用微波法制备得到的CsPbBr 3@CA纳米混晶,由于温度和湿度波动的影响,导致产物的发光波长存在一定的波动,通过对产物进行加热处理可实现对CsPbBr 3@CA纳米混晶发光波长在514~532nm之间的调控,以获得目标发光波长的CsPbBr 3@CA纳米混晶。
实施例3 微波法:以溴化铅为溴源制备CsPbBr 3@CA纳米混晶
称取0.1mmol的溴化铯、0.1mmol的溴化铅以及1.5g尿素溶于10mL去离子水中,在超声条件下搅拌5分钟,得到均匀的混合溶液,再向混合溶液中加入0.2mL的磷酸,将配置好的溶液置于700W的微波炉中加热3分钟,去离子水蒸干,得到白色块状粉末,室温静置5~10min,形成黄绿色钙钛矿粉体,在紫外灯的照射下发出明亮的绿光。
对所得黄绿色钙钛矿粉体进行荧光表征,结果如图4所示,发光波长为525nm。
实施例4 微波法:制备不同卤素比例的CsPbX 3@CA纳米混晶
称取0.3mmol的卤化铯、0.1mmol的三水合乙酸铅以及1.5g尿素溶于10mL去离子水中,在超声条件下搅拌5分钟,得到均匀的混合溶液,再向混合 溶液中加入0.2mL的磷酸,将配置好的溶液置于700W的微波炉中加热3分钟,去离子水蒸干,得到白色块状粉末,室温静置5~10min,形成相应颜色的钙钛矿粉体。
控制加入的卤化铯的不同卤素摩尔比:Cl/Br=2:1、1:1、1:2以及Br/I=1:1、2:1、3:0,分别制备得到CsPbCl 2Br@CA、CsPbCl 1.5Br 1.5@CA、CsPbClBr 2@CA、CsPbBr 1.5I 1.5@CA、CsPbBr 2I@CA、CsPbI 3@CA纳米混晶,不同钙钛矿对应的发光颜色以及发光波长如下表1所示:
表1 各样品的发光颜色及发光波长
Figure PCTCN2021143116-appb-000001
对比例1 热注法:制备CsPbBr 3纳米晶
本对比例通过热注法制备CsPbBr 3纳米晶,具体步骤如下所示:
①将0.2g Cs 2CO 3(0.49mmol)、1.25mL OA和20mL ODE混合在50mL三颈烧瓶中制备油酸铯溶液。将上述溶液置于120℃下干燥1h,然后在N 2气氛下加热到150℃至Cs 2CO 3与OA反应结束,制备得到热油酸铯溶液。
②将1.23mL OAm、1.17mL OA、5mL ODE和0.073g PbBr 2加至25mL三颈烧瓶中,真空干燥1h后在N 2气氛下加热至160℃,得到混合溶液。
③取0.4mL步骤①制备的热油酸铯溶液快速加至步骤②中的混合溶液中,5秒后,将得到的反应产物置于冰水浴中冷却到室温,将所得粗溶液在9000rpm下离心5min,收集上清液,用10mL己烷分散,制备得到CsPbBr 3纳米晶。
稳定性研究
将实施例1制备的CsPbBr 3@CA纳米混晶、实施例4制备的CsPbBr 1.5I 1.5@CA纳米混晶以及对比例1制备的CsPbBr 3纳米晶进行抗极性溶剂稳定性试验研究,具体操作如下:
取等量的上述样品分别置于等体积的乙醇、丙酮、二甲基亚砜中浸渍,观察样品的发光强度(量子产率)随浸渍时间的变化情况。
实施例1制备的CsPbBr 3@CA纳米混晶与实施例4制备的CsPbBr 1.5I 1.5@CA纳米混晶在不同溶剂中分别储存7天、30天后(图5a、5c),荧光强度的变化如图5c、5d所示,由图可知上述两种纳米混晶在不同极性溶剂中储存30天后,其荧光强度基本保持不变;而对比例1制备的CsPbBr 3纳米晶在不同溶剂中储存(如图6a所示),其荧光强度均在12小时内降低直至几乎无荧光强度,如图6b所示,其中于强极性溶剂二甲基亚砜中静置的CsPbBr 3纳米晶,在10s内完全失去发光性质。
由上述稳定性试验结果可知,通过本发明微波法制备得到的三聚氰酸包覆卤素钙钛矿制备的纳米混晶具有优异的抗极性溶剂稳定性。
应用:量子点增亮膜
分别将实施例1制备的CsPbBr 3@CA纳米混晶、实施例4制备的CsPbBr 1.5I 1.5@CA纳米混晶以及对比例1制备的CsPbBr 3纳米晶作为发光材料制备量子点增亮膜,制备方法如图7a所示,将上述纳米混晶研磨后或直接将CsPbBr 3纳米晶胶体加入胶水中,使其均匀分散,用两层阻隔膜进行封装,在紫外灯下固化得到量子点增亮膜(QDEF)。
根据发光材料的不同,分别制备得到绿光CsPbBr 3@CA QDEF、红光CsPbBr 1.5I 1.5@CA QDEF以及绿光HI-CsPbBr 3QDEF,测试不同量子点增亮膜的发光波长、半峰宽(如图7b~7d所示)以及色点(如图8a、8b所示),相关参数如下表2所示。
表2 不同量子点增亮膜的发光参数
样品 发光波长(nm) 半峰宽(nm) 色点
CsPbBr 3@CA QDEF 525 23 (0.17,0.79)
CsPbBr 1.5I 1.5@CA QDEF 630 46 (0.67,0.30)
HI-CsPbBr 3QDEF 512 24 (0.12,0.68)
由上述图表可知,较之相同绿光的HI-CsPbBr 3QDEF,CsPbBr 3@CA QDEF具有超高色点(0.17,0.79),该值极为接近Rec.2020的标准,且发光波长及半峰宽均满足Rec.2020标准的要求,非常适合应用于量子液晶显示器中。
此外,进一步研究了上述制备的三种量子点增亮膜在紫外光(λ=365nm,490mA)照射下发光强度随照射时间的变化,结果如图9所示,CsPbBr 1.5I 1.5@CA QDEF的发光强度随着紫外光照射时间的增加先增强而后降低并趋于平稳,CsPbBr 3@CA QDEF的发光强度随紫外光照射时间的增加而增强,而HI-CsPbBr 3QDEF的发光强度随紫外光照射时间的增加而大幅度降低,在长达2周的紫外光照射后,本发明制备的CsPbBr 3@CA QDEF与CsPbBr 1.5I 1.5@CA QDEF的发光强度反而高于初始发光强度,这也说明由本发明制备的三聚氰酸包覆卤素钙钛矿纳米混晶制备的量子点增亮膜具有良好的光稳定性。
应用:量子液晶显示器
将上述制备的量子点增亮膜用于量子液晶显示器中,构筑的显示器结构如图10a所示,由液晶屏、增亮膜、扩散膜、CsPbBr 3@CA QDEF绿光膜、CsPbBr 1.5I 1.5@CA QDEF红光膜、导光板以及蓝光LED组成,测试该显示器再运行后绿光膜和红光膜的发光亮度随运行时间的变化,如图10b所示,在测试运行的72小时内,绿光膜和红光膜的发光亮度并无减弱,进一步说明本发明制备的三聚氰酸包覆卤素钙钛矿纳米混晶具有优异的发光性能和稳定性。
此外,图10c为蓝光照射由绿光膜和红光膜叠层制备的组合膜所产生的白光的荧光光谱图。
如图10d所示,根据液晶显示器中各量子点增亮膜的色坐标构图,通过计算可知(色域为显示器屏幕的RGB三角形面积与Rec.2020标准面积的比值),由CsPbBr 3@CA QDEF绿光膜与CsPbBr 1.5I 1.5@CA QDEF红光膜组合的显示器的色域为Rec.2020的90%。
进一步,将显示器中的CsPbBr 1.5I 1.5@CA QDEF红光膜替换为CdSe@ZnS 红光膜,制备得到的显示器的色域为Rec.2020的96%。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法,其特征在于,包括以下步骤:
    (1)将卤化铯、铅盐、尿素分散于水中,搅拌均匀得到混合溶液;所述铅盐选自溴化铅、硝酸铅、乙酸铅及其水合物中的一种或多种;
    (2)向上述混合溶液中加入磷酸,进行微波加热,待水蒸干后得到固体,静置得到所述三聚氰酸包覆卤素钙钛矿纳米混晶。
  2. 根据权利要求1所述的一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法,其特征在于,步骤(1)中,所述铅盐与尿素的摩尔质量比为1:50~200mmol/g。
  3. 根据权利要求1所述的一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法,其特征在于,步骤(2)中,磷酸加入量与铅盐的体积摩尔比为0.5~5:1mL/mmol,所述磷酸为85wt%的水溶液;所述微波加热的功率为600~850W。
  4. 根据权利要求1所述的一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法,其特征在于,通过对步骤(2)所得三聚氰酸包覆卤素钙钛矿的纳米混晶进行加热处理,以调控所述纳米混晶的发光波长;所述加热处理的温度为50~120℃,加热处理的时间为2min~2h。
  5. 一种三聚氰酸包覆卤素钙钛矿纳米混晶,其特征在于,由权利要求1~4任一项所述制备方法制备得到;所述卤素钙钛矿的化学通式为CsPbX 3,X选自Cl、Br和I中的一种或多种。
  6. 一种量子点增亮膜,其特征在于,所述量子点增亮膜是将发光层材料封装于两层阻隔膜之间,固化后得到的;其中,所述发光层材料由权利要求5所述的一种三聚氰酸包覆卤素钙钛矿纳米混晶与胶水混合得到。
  7. 根据权利要求6所述的一种量子点增亮膜,其特征在于,当所述卤素钙钛矿为CsPbBr 3时,制备得到的CsPbBr 3@CA量子点增亮膜在紫外灯的辐射下发出绿光;当所述卤素钙钛矿为CsPbBr 1.5I 1.5时,制备得到的CsPbBr 1.5I 1.5@CA量子点增亮膜在紫外灯的辐射下发出红光。
  8. 根据权利要求7所述的一种量子点增亮膜,其特征在于,所述CsPbBr 3@CA量子点增亮膜的发光波长为525nm,半峰宽为23nm;所述CsPbBr 1.5I 1.5@CA量子点增亮膜的发光波长为630nm,半峰宽为46nm。
  9. 一种量子液晶显示器,从上至下依次由液晶屏、增亮膜、扩散膜、绿光膜、红光膜、导光板以及蓝光LED组成,其特征在于,所述绿光膜为权利要求7或8所述的CsPbBr 3@CA量子点增亮膜。
  10. 根据权利要求9所述的一种量子液晶显示器,其特征在于,所述绿光膜为色点为(0.17,0.79)的CsPbBr 3@CA量子点增亮膜,所述红光膜为色点为(0.67,0.30)的CsPbBr 1.5I 1.5@CA量子点增亮膜时,量子液晶显示器的色域为Rec.2020标准的90%;所述绿光膜为色点为(0.17,0.79)的CsPbBr 3@CA量子点增亮膜,所述红光膜为色点为(0.70,0.29)的CdSe@ZnS量子点增亮膜时,量子液晶显示器的色域为Rec.2020标准的96%。
PCT/CN2021/143116 2021-10-19 2021-12-30 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用 WO2023065535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111217328.5 2021-10-19
CN202111217328.5A CN113913180B (zh) 2021-10-19 2021-10-19 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2023065535A1 true WO2023065535A1 (zh) 2023-04-27

Family

ID=79241584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143116 WO2023065535A1 (zh) 2021-10-19 2021-12-30 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN113913180B (zh)
WO (1) WO2023065535A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022232229A1 (en) * 2021-04-27 2022-11-03 University Of Kentucky Research Foundation Dual-color cspbbr3 nanocrystals prepared by water
CN115261979A (zh) * 2022-08-01 2022-11-01 浙江锌芯钛晶科技有限公司 一种通过原位化学气相沉积来生长卤化物钙钛矿纳米晶的方法
CN116396752A (zh) * 2023-03-09 2023-07-07 江南大学 高量子产率和优异水稳定性的钙钛矿纳米晶及其制备方法
CN116376536B (zh) * 2023-03-20 2024-05-28 广州大学 一种芳杂环修饰的窄光谱钙钛矿纳米材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130592A1 (ko) * 2018-12-17 2020-06-25 서울대학교산학협력단 금속 할라이드 페로브스카이트 발광소자 및 이의 제조방법
CN113480996A (zh) * 2021-08-13 2021-10-08 河北工业大学 晶态氢氧化物包覆钙钛矿纳米晶及其制备方法、应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784323A (zh) * 2016-12-14 2017-05-31 天津市职业大学 一种大面积钙钛矿太阳电池复合光电转换层及其制备方法
CN110317607B (zh) * 2019-06-04 2021-05-14 华南理工大学 一种钙钛矿量子点与低维氧化物复合发光材料及制备与应用
CN112708416B (zh) * 2020-12-29 2022-05-20 华中科技大学 一种利用氧化物包覆无机钙钛矿纳米晶的制备方法
CN113307303B (zh) * 2021-04-24 2023-11-28 苏州大学 一种高稳定性全无机钙钛矿/磷酸铝复合纳米材料及其制备方法和应用
CN113421967B (zh) * 2021-06-08 2022-08-16 华南理工大学 一种基于含三嗪的氯苯反溶剂的钙钛矿太阳能电池及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130592A1 (ko) * 2018-12-17 2020-06-25 서울대학교산학협력단 금속 할라이드 페로브스카이트 발광소자 및 이의 제조방법
CN113480996A (zh) * 2021-08-13 2021-10-08 河北工业大学 晶态氢氧化物包覆钙钛矿纳米晶及其制备方法、应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAN, QI ET AL.: "Microwave-assisted Synthesis of High-quality "all-inorganic" CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals and their Application in Light Emitting Diodes", JOURNAL OF MATERIALS CHEMISTRY C, vol. 5, no. 42, 9 September 2017 (2017-09-09), pages 10947 - 10954, XP055907551, ISSN: 2050-7526, DOI: 10.1039/C7TC03774K *
YUE, YIFEI ET AL.: "Molecular Engineering of s-triazine and its Derivatives Applied in Surface Modification Strategy for Enhancing Photoelectric Performance of All-inorganic Perovskites", CHINESE CHEMICAL LETTERS, vol. 33, no. 1, 1 July 2021 (2021-07-01), XP086937052, ISSN: 1001-8417, DOI: 10.1016/j.cclet.2021.06.066 *

Also Published As

Publication number Publication date
CN113913180A (zh) 2022-01-11
CN113913180B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023065535A1 (zh) 一种三聚氰酸包覆卤素钙钛矿纳米混晶的制备方法及其应用
Zhihai et al. Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs
Park et al. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut
Hu et al. Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes
Di et al. Efficient white LEDs with bright green-emitting CsPbBr3 perovskite nanocrystal in mesoporous silica nanoparticles
Wu et al. Rb+ cations enable the change of luminescence properties in perovskite (Rb x Cs 1− x PbBr 3) quantum dots
Zhou et al. Inorganic halide perovskite quantum dot modified YAG-based white LEDs with superior performance
Chen et al. Highly efficient and stable luminescence from microbeans integrated with Cd‐free quantum dots for white‐light‐emitting diodes
Zhang et al. Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes
Im et al. A novel blue-emitting silica-coated KBaPO4: Eu2+ phosphor under vacuum ultraviolet and ultraviolet excitation
US9899575B2 (en) Method of continuous flow synthesis and method of correcting emission spectrum of light emitting device
Yuan et al. Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs
Shao et al. Bright emission and high photoluminescence CsPb 2 Br 5 NCs encapsulated in mesoporous silica with ultrahigh stability and excellent optical properties for white light-emitting diodes
Wang et al. Perovskite nanocrystals-polymer composites with a micro/nano structured superhydrophobic surface for stable and efficient white light-emitting diodes
Luo et al. Ionic liquid assisted pure blue emission CsPbBr3 quantum dots with improved optical properties and alkyl chain regulated stability
CN109370563A (zh) 一种卤铅铯钙钛矿荧光材料及其制备方法
Chang et al. Quench-resistant and stable nanocarbon dot/sheet emitters with tunable solid-state fluorescence via aggregation-induced color switching
Wang et al. Tremendous acceleration of plant growth by applying a new sunlight converter Sr4Al14− xGaxO25: Mn4+ breaking parity forbidden transition
CN113150778A (zh) 一种铝功能化的荧光碳点及其制备方法和应用
Xu et al. Transient Optical Properties of CsPbX3/Poly (maleic anhydride‐alt‐1‐octadecene) Perovskite Quantum Dots for White Light‐Emitting Diodes
Guo et al. Structure and luminescence properties of multicolor phosphor Ba2La3 (SiO4) 3Cl: Tb3+, Eu3+
CN110878205A (zh) 一种碳点基荧光粉、其制备方法及应用
Yang et al. In situ tetrafluoroborate-modified MAPbBr 3 nanocrystals showing high photoluminescence, stability and self-assembly behavior
Li et al. Novel and stable CsPbX3-TS-1 (X= Br, I) nanocomposites for light-emitting diodes
Shen et al. Polyacrylic acid-b-polystyrene-passivated CsPbBr 3 perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961273

Country of ref document: EP

Kind code of ref document: A1