CN110078954A - 金属有机框架(mof)结构化物体和方法 - Google Patents

金属有机框架(mof)结构化物体和方法 Download PDF

Info

Publication number
CN110078954A
CN110078954A CN201910018476.0A CN201910018476A CN110078954A CN 110078954 A CN110078954 A CN 110078954A CN 201910018476 A CN201910018476 A CN 201910018476A CN 110078954 A CN110078954 A CN 110078954A
Authority
CN
China
Prior art keywords
mof
polymer
solvent
solution
homogeneous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910018476.0A
Other languages
English (en)
Other versions
CN110078954B (zh
Inventor
A·M·戴利
戴放
T·J·富勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN110078954A publication Critical patent/CN110078954A/zh
Application granted granted Critical
Publication of CN110078954B publication Critical patent/CN110078954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0219Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L73/00Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种制备金属有机框架(MOF)‑聚合物复合材料的方法包括:形成均匀溶液,该均匀溶液包括溶剂、金属盐、可溶于溶剂的聚合物,以及可以被合成以在形成MOF结构期间提供有机链的反应物;合成均匀溶液,以使均匀溶液中的MOF结构结晶,从而得到分布在剩余溶液中的MOF结构;将反溶剂施加于剩余溶液中,并且MOF结构分布在剩余溶液中以形成富聚合物相,其中,MOF结构在聚合物基质形成期间结合到聚合物基质中以产生MOF‑聚合物复合材料。MOF‑聚合物复合材料可以在基底上形成以产生MOF结构化物体,该MOF结构化物体可以是薄膜、膜或其他物体。

Description

金属有机框架(MOF)结构化物体和方法
引言
本公开涉及由复合材料制成的金属有机框架(MOF)结构化物体以及制造MOF结构化物体的方法,该复合材料包括分布在聚合物相中的MOF结构,该制造MOF结构化物体包括形成包括分布在聚合物相中的MOF结构的复合材料。
背景技术
金属有机框架(MOF)的结晶几乎完全导致多分散的微晶粉末。微晶MOF粉末的多分散特性限制了MOF粉末在诸如储能、分离、催化剂、传感材料等应用中的适用性。将MOF成形为物体可能需要添加粘结剂材料和/或施加压力以用于MOF物体的致密化。例如,当浇铸或模制成薄的物体(例如膜或薄膜)时,薄物体的表面光滑度和/或表面光洁度难以控制,和/或薄物体的表面可能由于所包括的MOF粉末的颗粒尺寸的变化以及可变尺寸的MOF颗粒在薄物体中的不均匀分布而粗糙。结晶MOF颗粒本质上是脆性的,并且具有高的断裂倾向,使得当混合到聚合物中时,例如在将聚合物-MOF混合物浇铸和干燥成诸如膜或薄膜的物体之前,结晶MOF颗粒可能断裂成不同的尺寸,这可能导致在浇铸过程中MOF颗粒在聚合物中的不均匀混合,以及MOF颗粒在由聚合物-MOF混合物形成的膜或薄膜中的不均匀分布。混合物的不均匀性和浇铸物体中MOF颗粒的分布、尺寸和形貌的变化可导致所得薄物体的性质和特性缺乏均匀性。
发明内容
描述了一种制备金属有机框架(MOF)-聚合物复合材料的方法以及由该方法制备的金属有机框架(MOF)结构化物体,该金属有机框架(MOF)-聚合物复合材料可以形成为宏观金属有机框架(MOF)结构化物体,例如膜或薄膜。在一个示例中,制备金属有机框架(MOF)-聚合物复合材料的方法包括:通过组合MOF母液和聚合物溶液形成均匀溶液;以及通过均匀溶液的结晶在均匀溶液中合成MOF结构。在均匀溶液中MOF结构的结晶产生分布在剩余溶液中的MOF结构。该方法还包括使剩余溶液分层以形成富聚合物相,其中分布的MOF结构被富聚合物相包围以产生MOF-聚合物复合材料。MOF结构均匀地分布在富聚合物相中,使得MOF-聚合物复合材料是均匀的复合材料。
该方法可以包括控制均匀溶液中MOF结构的结晶,例如,通过控制结晶时间和结晶温度中的至少一个,通过控制母液中反应物的比例,和/或通过控制溶剂的类型和/或比例,使得MOF结构在晶体尺寸、孔径和形貌中的至少一种方面是均匀的。通过本文所述方法形成的MOF-聚合物复合材料通过分布在剩余溶液中的MOF结构的孔径分布来表征,该孔径分布在分层形成富聚合物相后基本不变,使得MOF-聚合物复合材料和在均匀溶液中结晶的MOF结构具有基本相同的孔径分布。金属有机框架(MOF)-聚合物复合材料在本文中也可称为MOF-聚合物复合物或MOF-聚合物复合材料。
该方法包括在MOF结构的结晶之前将均匀溶液分布在基底上,以及在形成MOF-聚合物复合物之后将MOF-聚合物复合材料与基底分离,以提供金属有机框架(MOF)结构化物体。在一个示例中,MOF结构化物体形成为薄物体,例如膜或薄膜。基底可以配置成使得基底限定MOF结构化物体的净形状,其可以是膜或薄膜。在一个示例中,MOF结构化物体可以形成为薄片,其可以例如通过切割或修剪来进一步制造成净形状膜或薄膜。在一个示例中,MOF-聚合物复合薄片可以层压到至少一个其他片上,该片可以是另一MOF-聚合物复合薄片或另一种材料的片中之一,以形成层压物体。金属有机框架(MOF)结构化物体在本文中也可称为MOF结构化物体。
如本文进一步所述,形成MOF-聚合物复合材料的均匀溶液包括MOF母液和聚合物溶液。MOF母液包括MOF反应物,其包括溶剂、金属盐和有机反应物,其可以在MOF结构形成期间合成以提供有机链。聚合物溶液包括溶剂和聚合物,其中聚合物可溶于溶剂中。在均匀溶液中MOF结构的结晶产生分布在剩余溶液中的MOF结构,其中剩余溶液是通过形成MOF结构而贫化的均匀溶液。通过向剩余溶液中施加反溶剂使剩余溶液分层,并且MOF结构分布在剩余溶液中,以形成富聚合物相,使得富聚合物相在其形成时包围、整合和/或包封MOF结构以形成MOF-聚合物复合材料。如此,MOF结构保持在分布状态,其中其在均匀溶液中结晶,从而在聚合物基质中提供高度均匀性的MOF结构,产生均匀的MOF-聚合物复合材料。
在一个示例中,通过将剩余溶液浸入反溶剂中进行分层,同时MOF结构在其结晶条件下保持分布在剩余溶液中,使得反溶剂与剩余溶液反应以使溶解在溶剂中的聚合物经历相转化,将聚合物从溶剂相转化以在其结晶条件下形成围绕MOF结构的非溶剂相。转化后聚合物的非溶剂相在本文中称为富聚合物相。值得注意的是,选择反溶剂使得聚合物和MOF结构中的每一种都不溶于反溶剂中。在说明性示例中,聚合物包括聚偏二氟乙烯(PVDF),其溶解在包括二甲基甲酰胺(DMF)的溶剂中。在该示例中,母液包括铜盐和包括苯-1,3,5-苯三羧酸(H3BTC)的反应物,使得在合成时,苯-1,3,5-三羧酸铜MOF(Cu-BTC MOF)在均匀溶液中结晶。在该示例中,聚合物通过包括水的反溶剂从剩余溶液中分层。在一个示例中,聚合物选自:聚(六亚甲基亚乙烯基)、聚辛烯、聚砜、聚(4-乙烯基苯酚)、ParmaxTM1200(可溶性聚亚苯基)、KynarTM2751(PVDF橡胶)、聚(全氟环丁烷)聚乙烯吡啶、羧甲基纤维素(Na+和Li+盐)、聚(乙烯基苄醇)、聚苯乙烯及其混合物。聚合物可包括结晶聚合物和无定形聚合物中的至少一种,使得在分层期间,富聚合物相通过重结晶和凝胶化中的至少一种转化。
制备如本文所述的金属有机框架(MOF)结构化物体的方法的优点在于,在合成MOF结构以使剩余溶液中的聚合物转化成围绕MOF结构并将MOF结构整合到聚合物基质中的富聚合物相(同时MOF结构保留分布在剩余溶液中)后由被分层的均匀溶液来形成MOF复合材料,从而形成MOF-聚合物复合材料。如此,MOF-聚合物复合材料由均匀溶液直接形成并且以连续过程形成,其不需要将MOF结构从一个容器移除和输送到另一个容器。此外,没有将MOF结构混合到聚合物中所需的混合步骤,因为MOF结构被合成并分布在富聚合物相被分层的剩余溶液中。如此,避免了在运输和混合过程中MOF结构的破裂和/或破损,并且MOF结构保持在所得MOF-聚合物复合材料中合成。在均匀溶液中在基底上形成的MOF结构的均匀性、分布和连续性得以保持并整合到围绕分布的MOF结构形成的聚合物基质中,以产生均匀的MOF-聚合物复合材料,该MOF-聚合物复合材料在整个复合材料中表现出均匀的性质和特性。如此,由复合材料形成和/或由复合材料制成的MOF结构化物体的优点在于性质的均匀性,包括受控的孔径、晶体尺寸和形貌。
通过本文所述方法形成的MOF结构化物体(可以是薄物体,例如薄膜或膜)的优点在于:整合到MOF-聚合物复合物中的MOF结构的均匀分布,其中可以控制MOF结构在基底上的原位结晶,以产生具有受控和/或预定尺寸和形貌的MOF结构,使得当其从剩余溶液中分层的富聚合物相围绕MOF结构,同时其保留在基底上的原位,以在薄物体薄膜或膜上产生光滑的表面。如本文所用,术语MOF-聚合物复合薄物体可以指使用本文所述的方法由MOF-复合材料形成的薄膜和膜中的任一者或两者。由于其在富聚合物相中的包封,因此在MOF-聚合物复合薄物体的移动和操纵期间(例如,在通过切割、修剪、折叠、层压等由薄物体制造MOF结构化物体期间和/或在MOF结构化物体与其他组件组装期间)薄物体中MOF结构的完整性、分布和均匀性得以保持。
本教导的上述特征和优点以及其他特征和优点从以下结合附图对用于执行如所附权利要求中限定的本教导的一些最佳模式和其他实施例的详细描述中变得明显。
附图说明
现在将参考附图通过示例描述一个或多个实施例,在附图中:
图1示意性地示出了根据本公开制备金属有机框架(MOF)-聚合物复合材料的方法;以及
图2示意性地示出了MOF结构和包括MOF结构的MOF-聚合物复合材料的孔径分布。
应当理解,附图不一定按比例绘制,并且呈现如本文所公开的本公开的各种优选特征(包括例如特定尺寸)的略微简化的表示。与这些特征相关的细节将部分地由特定的预期应用和使用环境确定。
具体实施方式
如本文所描述和示出的,所公开的实施例的组件可以以各种不同的配置来布置和设计。因此,以下详细描述并非旨在限制所要求保护的本公开的范围,而是仅代表其可能的实施例。另外,尽管在以下描述中阐述了许多具体细节以便提供对本文公开的实施例的透彻理解,但是可以在没有这些细节中的一些的情况下实践一些实施例。此外,为了清楚起见,没有详细描述相关领域中理解的某些技术材料,以避免不必要地模糊本公开。此外,如本文所示和所述的本公开可以在缺少本文未具体公开的要素的情况下实施。
描述了一种制备金属有机框架(MOF)-聚合物复合材料的方法以及通过该方法制备的金属有机框架(MOF)结构化物体,该金属有机框架(MOF)-聚合物复合材料可以形成为宏观金属有机框架(MOF)结构化物体,例如薄膜或膜。金属有机框架(MOF)-聚合物复合材料在本文中也可称为MOF-聚合物复合物或MOF-聚合物复合材料。金属有机框架(MOF)结构化物体在本文中也可称为MOF结构化物体。本文所用的术语“MOF”是金属有机框架的首字母缩写。
参考图1,制备金属有机框架(MOF)-聚合物复合材料的示例性方法总体上用10表示。方法10包括提供在步骤20中指示的MOF母液,以及在步骤25提供聚合物溶液,其在步骤30组合以形成均匀溶液。在步骤20提供的MOF母液包括溶剂、金属盐和反应物,其中反应物可以被合成以在MOF结构形成期间提供有机链以形成有机配体。在一个非限制性示例中,MOF母液包括铜盐和包括苯-1,3,5-三羧酸(H3BTC)的反应物,使得在合成时,苯-1,3,5-三羧酸铜MOF(Cu-BTC MOF)在均匀溶液中结晶。在一个非限制性示例中,MOF母液中包括的溶剂可以根据需要包括乙醇(EtOH)、二甲基甲酰胺(DMF)和水(H2O)的混合物,当与聚合物溶液组合时,合成在均匀溶液中形成MOF结构。本文提供的示例是说明性的,并且应当理解,溶剂、金属盐和反应物的其他组合可用于形成MOF母液,当与本文所述的聚合物溶液组合时,可以被合成以产生MOF框架。如本文所用的术语MOF框架是指由与有机配体配位以形成一维、二维或三维结构的金属离子或簇组成的化合物,在本文中也称为MOF晶体。如在本文中使用的该术语MOF结构是指由均匀溶液中通过结晶合成的MOF框架形成并由其组成的结构。MOF结构通过如下来表征:MOF结构中MOF晶体尺寸的一个或多个晶体尺寸分布;MOF结构中MOF晶体中形成的孔的孔径分布(参见图2);MOF结构中MOF晶体的分布的均匀性的指标;MOF晶体的形貌;和/或MOF结构中MOF晶体形貌均匀性的指标。
步骤25中提供的聚合物溶液包括溶剂和聚合物,其中聚合物可溶于溶剂中。在非限制性示例中,聚合物溶液中包括的溶剂包括二甲基甲酰胺(DMF),并且聚合物包括聚偏二氟乙烯(PVDF),其溶解在包括二甲基甲酰胺(DMF)的溶剂中。在该示例中,聚合物通过包括水(H2O)的反溶剂从剩余溶液中分离。在一个示例中,聚合物选自:聚(六亚甲基亚乙烯基)、聚辛烯、聚砜、聚(4-乙烯基苯酚)、ParmaxTM1200(可溶性聚亚苯基)、KynarTM2751(PVDF橡胶)、聚(全氟环丁烷)聚乙烯吡啶、羧甲基纤维素(Na+和Li+盐)、聚(乙烯基苄醇)、聚苯乙烯及其混合物。聚合物可包括结晶聚合物和无定形聚合物中的至少一种,使得在分层期间,富聚合物相通过重结晶和凝胶化中的至少一种转化。
方法10在步骤30,将步骤20中提供的MOF母液与步骤25中提供的聚合物溶液组合,以形成均匀溶液。在步骤35,将均匀溶液分布在基底上,用于在均匀溶液中MOF结构的合成和结晶。基底配置成在步骤40、45、50和55所示的进一步处理期间保持均匀溶液。在一个示例中,基底可以配置为容器,其限定了制备的MOF-聚合物复合材料的形成。例如,基底可以配置成适应形成MOF-聚合物复合材料的形成,该MOF-聚合物复合材料形成为MOF结构化物体,其是薄物体,例如薄膜或膜。由本文所述的MOF-聚合物复合材料形成的薄物体在本文中可称为MOF-聚合物薄物体。在一个示例中,基底可以配置成将MOF-聚合物薄物体形成为片,其中片的形状例如片的周边由基底限定。在另一个示例中,基底可以被配置为形成预定尺寸和/或形状的薄片,其中预定形状可以是多边形、椭圆形或其他形状,其可以是规则或不规则形状。基底可以被配置为形成包括例如为环形形状的一个或多个孔的薄物体,其中,例如MOF-聚合物薄物体的最终用途可能需要薄物体的环形形状。应当理解,本文提供的示例是非限制性的,并且各种基底可以配置成保持均匀溶液和由其形成的MOF-聚合物复合材料以形成各种形状的MOF结构化物体。在另一个示例中,基底可以配置成将MOF-聚合物薄物体形成为连续片,例如固定宽度和可变长度的片,其可以例如卷绕到载体上用于储存或任选地用于最终用途的进一步处理,如图1中的步骤65所示。
再次参照图1,在步骤40,通过均匀溶液的结晶,在均匀溶液中合成MOF结构。方法10可以包括控制在均匀溶液中MOF结构的结晶,例如,通过控制结晶时间和结晶温度中的至少一个,使得MOF结构在晶体尺寸、孔径和形貌中的至少一个方面是均匀的。如本文所用,术语“均匀”可以表示非随机地受控为比由不受控的条件或随机变化引起的范围小的预定范围,和/或在结构、性质和特性中的至少一个中是一致的。在说明性示例中,在剩余溶液中形成的MOF结构的孔径分布在约5至9埃的预定范围内是均匀的,如图2中通过图形线标识为“MOF”所示。
在步骤45,在均匀溶液中MOF结构的结晶产生MOF结构,该MOF结构分布在剩余溶液中,其中如本文所用的术语“剩余溶液”是通过形成MOF结构而贫化的剩余均匀溶液。从均匀溶液中结晶并分布在基底上的均匀MOF结构在步骤50、55形成富聚合物相和聚合物基质期间保持在其在基底上的剩余溶液中的形成位置和条件,使得MOF结构基本上不受干扰,例如,在步骤50、55期间保持其结构、孔分布特征、粒径分布等。因此,本文所述的方法10的优点在于,在形成MOF-聚合物复合材料之前不需要从溶液中移除MOF结构,使得在形成周围的富聚合物相期间在基底上的原位的MOF结构基本上不易破裂,粒径不易变化等,并且MOF结构保持均匀分布在步骤50、55中形成的所得的MOF-聚合物复合材料中。
在步骤50,将剩余溶液分层以形成富聚合物相,其中分布的MOF结构被富聚合物相包封和/或包围,以产生MOF-聚合物复合材料。在步骤50中,通过向剩余溶液中施加反溶剂,使剩余溶液分层,同时MOF结构保持形成并分布在剩余溶液中,以形成富聚合物相,使得如通过从溶剂相转变为非溶剂相形成的富聚合物相包围、包封和/或整合MOF结构以形成MOF-聚合物复合物。如此,MOF结构保持在分布状态,其中其在均匀溶液中结晶,从而在聚合物基质中提供高度均匀的MOF结构,产生均匀的MOF-聚合物复合材料。在一个示例中,通过将分布在剩余溶液中的MOF结构浸入反溶剂中进行分层,使得反溶剂使溶解在溶剂中的聚合物经历相转化,从溶剂相转化形成非溶剂相,其中转化后聚合物的非溶剂相在本文中称为富聚合物相。值得注意的是,选择反溶剂使得聚合物和MOF结构中的每一种都不溶于反溶剂中。
在步骤55得到的MOF-聚合物复合材料通过MOF结构在富聚合物相中的均匀分布来表征,使得所得的MOF-聚合物复合材料形成为均匀的复合材料,在整个结构、性质和特征方面基本均匀。在一个示例中,MOF结构被包封在富聚合物相中,例如在聚合物基质中,使得MOF-聚合物复合材料的表面基本上由富聚合物相限定,并且在质地上是光滑和均匀的。在一个示例中,MOF结构的粒径和聚合物基质的厚度各自受控,使得MOF颗粒完全包封在富聚合物相中,使得MOF颗粒不会从所得的MOF-聚合物复合材料表面突出,并且使得MOF-聚合物复合材料的表面光洁度和表面纹理仅由富聚合物相限定。在图2所示的示例中,通过本文所述方法形成的MOF-聚合物复合材料通过分布在剩余溶液中的MOF结构的孔径分布来表征,该孔径分布在分层以形成富聚合物相后基本不变,使得MOF-聚合物复合材料(对应于图2中表示为“MOF:聚合物”的图形线)和分布在剩余溶液中的MOF结构(对应于图2中表示为“MOF”的图形线)具有基本相同的孔径分布,例如,在形成MOF-聚合物复合材料之后,MOF的孔径在从约5至9埃的预定范围内保持均匀。
在步骤60,将MOF-聚合物复合材料与基底分离,以提供MOF结构化物体。在一个示例中,基底被配置为使得MOF结构化物体是薄物体,例如膜或薄膜。如本文先前所述,基底可以配置成使得基底限定MOF结构化物体的净形状,其中本文使用的术语“净形状”基本上是物体被投入使用时的最终形状。
在可选的步骤65中,可以进一步处理或制造在步骤60中从基底移除的MOF结构化物体以供最终使用,例如,通过从MOF结构化物体切割或修剪净形状物体。在一个示例中,MOF-聚合物复合薄片可在步骤60中从基底上移除,并组装到至少一个其他组件上以形成组件。在一个示例中,MOF结构化物体可以是薄物体,例如片,薄膜或膜,其被层压到另一片、薄膜或膜上,或层压在多个片、薄膜或膜之间。由MOF结构化薄物体形成的层压体可包括通过方法10形成的一层或多层MOF-聚合物复合材料,和/或可包括至少一层通过方法10形成的MOF-聚合物复合材料层以及至少一层另一种材料。
通过本文所述方法形成的MOF-聚合物薄物体(例如薄膜或膜)的优点在于整合和/或包封在MOF-聚合物复合材料中的MOF结构的均匀分布,其中可以在基底上控制MOF结构的原位结晶,以产生具有受控和/或预定尺寸和形貌的MOF结构,使得在基底上富聚合物相的原位分层期间,富聚合物相从剩余溶液中分层以围绕和/或包封MOF结构,以在薄物体薄膜或膜上产生光滑的表面。由于MOF结构在周围聚合物基质中的整合和/或包封,因此在MOF-聚合物复合薄物体的移动和操纵期间(例如,在通过切割、修剪、折叠、层压等由薄物体制造MOF结构化物体期间和/或在MOF结构化物体与其他组件组装期间)薄物体中MOF结构的完整性、分布和均匀性得以保持。
本文提供的示例是非限制性的,并且应当理解,通过本文描述的方法形成的MOF结构化物体和/或MOF-聚合物复合材料可以用于各种不同的应用、插入组件中、作为薄膜安装、应用为膜等。在一个示例中,薄膜可以是配置为锂金属型电池的多组分树枝状阻挡层的吸收电解质。通过本文所述方法形成的MOF-聚合物复合材料可以配置为例如MOF结构化物体,用于传感、催化、气体储存、分离和/或纯化过程中的一种或多种。
制备如本文所述的金属有机框架(MOF)结构化物体的方法的优点在于,由均匀溶液形成MOF复合材料,所述均匀溶液在合成MOF结构后分层,以在其围绕MOF结构时在剩余溶液中将聚合物转化成富聚合物相,该富聚合物相将MOF结构包围并整合到聚合物基质中。如此,MOF复合材料在连续过程中由均匀溶液直接形成,其不需要将MOF结构从一个容器移除和运输到另一个容器。在均匀溶液中在基底上形成的MOF结构的均匀性、分布和连续性得以保持并整合到围绕分布的MOF结构形成的聚合物基质中,以产生均匀的MOF-聚合物复合材料,该MOF-聚合物复合材料在整个复合材料中表现出均匀的性质和特性。如此,由复合材料形成和/或由复合材料制成的MOF结构化物体的优点在于性质的均匀性,包括受控的孔径、晶体尺寸和形貌。
详细描述和附图或图是对本教导的支持和描述,但是本教导的范围仅由权利要求限定。虽然已经详细描述了用于执行本教导的一些最佳模式和其他实施例,但是存在用于实践所附权利要求中限定的本教导的各种替代设计和实施例。

Claims (10)

1.一种制备金属有机框架(MOF)-聚合物复合材料的方法,所述方法包括:
通过组合MOF母液和聚合物溶液形成均匀溶液;
通过所述均匀溶液的结晶在所述均匀溶液中合成MOF结构;
其中,所述MOF结构在所述均匀溶液中的结晶产生分布在剩余溶液中的所述MOF结构;以及
将所述剩余溶液分层,以形成富聚合物相;
其中,所述MOF结构被所述富聚合物相包围,以产生MOF-聚合物复合材料。
2.根据权利要求1所述的方法,其中:
所述聚合物溶液包括溶剂和聚合物;
所述聚合物能够溶于所述溶剂中;
将所述剩余溶液分层包括将反溶剂施加于所述剩余溶液中,并且所述MOF结构分布在所述剩余溶液中,以形成所述富聚合物相;
所述聚合物不溶于所述反溶剂;以及
所述MOF结构不溶于所述反溶剂。
3.根据权利要求1所述的方法,还包括:
在所述MOF结构的结晶之前将所述均匀溶液分布在基底上;以及
将所述MOF-聚合物复合材料与所述基底分离以提供MOF结构化物体。
4.根据权利要求1所述的方法,其中:
所述MOF结构通过孔径分布来表征;以及
在分层以形成所述富聚合物相之后,分布在所述剩余溶液中的所述MOF结构的孔径分布基本不变。
5.根据权利要求1所述的方法,其中,所述MOF结构均匀地分布在所述富聚合物相中,使得所述MOF-聚合物复合材料是均匀复合材料。
6.根据权利要求1所述的方法,其中:
所述聚合物溶液包括溶剂和聚合物;
所述聚合物能够溶于所述溶剂中;以及
在分层过程中,所述聚合物从溶剂相转化形成所述富聚合物相。
7.根据权利要求6所述的方法,其中,所述聚合物包括结晶聚合物和无定形聚合物中的至少一种,使得在分层期间,所述富聚合物相通过重结晶和凝胶化中的至少一种转化。
8.根据权利要求1所述的方法,其中:
所述MOF母液包括:
第一溶剂、金属盐和反应物;
其中,所述反应物能够被合成以在形成所述MOF结构期间提供有机链;
所述聚合物溶液包括:
第二溶剂和聚合物;以及
其中,所述聚合物能够溶于所述第二溶剂中。
9.一种制备金属有机框架(MOF)-聚合物复合材料的方法,所述方法包括:
形成均匀溶液,所述均匀溶液包括:
溶剂、金属盐、反应物和聚合物;
其中、所述反应物能够被合成以在形成MOF结构期间提供有机链;以及
其中,所述聚合物能够溶于所述溶剂;
合成所述均匀溶液,以使所述均匀溶液中的MOF结构结晶;
其中,在所述均匀溶液中结晶所述MOF结构产生分布在剩余溶液中的所述MOF结构;
将反溶剂施加于所述剩余溶液中,并且所述MOF结构分布在所述剩余溶液中,从而形成富聚合物相;
其中:
所述聚合物不溶于所述反溶剂;以及
所述MOF结构不溶于所述反溶剂;以及
其中,所述MOF结构在形成所述富聚合物相期间被结合到所述富聚合物相中以产生MOF-聚合物复合材料。
10.根据权利要求9所述的方法,还包括:
在所述MOF结构的结晶之前将所述均匀溶液分布在基底上;以及
将所述MOF-聚合物复合材料与所述基底分离,以提供MOF结构化物体;
其中,所述MOF结构化物体是膜和薄膜中之一。
CN201910018476.0A 2018-01-26 2019-01-09 金属有机框架(mof)结构化物体和方法 Active CN110078954B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/880976 2018-01-26
US15/880,976 US10751694B2 (en) 2018-01-26 2018-01-26 Metal organic framework (MOF) structured object and method

Publications (2)

Publication Number Publication Date
CN110078954A true CN110078954A (zh) 2019-08-02
CN110078954B CN110078954B (zh) 2021-08-31

Family

ID=67224334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910018476.0A Active CN110078954B (zh) 2018-01-26 2019-01-09 金属有机框架(mof)结构化物体和方法

Country Status (3)

Country Link
US (1) US10751694B2 (zh)
CN (1) CN110078954B (zh)
DE (1) DE102019100719A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911742A (zh) * 2019-12-27 2020-03-24 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN113549223A (zh) * 2021-08-05 2021-10-26 中国科学院重庆绿色智能技术研究院 一种微米级的mof-303及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3251742A1 (en) * 2016-05-31 2017-12-06 ETH Zurich Self-supporting mof membranes
US11165052B2 (en) 2019-07-17 2021-11-02 GM Global Technology Operations LLC Lithium alloy-based electrodes for electrochemical cells and methods for making the same
CN110756225B (zh) * 2019-08-30 2021-03-26 北京化工大学 一种金属/MOFs纳米催化剂及其制备方法与应用
US11984599B2 (en) 2019-11-27 2024-05-14 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same
CN111048829A (zh) * 2019-12-16 2020-04-21 河南科技学院 一种固态锂离子复合电解质膜及其制备方法
US11522221B2 (en) 2019-12-23 2022-12-06 GM Global Technology Operations LLC Gelation reagent for forming gel electrolyte and methods relating thereto
US11600825B2 (en) 2020-07-30 2023-03-07 GM Global Technology Operations LLC Positive electrode for secondary lithium metal battery and method of making
CN112670565B (zh) * 2020-09-07 2022-07-05 华中科技大学 含氨基的高比表面积mof基复合凝胶固态电解质及其制备方法和应用
CN112063147A (zh) * 2020-09-10 2020-12-11 安庆会通新材料有限公司 一种二维有机金属框架mof改性pc材料
CN113540476B (zh) * 2021-09-14 2021-12-28 南京大学 一种燃料电池非贵金属阴极催化剂的制备方法及应用
CN114039089B (zh) * 2021-11-16 2024-02-02 河北工业大学 一种基于非晶mof的锂硫电池材料的制备方法和应用
CN114437362B (zh) * 2022-01-24 2022-12-16 武汉理工大学 阻端剂在调控姜黄素配体金属有机框架形貌中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174388A (zh) * 2014-08-08 2014-12-03 复旦大学 一种金属有机框架复合材料及其制备方法
CN106519281A (zh) * 2016-11-09 2017-03-22 中国科学院长春应用化学研究所 一种金属有机框架复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174388A (zh) * 2014-08-08 2014-12-03 复旦大学 一种金属有机框架复合材料及其制备方法
CN106519281A (zh) * 2016-11-09 2017-03-22 中国科学院长春应用化学研究所 一种金属有机框架复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHAO MINGMING等: "Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance", 《NANOSCALE》 *
李皓: "MOF混合基质膜的原位制备及相容性强化", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911742A (zh) * 2019-12-27 2020-03-24 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN110911742B (zh) * 2019-12-27 2023-09-26 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN113549223A (zh) * 2021-08-05 2021-10-26 中国科学院重庆绿色智能技术研究院 一种微米级的mof-303及其制备方法

Also Published As

Publication number Publication date
US20190232251A1 (en) 2019-08-01
CN110078954B (zh) 2021-08-31
DE102019100719A1 (de) 2019-08-01
US10751694B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
CN110078954A (zh) 金属有机框架(mof)结构化物体和方法
Liu et al. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors
Huang et al. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework
Chen Two‐Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application
Cheng et al. Building lithiophilic ion‐conduction highways on garnet‐type solid‐state Li+ conductors
Deville Ice-templating, freeze casting: Beyond materials processing
Li et al. Assembly of MOF microcapsules with size‐selective permeability on cell walls
Cao et al. Self‐assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium‐Ion batteries
Kwon et al. High–aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes
Ke et al. Factors influencing the nucleation and crystal growth of solution-processed organic lead halide perovskites: a review
JP2016219130A (ja) 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
Kaushik et al. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater
KR101478286B1 (ko) 메탈폼 제조방법 및 이에 의해 제조된 메탈폼
Ren et al. Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity
CN105489916B (zh) 一种锂离子电池用聚合物多孔薄膜及其制备方法和应用
KR20120136377A (ko) 실리콘 잉곳 주조용 적층 도가니 및 그 제조 방법
US20100255998A1 (en) Sn based alloys with fine compound inclusions for Nb3Sn superconducting wires
GB2593555A (en) Metal organic framework material
Liu et al. “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption
Zhao et al. Advances in nanofibrous materials for stable lithium-metal anodes
JP2007022815A (ja) Si系結晶の成長方法、Si系結晶、Si系結晶基板及び太陽電池
Naseer et al. Review on computational-assisted to experimental synthesis, interfacial perspectives of garnet-solid electrolytes for all-solid-state lithium batteries
KR101724945B1 (ko) 블록공중합체의 가교반응을 이용한 고체상태 광자결정 박막 제조방법 및 그 광자결정 박막
Hardian et al. Design of Mixed‐Matrix MOF Membranes with Asymmetric Filler Density and Intrinsic MOF/Polymer Compatibility for Enhanced Molecular Sieving
Kim et al. Pillar shape modulation in epitaxial BiFeO3–CoFe2O4 vertical nanocomposite films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant