CN110006972A - 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法 - Google Patents

一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法 Download PDF

Info

Publication number
CN110006972A
CN110006972A CN201910183819.9A CN201910183819A CN110006972A CN 110006972 A CN110006972 A CN 110006972A CN 201910183819 A CN201910183819 A CN 201910183819A CN 110006972 A CN110006972 A CN 110006972A
Authority
CN
China
Prior art keywords
hrp
concentration
liposome
solution
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910183819.9A
Other languages
English (en)
Other versions
CN110006972B (zh
Inventor
刘英菊
刘莹
魏婕
申浩然
陈华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201910183819.9A priority Critical patent/CN110006972B/zh
Publication of CN110006972A publication Critical patent/CN110006972A/zh
Application granted granted Critical
Publication of CN110006972B publication Critical patent/CN110006972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/5432Liposomes or microcapsules

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于酶诱导生物刻蚀双模分离式免疫传感器,在三维还原氧化石墨烯r‑GO表面覆盖/制备硫化镉/氧化锌纳米棒阵列CdS/ZnO NRs作为光电极;采用金纳米双锥Au NBPs作为多色显色底物;利用辣根过氧化物酶HRP连接光电化学免疫分析与比色检测,其中Cd/ZnO NRs/r‑GO通过HRP诱导的酶催化反应发生生物刻蚀,从而形成光电流变化,HRP催化氧化双氧水产生的羟基自由基用于生物蚀刻Au NBPs形成不同大小和形状的金纳米颗粒,从而显示出颜色变化和LSPR峰的蓝移,本发明方法利用脂质体通过封装大量HRP和负载更多的Ab2来有效放大响应信号,进一步提高检测的准确性。

Description

一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备 方法
技术领域
本发明属于免疫传感器技术领域,更具体地,涉及一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法。
背景技术
光电化学(PEC)检测作为一种新兴并快速发展的检测技术,引起了人们的广泛关注。与传统的酶联免疫法相比,PEC检测以光作为激发光源,以光电流作为检测信号。得益于两种不同的能量转换形式,使PEC免疫分析具有较低的检测限和较高的灵敏度。此外,相对简单和低成本的设备更有益于开发便携和小型化仪器。然而,即使PEC检测具有上述诸多优点,传统的单信号PEC免疫检测平台已逐渐难以满足人们日益增长的检测需求。
赭曲霉毒素A(OTA)是由各种曲霉菌和青霉真菌产生的一类真菌毒素,是主要的食品污染物之一,这些毒素广泛存在于谷物、豆类、坚果、可可、干果、发酵饮料、动物饲料等农副产品中。OTA作为一种具有良好化学稳定性和热稳定性的小分子毒素,不仅会给农业带来巨大的经济损失,而且可以通过食物链富集作用对人类和动物健康造成威胁。众多研究表明,OTA被认为是一种致畸、致癌物质,对生物体的肾脏、肝脏和免疫调节系统具有多重毒性作用。世界卫生组织(WHO)将100ng/kg体重作为人体每周最高摄入量。目前,已有很多传统的分析方法用于OTA的检测,如薄层色谱法、高效液相色谱法、液相色谱-串联质谱分析法和酶联免疫测定法。这些检测方法往往由于检测结果不精准、操作耗时长、灵敏度低、成本高或需要专业的操作人员等问题,在实际应用中受到限制。因此,迫切需要建立一种快速、准确、低成本的检测方法用于OTA的灵敏检测。
发明内容
本发明解决的技术问题是提供一种基于酶诱导生物刻蚀双模分离式免疫传感器。
本发明要解决的另一技术问题是提供上述传感器的制备方法。
本发明还一要解决的技术问题是提供一种检测赭曲霉毒素A的方法。
本发明目的通过以下技术方案予以实现:
提供一种基于酶诱导生物刻蚀双模分离式免疫传感器,其特征在于,采用三维还原氧化石墨烯r-GO作为光电基底,在三维还原氧化石墨烯r-GO表面覆盖/制备硫化镉/氧化锌纳米棒阵列CdS/ZnO NRs,合成的Cd/ZnO NRs/r-GO复合材料作为光电极;采用金纳米双锥Au NBPs作为多色显色底物;利用辣根过氧化物酶HRP连接光电化学免疫分析与比色检测;其中Cd/ZnO NRs/r-GO通过HRP诱导的酶催化反应发生生物刻蚀,从而形成光电流变化,HRP催化氧化双氧水产生的羟基自由基用于生物蚀刻Au NBPs形成不同大小和形状的金纳米粒子,从而显示出颜色变化和LSPR峰的蓝移。
进一步地,所述辣根过氧化物酶HRP被脂质体包裹,形成HRP-脂质体复合物。
提供上述的传感器的制备方法,包括以下步骤:
S1.制备CdS/ZnO NRs/r-GO:先合成氧化石墨烯水凝胶(GO),在还原氧化石墨烯r-GO上制备硫化镉/氧化锌纳米棒阵列CdS/ZnO NRs,得CdS/ZnO NRs/r-GO复合材料;
制备HRP-脂质体-Ab2复合物:通过薄膜分散法制备脂质体包裹的辣根过氧化物酶HRP,得HRP-脂质体复合物,通过戊二醛交联法将HRP-脂质体复合物与第二抗体Ab2连接,得HRP-脂质体-Ab2复合物;
制备金纳米双锥:运用种子生长法制备金纳米双锥Au NBPs;
S2.构建双模分离式免疫传感器:通过多巴胺将抗原固定于96微孔板中上,依次加入封闭液、抗体与待测样品的混合液、HRP-脂质体-Ab2复合物的溶液、曲拉通X-100、双氧水孵化反应,将最终的反应液分为两份,一份与CdS/ZnO NRs/r-GO复合材料反应后用于PEC检测,另一份与金纳米双锥Au NBPs混合后,用于光谱检测。
更具体地,步骤S1所述制备CdS/ZnO NRs/r-GO的具体操作为:将160mL浓硫酸加入干燥的三口烧瓶中,在冰水浴搅拌下缓慢加入4g石墨粉和14g高锰酸钾得混合溶液A,将混合溶液A在35℃下持续搅拌24h;用400mL冰水稀释混合溶液A,然后在混合溶液A中加入双氧水直至颜色不发生改变且没有气泡产生,继续搅拌2h除去未反应的高锰酸钾,随后5000转/min离心3分钟,得沉淀物B;用300mL 1mol/L的HCl离心洗涤沉淀物B三次后,再用水洗至上清液呈中性;将沉淀物B透析一周,产物分为两等份,分别用水和乙醇离心洗涤,分别分散在水或乙醇中储存,得水溶石墨烯与醇溶石墨烯,备用;将水溶石墨烯与醇溶石墨烯等体积混合后,浸入锌片,3h后将锌片取出洗涤,浸泡在水中除去物理性吸附的石墨烯片;最后将该锌片冷冻干燥后剥离出还原氧化石墨烯r-GO膜;将还原氧化石墨烯r-GO膜浸入含有40mM硝酸锌和40mM乌洛托品的生长液中,置于烘箱中95℃下反应5h以生长氧化锌纳米棒ZnO NRs,制得ZnO NRs/r-GO;将ZnO NRs/r-GO浸入含10mM硝酸镉和10mM硫代乙酰胺的混合液中,40℃下反应40min,以3℃/min的升温速率在550℃下煅烧2h制备得CdS/ZnO NRs/r-GO复合材料。
更具体地,步骤S1所述通过薄膜分散法制备脂质体包裹的辣根过氧化物酶HRP的具体操作为:称取二棕榈酰磷脂酰胆碱DPPC、胆固醇和二棕榈酰基磷脂酰乙醇胺DPPE共30mg,混合溶解于4mL氯仿/甲醇混合液中,得混合溶液C,其中,二棕榈酰磷脂酰胆碱DPPC、胆固醇和二棕榈酰基磷脂酰乙醇胺DPPE的摩尔比为10:10:1,氯仿/甲醇混合液中,氯仿/甲醇的体积比为6:1;将混合溶液C转移至圆底烧瓶中45℃下旋转蒸发形成一层均匀的脂质薄膜,随后加入2mL含有2.5mg/mL辣根过氧化物酶HRP的PBS溶液,35℃下孵化2h,得混合物D,其中,PBS的浓度为0.01M,pH为7.4;将混合物D在冰水浴中超声5min,重复三次循环,离心洗涤除去未被包封的HRP,制备得HRP-脂质体复合物。
更具体地,步骤S1所述通过戊二醛交联法将HRP-脂质体复合物与第二抗体Ab2连接的具体操作为:将2mL HRP-脂质体逐滴滴入1mL戊二醛溶液中,室温下温和搅拌1h后在PBS中透析以除去过量的戊二醛,得混合物E,其中戊二醛溶液的浓度为2.5%;将50μL浓度为1mg/mL的Ab2溶液加入到混合物E中,4℃下温和搅拌12h,制得HRP-脂质体-Ab2复合物,离心洗涤后将HRP-脂质体-Ab2复合物分散于PBS中,4℃下储存备用。
更具体地,步骤S1所述运用种子生长法制备金纳米双锥Au NBPs的具体操作为:将0.25mL浓度为25mM的新制备的NaBH4溶液快速注入10mL包含50mM十六烷基三甲基氯化铵CTAC、0.25mM氯金酸和5mM柠檬酸的混合液F中,快速搅拌2min,将混合液F转移至80℃水浴锅中,温和搅拌90min;反应至混合液F的颜色从棕色变为红色,得金种溶液;然后,将1.25mL金种溶液加入到含有100mL浓度为100mM的十六烷基三甲基溴化铵CTAB、5mL浓度为10mM的氯金酸、1mL浓度为10mM的AgNO3、2mL浓度为1M的HCl以及0.8mL浓度为100mM的抗坏血酸的生长液中,30℃下反应2h,制备得Au NBPs。
更具体地,步骤S2所述构建双模分离式免疫传感器的具体操作为:将50μL浓度为1mg/mL的多巴胺滴至96微孔板中37℃下孵化30min,干燥后将20μL浓度为10μg/mL的抗原滴入孔中,孵化1h后用20μL封闭液封闭非特异性结合位点;准备20μL浓度为5μg/mL的抗体Ab1与待测样品的混合液、20μL HRP-脂质体-Ab2复合物的溶液、10μL浓度为10mg/mL的曲拉通X-100、300μL浓度为1M的双氧水、CdS/ZnO NRs/r-GO复合材料以及金纳米双锥Au NBPs备用。
优选地,所述抗原为赭曲霉毒素A,所述抗体Ab1为赭曲霉毒素A抗体。
提供一种检测赭曲霉毒素A含量的方法,上述传感器或上述方法制备的传感器,具体操作为:将50μL浓度为1mg/mL的多巴胺滴至96微孔板中37℃下孵化30min,干燥后将20μL浓度为10μg/mL的赭曲霉毒素A抗原滴入孔中,37℃下孵化1h后用20μL封闭液封闭非特异性结合位点;将20μL浓度为5μg/mL的赭曲霉毒素A抗体Ab1与待测样品混合,滴入微孔,37℃下孵化1h;随后将20μL HRP-脂质体-Ab2复合物的溶液滴入,37℃下孵化1h;加入10μL浓度为10mg/mL的曲拉通X-100,使脂质体包裹的HRP酶释放,再加入300μL浓度为1M的双氧水、37℃下孵化15min,得待测酶解液,取200μL待测酶解液刻蚀CdS/ZnO NRs/r-GO复合材料用于PEC检测,取100μL待测酶解液转移至包含有10μL浓度为1M的盐酸和100μL Au NBPs的混合液中,50℃下刻蚀10分钟后观察溶液的颜色变化并用紫外吸收光谱记录300-900nm范围内的峰位移。
本发明的有益效果是:
1.本发明传感器是通过将PEC检测和比色检测相结合来实现的,这种双信号读出免疫分析平台运用不同的转换机制和信号传输模式。与传统的单信号检测相比,这种双模免疫传感器显示出更加精确可靠的读出结果。除此之外,所引入的比色分析使检测结果更加直观,裸眼即可辨别。
2.本发明传感器创造性地引入脂质体,可以通过封装大量HRP和负载更多的Ab2来有效放大响应信号,提高传感器的检测灵敏度。
3.本发明传感器采用多功能HRP在双氧水存在下能够诱导酶促反应。一方面,氧化态的HRP能够不可逆地刻蚀CdS,使光电基底获得更弱的光电流,另一方面,HRP催化双氧水所产生的羟基自由基能够作为强氧化剂刻蚀Au NBPs,从而产生形貌和大小不同的金纳米粒子并伴随着金溶液颜色的变化和LSPR峰位的蓝移。
4.本发明传感器的构建策略具有很好的商业应用前景,不但可是实现OTA的双信号可视化灵敏检测,还可以通过改变相应的免疫分子扩展到其他食品环境等污染物的分析。
附图说明
图1还原氧化石墨烯(r-GO)膜的截面扫描电镜图。放大倍数:251x。
图2 ZnO NRs扫描电镜图。A:放大倍数:9994x,B:放大倍数:100016x。
图3 CdS/ZnO NRs扫描电镜图。A:放大倍数:8000x,B:放大倍数:64995x。
图4 CdS/ZnO NRs/r-GO的元素分析谱图。
图5 HRP-脂质体的透射电镜图。
图6 Au NBPs刻蚀过程中所产生的颜色变化。A:呈棕色,B:呈灰绿色,C:呈蓝色,D:呈粉色。
具体实施方式
下面结合附图及具体实施例进一步说明本发明。下述实施例仅用于示例性说明,不能理解为对本发明的限制。除非特别说明,下述实施例中使用的试剂原料为常规市购或商业途径获得的试剂原料。
实施例1
一种基于酶诱导生物刻蚀双模分离式免疫传感器的制备方法,包括以下步骤:
S1.制备CdS/ZnO NRs/r-GO:先合成氧化石墨烯水凝胶(GO),在还原氧化石墨烯r-GO上制备硫化镉/氧化锌纳米棒阵列CdS/ZnO NRs,得CdS/ZnO NRs/r-GO复合材料;
制备HRP-脂质体-Ab2复合物:通过薄膜分散法制备脂质体包裹的辣根过氧化物酶HRP,
得HRP-脂质体复合物,通过戊二醛交联法将HRP-脂质体复合物与第二抗体Ab2连接,
得HRP-脂质体-Ab2复合物;
制备金纳米双锥:运用种子生长法制备金纳米双锥Au NBPs;
所述制备CdS/ZnO NRs/r-GO的具体操作为:将160mL浓硫酸加入干燥的三口烧瓶中,在冰水浴搅拌下缓慢加入4g石墨粉和14g高锰酸钾得混合溶液A,将混合溶液A在35℃下持续搅拌24h;用400mL冰水稀释混合溶液A,然后在混合溶液A中加入双氧水直至颜色不发生改变且没有气泡产生,继续搅拌2h除去未反应的高锰酸钾,随后5000转/min离心3分钟,得沉淀物B;用300mL 1mol/L的HCl离心洗涤沉淀物B三次后,再用水洗至上清液呈中性;将沉淀物B透析一周,产物分为两等份,分别用水和乙醇离心洗涤,分别分散在水或乙醇中储存,得水溶石墨烯与醇溶石墨烯,备用;将水溶石墨烯与醇溶石墨烯等体积混合后,浸入锌片,3h后将锌片取出洗涤,浸泡在水中除去物理性吸附的石墨烯片;最后将该锌片冷冻干燥后剥离出还原氧化石墨烯r-GO膜;将还原氧化石墨烯r-GO膜浸入含有40mM硝酸锌和40mM乌洛托品的生长液中,置于烘箱中95℃下反应5h以生长氧化锌纳米棒ZnO NRs,制得ZnO NRs/r-GO;将ZnO NRs/r-GO浸入含10mM硝酸镉和10mM硫代乙酰胺的混合液中,40℃下反应40min,以3℃/min的升温速率在550℃下煅烧2h制备得CdS/ZnO NRs/r-GO复合材料。
所述通过薄膜分散法制备脂质体包裹的辣根过氧化物酶HRP的具体操作为:称取二棕榈酰磷脂酰胆碱DPPC、胆固醇和二棕榈酰基磷脂酰乙醇胺DPPE共30mg,混合溶解于4mL氯仿/甲醇混合液中,得混合溶液C,其中,二棕榈酰磷脂酰胆碱DPPC、胆固醇和二棕榈酰基磷脂酰乙醇胺DPPE的摩尔比为10:10:1,氯仿/甲醇混合液中,氯仿/甲醇的体积比为6:1;将混合溶液C转移至圆底烧瓶中45℃下旋转蒸发形成一层均匀的脂质薄膜,随后加入2mL含有2.5mg/mL辣根过氧化物酶HRP的PBS溶液,35℃下孵化2h,得混合物D,其中,PBS的浓度为0.01M,pH为7.4;将混合物D在冰水浴中超声5min,重复三次循环,离心洗涤除去未被包封的HRP,制备得HRP-脂质体复合物。
所述通过戊二醛交联法将HRP-脂质体复合物与第二抗体Ab2连接的具体操作为:将2mL HRP-脂质体逐滴滴入1mL戊二醛溶液中,室温下温和搅拌1h后在PBS中透析以除去过量的戊二醛,得混合物E,其中戊二醛溶液的浓度为2.5%;将50μL浓度为1mg/mL的Ab2溶液加入到混合物E中,4℃下温和搅拌12h,制得HRP-脂质体-Ab2复合物,离心洗涤后将HRP-脂质体-Ab2复合物分散于PBS中,4℃下储存备用。
所述运用种子生长法制备金纳米双锥Au NBPs的具体操作为:将0.25mL浓度为25mM的新制备的NaBH4溶液快速注入10mL包含50mM十六烷基三甲基氯化铵CTAC、0.25mM氯金酸和5mM柠檬酸的混合液F中,快速搅拌2min,将混合液F转移至80℃水浴锅中,温和搅拌90min;反应至混合液F的颜色从棕色变为红色,得金种溶液;然后,将1.25mL金种溶液加入到含有100mL浓度为100mM的十六烷基三甲基溴化铵CTAB、5mL浓度为10mM的氯金酸、1mL浓度为10mM的AgNO3、2mL浓度为1M的HCl以及0.8mL浓度为100mM的抗坏血酸的生长液中,30℃下反应2h,制备得Au NBPs。
S2.构建双模分离式免疫传感器:通过多巴胺将抗原固定于96微孔板中上,依次加入封
闭液、抗体与待测样品的混合液、HRP-脂质体-Ab2复合物的溶液、曲拉通X-100、双氧
水孵化反应,将最终的反应液分为两份,一份与CdS/ZnO NRs/r-GO复合材料反应后用于
PEC检测,另一份与金纳米双锥Au NBPs混合后,用于光谱检测。
所述构建双模分离式免疫传感器的具体操作为:将50μL浓度为1mg/mL的多巴胺滴至96微孔板中37℃下孵化30min,干燥后将20μL浓度为10μg/mL的抗原滴入孔中,孵化1h后用20μL封闭液封闭非特异性结合位点;准备20μL浓度为5μg/mL的抗体Ab1与待测样品的混合液、20μL HRP-脂质体-Ab2复合物的溶液、10μL浓度为10mg/mL的曲拉通X-100、300μL浓度为1M的双氧水、CdS/ZnO NRs/r-GO复合材料以及金纳米双锥Au NBPs备用。
实施例2 CdS/ZnO NRs/r-GO复合材料的表征
氧化石墨烯水凝胶(GO)的合成:将160mL浓硫酸加入干燥的三口烧瓶中,在冰水浴搅拌下缓慢加入4g石墨粉和14g高锰酸钾,此混合液在35℃下持续搅拌24h。反应结束后用400mL冰水稀释,然后加入双氧水直至混合液颜色不发生改变且没有气泡产生,继续搅拌2h以除去未反应的高锰酸钾,随后以5000转/min的速率离心3分钟。用300mL HCl(1mol/L)离心洗涤三次后再用水洗至上清液呈中性。将离心后的沉淀透析一周,产物分为两等份,分别用水和乙醇离心洗涤,最终分散在水或乙醇中储存备用。
将上述水溶和醇溶的石墨烯等体积混合后,浸入锌片,3h后将锌片取出洗涤,然后浸泡在水中以除去物理性吸附的石墨烯片。最后将该产物冷冻干燥后剥离出还原氧化石墨烯(r-GO)膜。将所制备的还原氧化石墨烯膜浸入含有40mM硝酸锌和40mM乌洛托品的生长液中,置于烘箱中95℃下反应5h以生长氧化锌纳米棒(ZnO NRs)。随后,将上述所制备的ZnONRs/r-GO浸入含10mM硝酸镉和10mM硫代乙酰胺的混合液中40℃下反应40min,最后以3℃/min的升温速率在550℃下煅烧2h以制备CdS/ZnO NRs/r-GO复合材料。
附图1所示为还原氧化石墨烯(r-GO)膜的截面扫描电镜图,从图中可以看出所制备的r-GO膜的厚度大概在300μm左右。该膜是由许多石墨烯片层以类平行的方式连接堆叠从而形成开放的多孔结构,这种结构为电子的快速传输提供了大的比表面积。附图2是ZnONRs在不同放大倍数下的扫描电镜图,可以看出它们以很高的密度分散生长在r-GO膜上。ZnO NRs具有均一的尺寸和柱状形貌,呈现六边形的柱状顶端,直径大概为250-400nm。此外,纳米棒表面呈现十分光滑的表面形貌。附图3为CdS/ZnO NRs/r-GO复合材料在不同放大倍数下的扫描电镜图,可以看出当CdS沉积后,ZnO NRs的形貌发生明显变化,具体来说,实心的ZnO棒状结构变成了空心的管状结构,这一形貌变化是由于Cd和Zn之间不同扩散速率而引起的柯肯达尔效应所导致的。这种管状结构具有更大的表面积-体积比,有利于光生电子的捕获和传输。此外,Cd沉积后使ZnO NRs的平滑表面变的更加粗糙。附图4所示为CdS/ZnO NRs/r-GO的元素分析谱图,结果表明元素Zn,O,C,Cd和S均存在于样品中,由此可知,光电基底材料CdS/ZnO NRs/rGO被成功制备。
实施例3 HRP-脂质体-Ab2复合物的表征
脂质体包裹的辣根过氧化物酶(HRP)复合物由薄膜分散法制得,过程简要描述如下:称取二棕榈酰磷脂酰胆碱(DPPC),胆固醇和二棕榈酰基磷脂酰乙醇胺(DPPE)共30mg(摩尔比为10:10:1),混合溶解于4mL氯仿/甲醇混合液中(体积比为6:1),然后转移至圆底烧瓶中45℃下旋转蒸发形成一层均匀的脂质薄膜,随后加入2mL含有2.5mg/mL HRP的磷酸缓冲液(PBS,0.01M,pH 7.4),35℃下孵化2h。然后将混合物在冰水浴中超声5min,重复三次循环。最后将所制备的HRP-脂质体复合物离心洗涤以除去未被包封的HRP。
通过戊二醛交联法将上述所制备的复合物与第二抗体(Ab2)连接,简述如下:将2mL HRP-脂质体逐滴滴入1mL戊二醛溶液中(2.5%),室温下温和搅拌1h后在PBS中透析以除去过量的戊二醛。随后,50μL的Ab2溶液(1mg/mL)加入到混合物中,4℃下温和搅拌12h。离心洗涤后所制备的HRP-脂质体-Ab2复合物分散于PBS中,4℃下储存备用。
附图5显示了HRP-脂质体的透射电镜图,可以看出脂质体呈球形或类球形结构,并且不存在破裂的脂质体。此外,封装有HRP的脂质体直径大概在165nm左右。进一步复合Ab2后其直径增加至210nm左右,证明脂质体的成功合成。
实施例4双模分离式免疫传感器对赭曲霉毒素的检测性能
本实施例采用赭曲霉毒素A作为检测指标为例,采用赭曲霉毒素A作为抗原,对应采用赭曲霉毒素A抗体。
首先用具有优异粘附性和生物相容性的多巴胺把抗原固定在96孔板中,封闭非特异性吸附位点后,将一系列含有不同浓度OTA和固定浓度抗体的混合物加入孔中。此时,被固定住的抗原和游离的OTA能够竞争性结合抗体。脂质体被用于载体可以负载更多的第二抗体并封装更多的辣根过氧化物酶(HRP)从而使检测信号放大。随后表面活性剂(曲拉通X-100)的加入可以快速溶解脂质体从而释放出HRP,所释放的HRP能够与双氧水反应腐蚀作为重要光电基底物质的CdS。此外,HRP催化氧化双氧水所产生的羟基自由基能够生物刻蚀金纳米双锥(Au NBPs)形成不同的尺寸和形貌,同时显现出一系列鲜艳的颜色变化和局域表面等离子体共振(LSPR)峰位的蓝移。
在PEC检测端,CdS/ZnO NRs作为光电活性物质修饰还原氧化石墨烯(r-GO)膜,r-GO具有较大的比表面积,优良的电子传导能力和优异的光电转换效率,可以作为新型柔性电极来替代传统的氧化铟锡或氟化铟锡导电玻璃。具体来说,由于三维r-GO薄膜具有较高的电子迁移率,因此它提供了一个高速电荷通道。此外,修饰了ZnO和CdS后有助于电荷的分离和转移,可以有效防止电子-空穴对的复合。当CdS/ZnO NRs/r-GO被辐照后,CdS和ZnO半导体均能够被光子激发并产生光生电子,同时电子从价带(VB)跃迁至导带(CB),光诱导电子-空穴对随之形成。由于CdS具有更强的负电位,电子能够从CdS的导带快速注入ZnO的导带然后转移至r-GO从而形成光电流。在这种带隙构成中两种半导体ZnO和CdS共存能够有效提高电荷分离。于此同时,ZnO价带上被激发的空穴能够转回至CdS价带。在空穴捕获剂抗坏血酸(AA)的存在下,CdS/ZnO NRs/r-GO的光腐蚀能够有效避免,从而确保稳定高效的光电输出信号。此外,更重要的是,CdS在双氧水存在下能够被HRP诱导的酶催化反应腐蚀,且这种腐蚀是不可逆转的。由于ZnO NRs只能够捕获紫外光,因此腐蚀后的电极显示出弱的光电转换性能。由此可见,通过腐蚀作用CdS/ZnO NRs/r-GO的光电流强度能够随着HRP量的增加成比例下降,从而构成信号降低的PEC检测。
在比色检测端,在双氧水存在下,通过HRP诱导的酶促反应能够使Au NBPs发生生物刻蚀。简单的说就是双氧水被分解为羟基自由基,其作为强氧化剂刻蚀Au NBPs产生从棕色到粉色的多色变化和相应的LSPR峰位蓝移。附图6是Au NBPs刻蚀过程中所产生的部分颜色变化。可以看出所制备的Au NBPs呈现标准的双锥体形貌,溶液呈棕色(附图6A)。继续刻蚀后,Au NBPs的两个尖端变得更加圆滑同时溶液变为灰绿色(附图6B)。随着反应的继续进行,Au NBPs的两端被完全刻蚀,呈现类似米粒的形状其颜色变为蓝色(附图6C)。最后,AuNBPs会被完全刻蚀呈类球形结构,且溶液呈粉色(附图6D)。
基于免疫竞争法运用所制备的双模分离式免疫传感器对赭曲霉毒素A(OTA)进行双信号灵敏检测。在PEC检测端,随着OTA的增加,较少量的HRP-脂质体-Ab2复合物被固定,从而仅能释放少量的HRP用于酶促生物刻蚀CdS,由此获得较高的光电信号响应。OTA浓度在1ng/L至5μg/L范围内其浓度对数值与电流变化值(ΔI)呈现良好的线性关系,线性回归方程为:ΔΙ=86.77+22.83[lgCOTA(μg/L)](其中ΔI是存在和不存在OTA时的信号差值)。于此同时,比色检测通过记录Au NBPs的刻蚀程度来实现。一方面Au NBPs溶液颜色会发生变化,另一方面其LSPR峰位会发生变化。随着OTA的减少,LSPR峰位逐渐蓝移,并伴随着一系列明显的颜色变化(棕色→灰色→绿色→蓝色→紫色→粉色)。LSPR峰位移变化值与OTA浓度对数在1ng/L至5μg/L范围内呈现良好的线性关系。线性回归方程为:Δλ=167.27+50.91[lgCOTA(μg/L)]。

Claims (10)

1.一种基于酶诱导生物刻蚀双模分离式免疫传感器,其特征在于,采用三维还原氧化石墨烯r-GO作为光电基底,在三维还原氧化石墨烯r-GO表面覆盖/制备硫化镉/氧化锌纳米棒阵列CdS/ZnO NRs,合成的Cd/ZnO NRs/r-GO复合材料作为光电极;采用金纳米双锥AuNBPs作为多色显色底物;利用辣根过氧化物酶HRP连接光电化学免疫分析与比色检测;其中Cd/ZnO NRs/r-GO通过HRP诱导的酶催化反应发生生物刻蚀,从而形成光电流变化,HRP催化氧化双氧水产生的羟基自由基用于生物蚀刻Au NBPs形成不同大小和形状的金纳米粒子,从而显示出颜色变化和LSPR峰的蓝移。
2.根据权利要求1所述的传感器,其特征在于,所述辣根过氧化物酶HRP被脂质体包裹,形成HRP-脂质体复合物。
3.权利要求1或2任一所述的传感器的制备方法,包括以下步骤:
S1.制备CdS/ZnO NRs/r-GO:先合成氧化石墨烯水凝胶(GO),在还原氧化石墨烯r-GO上制备硫化镉/氧化锌纳米棒阵列CdS/ZnO NRs,得CdS/ZnO NRs/r-GO复合材料;
制备HRP-脂质体-Ab2复合物:通过薄膜分散法制备脂质体包裹的辣根过氧化物酶HRP,得HRP-脂质体复合物,通过戊二醛交联法将HRP-脂质体复合物与第二抗体Ab2连接,得HRP-脂质体-Ab2复合物;
制备金纳米双锥:运用种子生长法制备金纳米双锥Au NBPs;
S2.构建双模分离式免疫传感器:通过多巴胺将抗原固定于96微孔板中上,依次加入封闭液、抗体与待测样品的混合液、HRP-脂质体-Ab2复合物的溶液、曲拉通X-100、双氧水孵化反应,将最终的反应液分为两份,一份与CdS/ZnO NRs/r-GO复合材料反应后用于PEC检测,另一份与金纳米双锥Au NBPs混合后,用于光谱检测。
4.根据权利要求3所述的方法,其特征在于,步骤S1所述制备CdS/ZnO NRs/r-GO的具体操作为:
将160mL浓硫酸加入干燥的三口烧瓶中,在冰水浴搅拌下缓慢加入4g石墨粉和14g高锰酸钾得混合溶液A,将混合溶液A在35℃下持续搅拌24h;
用400mL冰水稀释混合溶液A,然后在混合溶液A中加入双氧水直至颜色不发生改变且没有气泡产生,继续搅拌2h除去未反应的高锰酸钾,随后5000转/min离心3分钟,得沉淀物B;
用300mL 1mol/L的HCl离心洗涤沉淀物B三次后,再用水洗至上清液呈中性;将沉淀物B透析一周,产物分为两等份,分别用水和乙醇离心洗涤,分别分散在水或乙醇中储存,得水溶石墨烯与醇溶石墨烯,备用;
将水溶石墨烯与醇溶石墨烯等体积混合后,浸入锌片,3h后将锌片取出洗涤,浸泡在水中除去物理性吸附的石墨烯片;
最后将该锌片冷冻干燥后剥离出还原氧化石墨烯r-GO膜;
将还原氧化石墨烯r-GO膜浸入含有40mM硝酸锌和40mM乌洛托品的生长液中,置于烘箱中95℃下反应5h以生长氧化锌纳米棒ZnO NRs,制得ZnO NRs/r-GO;
将ZnO NRs/r-GO浸入含10mM硝酸镉和10mM硫代乙酰胺的混合液中,40℃下反应40min,以3℃/min的升温速率在550℃下煅烧2h制备得CdS/ZnO NRs/r-GO复合材料。
5.根据权利要求3所述的方法,其特征在于,步骤S1所述通过薄膜分散法制备脂质体包裹的辣根过氧化物酶HRP的具体操作为:
称取二棕榈酰磷脂酰胆碱DPPC、胆固醇和二棕榈酰基磷脂酰乙醇胺DPPE共30mg,混合溶解于4mL氯仿/甲醇混合液中,得混合溶液C,其中,二棕榈酰磷脂酰胆碱DPPC、胆固醇和二棕榈酰基磷脂酰乙醇胺DPPE的摩尔比为10:10:1,氯仿/甲醇混合液中,氯仿/甲醇的体积比为6:1;
将混合溶液C转移至圆底烧瓶中45℃下旋转蒸发形成一层均匀的脂质薄膜,随后加入2mL含有2.5mg/mL辣根过氧化物酶HRP的PBS溶液,35℃下孵化2h,得混合物D,其中,PBS的浓度为0.01M,pH为7.4;
将混合物D在冰水浴中超声5min,重复三次循环,离心洗涤除去未被包封的HRP,制备得HRP-脂质体复合物。
6.根据权利要求3所述的方法,其特征在于,步骤S1所述通过戊二醛交联法将HRP-脂质体复合物与第二抗体Ab2连接的具体操作为:
将2mL HRP-脂质体逐滴滴入1mL戊二醛溶液中,室温下温和搅拌1h后在PBS中透析以除去过量的戊二醛,得混合物E,其中戊二醛溶液的浓度为2.5%;
将50μL浓度为1mg/mL的Ab2溶液加入到混合物E中,4℃下温和搅拌12h,制得HRP-脂质体-Ab2复合物,离心洗涤后将HRP-脂质体-Ab2复合物分散于PBS中,4℃下储存备用。
7.根据权利要求3所述的方法,其特征在于,步骤S1所述运用种子生长法制备金纳米双锥Au NBPs的具体操作为:
将0.25mL浓度为25mM的新制备的NaBH4溶液快速注入10mL包含50mM十六烷基三甲基氯化铵CTAC、0.25mM氯金酸和5mM柠檬酸的混合液F中,快速搅拌2min,将混合液F转移至80℃水浴锅中,温和搅拌90min;
反应至混合液F的颜色从棕色变为红色,得金种溶液;
然后,将1.25mL金种溶液加入到含有100mL浓度为100mM的十六烷基三甲基溴化铵CTAB、5mL浓度为10mM的氯金酸、1mL浓度为10mM的AgNO3、2mL浓度为1M的HCl以及0.8mL浓度为100mM的抗坏血酸的生长液中,30℃下反应2h,制备得AuNBPs。
8.根据权利要求3所述的方法,其特征在于,步骤S2所述构建双模分离式免疫传感器的具体操作为:
将50μL浓度为1mg/mL的多巴胺滴至96微孔板中37℃下孵化30min,干燥后将20μL浓度为10μg/mL的抗原滴入孔中,孵化1h后用20μL封闭液封闭非特异性结合位点;
准备20μL浓度为5μg/mL的抗体Ab1与待测样品的混合液、20μL HRP-脂质体-Ab2复合物的溶液、10μL浓度为10mg/mL的曲拉通X-100、300μL浓度为1M的双氧水、CdS/ZnONRs/r-GO复合材料以及金纳米双锥Au NBPs备用。
9.根据权利要求3至8任一所述的方法,其特征在于,所述抗原为赭曲霉毒素A,所述抗体Ab1为赭曲霉毒素A抗体。
10.一种检测赭曲霉毒素A含量的方法,采用权利要求1或2所述传感器或权利要求3至9任一所述方法制备的传感器,具体操作为:
将50μL浓度为1mg/mL的多巴胺滴至96微孔板中37℃下孵化30min,干燥后将20μL浓度为10μg/mL的赭曲霉毒素A抗原滴入孔中,37℃下孵化1h后用20μL封闭液封闭非特异性结合位点;
将20μL浓度为5μg/mL的赭曲霉毒素A抗体Ab1与待测样品混合,滴入微孔,37℃下孵化1h;
随后将20μL HRP-脂质体-Ab2复合物的溶液滴入,37℃下孵化1h;
加入10μL浓度为10mg/mL的曲拉通X-100,使脂质体包裹的HRP酶释放,再加入300μL浓度为1M的双氧水、37℃下孵化15min,得待测酶解液,取200μL待测酶解液刻蚀CdS/ZnO NRs/r-GO复合材料用于PEC检测,取100μL待测酶解液转移至包含有10μL浓度为1M的盐酸和100μL Au NBPs的混合液中,50℃下刻蚀10分钟后观察溶液的颜色变化并用紫外吸收光谱记录300-900nm范围内的峰位移。
CN201910183819.9A 2019-03-12 2019-03-12 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法 Active CN110006972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910183819.9A CN110006972B (zh) 2019-03-12 2019-03-12 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910183819.9A CN110006972B (zh) 2019-03-12 2019-03-12 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN110006972A true CN110006972A (zh) 2019-07-12
CN110006972B CN110006972B (zh) 2021-09-21

Family

ID=67166805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910183819.9A Active CN110006972B (zh) 2019-03-12 2019-03-12 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN110006972B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501393A (zh) * 2019-09-10 2019-11-26 济南大学 一种用于检测降钙素原的光电化学免疫传感器的制备方法
CN111579613A (zh) * 2020-05-12 2020-08-25 台州学院 一种基于光电化学传感的脂肪酸结合蛋白检测方法
CN111763769A (zh) * 2020-07-07 2020-10-13 中国科学院长春应用化学研究所 适用于临床现场及非医疗环境下新型冠状病毒核酸检测试剂盒及其制造方法
CN113030079A (zh) * 2021-04-23 2021-06-25 中南民族大学 基于纳米金蚀刻检测农药甲萘威的方法
CN113281388A (zh) * 2021-04-30 2021-08-20 江苏大学 一种基于光助燃料电池的阴极自供能适配体传感器的制备方法及其检测mc-lr的用途
CN113777034A (zh) * 2021-08-20 2021-12-10 嘉兴学院 金纳米双锥阵列基底及其制备方法和应用
CN114088673A (zh) * 2021-11-15 2022-02-25 华南农业大学 一种光电电极、双模便携式传感器及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231289A (zh) * 2007-01-25 2008-07-30 天津科技大学 定量检测食品中赭曲霉毒素a含量试剂盒及其检测方法
CN103954618A (zh) * 2014-04-23 2014-07-30 叶伟荣 一种利用比色法测定葡萄糖浓度的方法
CN106668881A (zh) * 2017-02-28 2017-05-17 苏州大学 一种过氧化氢响应的脂质体纳米探针及其制备方法和应用
CN107084979A (zh) * 2017-05-05 2017-08-22 河南工业大学 一种基于金纳米棒刻蚀构建比色传感器定量检测有机磷农药的方法
CN107188163A (zh) * 2017-06-28 2017-09-22 华南农业大学 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法
CN109030472A (zh) * 2018-06-12 2018-12-18 福州大学 一种可视化检测邻苯二甲酸二丁酯含量的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231289A (zh) * 2007-01-25 2008-07-30 天津科技大学 定量检测食品中赭曲霉毒素a含量试剂盒及其检测方法
CN103954618A (zh) * 2014-04-23 2014-07-30 叶伟荣 一种利用比色法测定葡萄糖浓度的方法
CN106668881A (zh) * 2017-02-28 2017-05-17 苏州大学 一种过氧化氢响应的脂质体纳米探针及其制备方法和应用
CN107084979A (zh) * 2017-05-05 2017-08-22 河南工业大学 一种基于金纳米棒刻蚀构建比色传感器定量检测有机磷农药的方法
CN107188163A (zh) * 2017-06-28 2017-09-22 华南农业大学 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法
CN109030472A (zh) * 2018-06-12 2018-12-18 福州大学 一种可视化检测邻苯二甲酸二丁酯含量的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDREEA CAMPU,ET AL.: "Gold NanoBipyramids Performing as Highly Sensitive Dual-Modal Optical Immunosensors", 《ANAL. CHEM.》 *
JIE WEI,ET AL.: "A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR", 《ANALYTICA CHIMICA ACTA》 *
JIE WEI,ET AL.: "Multifunctional Peroxidase-Encapsulated Nanoliposomes:Bioetching-Induced Photoelectrometric and Colorimetric Immunoassay for Broad-Spectrum Detection of Ochratoxins", 《ACS APPL.MATER.INTERFACES》 *
R. GRINYTE, ET AL.: "Biocatalytic etching of semiconductor cadmium sulfide nanoparticles as a new platform for the optical detection of analytes", 《CHEMICAL COMMUNICATIONS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501393A (zh) * 2019-09-10 2019-11-26 济南大学 一种用于检测降钙素原的光电化学免疫传感器的制备方法
CN111579613A (zh) * 2020-05-12 2020-08-25 台州学院 一种基于光电化学传感的脂肪酸结合蛋白检测方法
CN111579613B (zh) * 2020-05-12 2022-07-08 台州学院 一种基于光电化学传感的脂肪酸结合蛋白检测方法
CN111763769A (zh) * 2020-07-07 2020-10-13 中国科学院长春应用化学研究所 适用于临床现场及非医疗环境下新型冠状病毒核酸检测试剂盒及其制造方法
CN113030079A (zh) * 2021-04-23 2021-06-25 中南民族大学 基于纳米金蚀刻检测农药甲萘威的方法
CN113030079B (zh) * 2021-04-23 2022-05-20 中南民族大学 基于纳米金蚀刻检测农药甲萘威的方法
CN113281388A (zh) * 2021-04-30 2021-08-20 江苏大学 一种基于光助燃料电池的阴极自供能适配体传感器的制备方法及其检测mc-lr的用途
CN113281388B (zh) * 2021-04-30 2023-12-08 深圳万知达科技有限公司 一种基于光助燃料电池的阴极自供能适配体传感器的制备方法及其检测mc-lr的用途
CN113777034A (zh) * 2021-08-20 2021-12-10 嘉兴学院 金纳米双锥阵列基底及其制备方法和应用
CN113777034B (zh) * 2021-08-20 2024-04-19 嘉兴学院 金纳米双锥阵列基底及其制备方法和应用
CN114088673A (zh) * 2021-11-15 2022-02-25 华南农业大学 一种光电电极、双模便携式传感器及其应用
CN114088673B (zh) * 2021-11-15 2023-06-20 华南农业大学 一种光电电极、双模便携式传感器及其应用

Also Published As

Publication number Publication date
CN110006972B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN110006972A (zh) 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法
Zhao et al. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials
Miao et al. Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc–COOH–Au and UiO-66-TB complexes
CN110823980B (zh) 一种基于类过氧化酶催化银沉积检测gpc3的方法
CN104777157B (zh) 一种无酶ecl葡萄糖传感器
Ma et al. Triple amplified ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on MoS2@ Cu2O-Au nanoparticles
Khalilzadeh et al. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor
Rahmani et al. A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au–Ag bimetallic nanoclusters
CN109283235B (zh) 一种基于NSCQDs/Bi2S3的光电化学传感器及其制备方法
CN102262125A (zh) 检测己烯雌酚的电化学免疫传感器及其制备方法和应用
CN113237868B (zh) 一种基于氧化石墨烯基的表面增强拉曼传感器对真菌毒素的比率型检测法
Zhang et al. Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue
CN104614527A (zh) 一种检测癌胚抗原的电化学免疫传感器的构建方法
Lu et al. Nanomaterial-based biosensors for measurement of lipids and lipoproteins towards point-of-care of cardiovascular disease
CN106442994A (zh) 一种基于Ag@Au纳米复合材料的电化学免疫传感器的制备方法及应用
CN112505017B (zh) 一种基于sers技术检测血液中il-6的方法
CN109613244B (zh) 一种Ag@Pt-CuS标记的免疫传感器的制备方法及应用
Ji et al. Progress in rapid detection techniques using paper-based platforms for food safety
Wu et al. Advances in gold nanoparticles for mycotoxin analysis
CN108918853B (zh) 一种Pd@Ag@CeO2标记的免疫传感器的制备方法及应用
CN110376380A (zh) 一种电化学酶联免疫传感器及其制备与检测抗原的应用
Liang et al. A facile and sensitive fluorescence assay for glucose via hydrogen peroxide based on MOF-Fe catalytic oxidation of TMB
Cheng et al. In-situ construction of hollow double-shelled CoSx@ CdS nanocages with prominent photoelectric response for highly sensitive photoelectrochemical biosensor
Yang et al. A novel label-free electrochemiluminescence aptasensor using a tetrahedral DNA nanostructure as a scaffold for ultrasensitive detection of organophosphorus pesticides in a luminol–H 2 O 2 system
Kumar et al. Electrochemical cholesterol sensors based on nanostructured metal oxides: Current progress and future perspectives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant