CN107188163A - 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法 - Google Patents

一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法 Download PDF

Info

Publication number
CN107188163A
CN107188163A CN201710511499.6A CN201710511499A CN107188163A CN 107188163 A CN107188163 A CN 107188163A CN 201710511499 A CN201710511499 A CN 201710511499A CN 107188163 A CN107188163 A CN 107188163A
Authority
CN
China
Prior art keywords
self assembly
nanometer stick
graphene film
growth
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710511499.6A
Other languages
English (en)
Other versions
CN107188163B (zh
Inventor
方岳平
钟永鸣
杨思源
张声森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201710511499.6A priority Critical patent/CN107188163B/zh
Publication of CN107188163A publication Critical patent/CN107188163A/zh
Application granted granted Critical
Publication of CN107188163B publication Critical patent/CN107188163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明属于复合材料技术领域,公开了一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法。所述制备方法为:将金属锌片浸没在氧化石墨烯溶液中,室温静置反应后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离得到自组装石墨烯薄膜;将所得自组装石墨烯薄膜加入到纳米棒阵列生长溶液中进行水热反应,原位定向生长纳米棒阵列,得到自组装石墨烯原位生长纳米棒阵列复合膜。本发明的复合膜纳米棒阵列与石墨烯薄膜紧密结合,具有良好的力学性能及光催化性能。

Description

一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法
技术领域
本发明属于复合材料技术领域,具体涉及一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法。
背景技术
半导体光催化是近30年发展起来的新兴研究领域。半导体光催化材料在光照射下,能够被光子所激活,实现电子或空穴分离,并在其表面上发生很强的氧化(或)还原作用,即反应体系在光催化下将吸收的光能直接转化为化学能,使许多通常情况下难以实现的反应在比较温和的条件下能够顺利进行。半导体的光催化特性已经被许多研究所证实,但从利用太阳光的效率来看,还存在以下主要缺陷:一是半导体的光吸收波长范围狭窄,主要在紫外区,利用太阳光的比例低;二是半导体载流子的复合率很高,因此量子效率较低。高导电性能的基底能增加光生电子和空穴的分离和传输,从而增强半导体的光催化性能。
石墨烯作为一种新型材料,是一类由碳原子之间以sp2杂化轨道从而组成的呈六角型蜂巢稳定晶格的平面单层片状结构。石墨烯晶格当中每一个碳原子,都通过sp2杂化形成的σ键与三个碳原子相互连接构成不断延伸,碳原子之间的C-C键带给石墨烯刚性很强的平面结构,π电子可以在平面结构当中自由的移动,所以石墨烯表现出非常良好的导电性能和力学性能。同时,石墨烯作为一种广泛使用的零带隙半导体材料,具有相当大的比表面积,能够提高对污染物的吸附;石墨烯优良的电子迁移率和载流子特性提高了光激发电荷的传输和分离。因此复合石墨烯能很好地改善一般半导体材料可见光利用率低和光生电子-空穴复合概率高等的不足。
基于石墨烯的复合材料在能源、传感领域的应用,通常需要将石墨烯组装为三维薄膜结构。石墨烯薄膜具有以下优点:(1)薄膜间的孔状结构促进溶液渗入;(2)三维孔状结构提供多重电子通道;(3)石墨烯薄膜表面的多重褶皱具有高的比表面积,提供了多重有效位置以便于与其它活性材料的复合。(4)石墨烯薄膜相对于粉体材料更有利于回收,能避免造成二次污染。目前制备石墨烯薄膜的方法主要有:旋涂法(Acs Nano,2010,4:5749)、真空抽滤法(Energy Environmental Science,2013,6:3693)和自组装法(AdvancedMaterials,2014,26(4):615)。旋涂而成的薄膜厚度与面积不受限制,但不易控制其均匀性。真空抽滤法成膜均匀、膜厚度精确,原材料利用率也比较髙,但膜面积受滤纸尺寸限制,在抽滤过程中会因为石墨烯的团聚而降低抽滤速度甚至停止,直接影响较厚薄膜的制备。而自组装方法的成膜面积可以任意调控,并且呈现较好的均匀性。在自组装石墨烯上原位生长半导体纳米棒阵列可以提高材料的表面积和导电性能,从而提高光催化效率。当前在自组装石墨烯薄膜上原位生长半导体纳米棒阵列技术还处于空白状态。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法。
本发明的另一目的在于提供一种通过上述方法制备得到的自组装石墨烯原位生长纳米棒阵列复合膜。
本发明目的通过以下技术方案实现:
一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,包括如下制备步骤:
将金属锌片浸没在氧化石墨烯溶液中,室温静置反应后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离得到自组装石墨烯薄膜;将所得自组装石墨烯薄膜加入到纳米棒阵列生长溶液中进行水热反应,原位定向生长纳米棒阵列,得到自组装石墨烯原位生长纳米棒阵列复合膜。
上述制备方法中,所述室温静置反应的时间优选为1h。
优选地,所述的氧化石墨烯溶液通过如下方法制备:
将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在35℃~40℃条件下搅拌反应24~30h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到7~9mg/mL,并超声分散,得到氧化石墨烯溶液。
优选地,所述酸洗是指用1mol/L盐酸溶液洗涤,所述的透析是指用截留分子量为14000的透析袋在去离子水中透析。
优选地,所述的纳米棒阵列生长溶液及水热反应过程为以下(1)~(4)中任意一种:
(1)将自组装石墨烯薄膜浸没在浓度为40~50mmol/L硝酸锌和40~50mmol/L乌洛托品的水溶液中,95℃反应3~7h,在自组装石墨烯薄膜上生长ZnO纳米棒阵列;
(2)将石墨烯薄膜浸没在含有10~15g/L钨酸、1.5~1.7g/L草酸、1~2v/v%盐酸的双氧水-乙腈混合溶液中,170~180℃反应2~3h,在自组装石墨烯薄膜上生长WO3纳米棒阵列;
(3)将石墨烯薄膜浸没在浓度为0.1~0.2mol/L三氯化铁和0.9~1mol/L硝酸钠的水溶液中,100~120℃反应12~15h,在自组装石墨烯薄膜上生长Fe2O3纳米棒阵列;
(4)将石墨烯薄膜浸没在浓度为5~10mmol/L谷胱甘肽、20~40mmol/L硝酸镉、60~80mmol/L硫脲的水溶液中,180~210℃反应3~6h,在自组装石墨烯薄膜上生长CdS纳米棒阵列。
上述(1)中所述硝酸锌和乌洛托品的摩尔浓度均优选为1:1。
上述(2)中所述钨酸、草酸、盐酸的浓度分别优选为12.5g/L、1.6g/L、2v/v%。
上述(2)中所述双氧水-乙腈混合溶液中双氧水和乙腈的体积比优选为1:(4~6),更优选为1:4。
上述(3)中所述三氯化铁和硝酸钠的摩尔浓度分别优选为0.15mol/L和1.0mol/L。
上述(4)中所述谷胱甘肽、硝酸镉和硫脲的摩尔浓度分别优选为8mmol/L、25mmol/L和75mmol/L。
一种自组装石墨烯原位生长纳米棒阵列复合膜,通过上述方法制备得到。
本发明的原理为:在石墨烯表面引入了大量的氧基活性功能团,从而得到氧化石墨烯,这使得原本具有惰性的石墨烯具有了异常活泼的化学活性,而且具有优于石墨烯的亲水性,容易在水中形成稳定的悬浮液。将金属锌片浸泡在氧化石墨烯的悬浮液,两者会在锌片表面发生氧化还原反应,使得石墨烯被还原并且逐层累积,自发组装成薄膜;同时,锌片也会被氧化,与水一同反应生成锌的氧化物,分布在石墨烯薄膜的表面上,一步合成具有均匀氧化物晶种的石墨烯薄膜,为后续利用水热反应生长纳米棒阵列提供均匀的生长位点。
本发明的制备方法及所得到的复合膜具有如下优点及有益效果:
本发明通过金属锌片还原氧化石墨烯,在锌片上原位自组装合成石墨烯薄膜,然后经过水热法在石墨烯薄膜上原位定向生长ZnO、WO3、Fe2O3和CdS等多种物质的纳米棒阵列,可将ZnO等纳米棒阵列与石墨烯薄膜紧密结合,可以借助石墨烯的光学特性和优异的导电性能,提高光催化剂的光吸收率以及光生电子-空穴对的分离效率,同时石墨烯薄膜的力学性能也为制备柔性、高效和可回收的光催化器件提供可行性。
附图说明
图1为本发明实施例1所得自组装石墨烯原位生长ZnO纳米棒阵列复合膜的扫描电镜图;
图2为本发明实施例3所得自组装石墨烯原位生长CdS纳米棒阵列复合膜的扫描电镜图;
图3为本发明实施例4所得自组装石墨烯原位生长Fe2O3纳米棒阵列复合膜的扫描电镜图;
图4为本发明实施例5所得自组装石墨烯原位生长WO3纳米棒阵列复合膜的扫描电镜图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例的一种自组装石墨烯原位生长ZnO纳米棒阵列复合膜的制备方法,具体制备步骤如下:
(1)将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在35条件下搅拌反应24h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到7mg/mL,并超声分散,得到氧化石墨烯溶液。
(2)将金属锌片浸没在步骤(1)所得氧化石墨烯溶液中,室温静置反应1h后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离,得到自组装石墨烯薄膜;将所得石墨烯薄膜加入到浓度为40mmol/L硝酸锌和40mmol/L乌洛托品水溶液中,95℃水热反应3h,在自组装石墨烯薄膜上原位生长ZnO纳米棒阵列,得到自组装石墨烯原位生长ZnO纳米棒阵列复合膜(ZnO纳米棒阵列/石墨烯薄膜)。
本实施例所得自组装石墨烯原位生长ZnO纳米棒阵列复合膜的扫描电镜图如图1所示。
本实施例所得ZnO纳米棒阵列/石墨烯薄膜的光催化性能测试:取6cm2ZnO纳米棒阵列/石墨烯薄膜样品作为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极,在0.5MNa2SO4电解液中作光电流测试。磁力搅拌下使用高压氙灯进行光照,使用电化学工作站记录工作电极在偏压1V时,电流随光照时间的变化,ZnO纳米棒阵列/石墨烯薄膜的光生电流值达到0.52mA/cm2
实施例2
本实施例的一种自组装石墨烯原位生长ZnO纳米棒阵列复合膜的制备方法,具体制备步骤如下:
(1)将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在40℃条件下搅拌反应30h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到9mg/mL,并超声分散,得到氧化石墨烯溶液。
(2)将金属锌片浸没在步骤(1)所得氧化石墨烯溶液中,室温静置反应1h后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离,得到自组装石墨烯薄膜;将所得石墨烯薄膜加入到浓度为50mmol/L硝酸锌和50mmol/L乌洛托品水溶液中,95℃水热反应7h,在自组装石墨烯薄膜上原位生长ZnO纳米棒阵列,得到自组装石墨烯原位生长ZnO纳米棒阵列复合膜(ZnO纳米棒阵列/石墨烯薄膜)。
本实施例所得ZnO纳米棒阵列/石墨烯薄膜的光催化性能测试的光生电流值达到0.47mA/cm2
实施例3
本实施例的一种自组装石墨烯原位生长CdS纳米棒阵列复合膜的制备方法,具体制备步骤如下:
(1)将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在40℃条件下搅拌反应27h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到8mg/mL,并超声分散,得到氧化石墨烯溶液
(2)将金属锌片浸没在步骤(1)所得氧化石墨烯溶液中,室温静置反应1h后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离,得到自组装石墨烯薄膜;将所得石墨烯薄膜加入到浓度为8mmol/L谷胱甘肽、25mmol/L硝酸镉、75mmol/L硫脲的水溶液中,210℃反应6h,在自组装石墨烯薄膜上原位生长CdS纳米棒阵列,得到自组装石墨烯原位生长CdS纳米棒阵列复合膜(CdS纳米棒阵列/石墨烯薄膜)。
本实施例所得自组装石墨烯原位生长CdS纳米棒阵列复合膜的扫描电镜图如图2所示。
本实施例所得CdS纳米棒阵列/石墨烯薄膜的光催化性能测试:光解水制氢反应在北京博菲莱光解水制氢系统中进行,气相色谱在线检测反应生成的氢气量。取6cm2石墨烯薄膜样品于真空反应器中,加入到0.75M的Na2S和Na2SO3混合液。磁力搅拌下使用高压氙灯进行光解水实验反应,使用气相色谱仪TCD检测器检测体系氢气,采用外标法计算氢气产量。CdS纳米棒阵列/石墨烯薄膜的产氢量达到1.1mmol·g-1·h-1
实施例4
本实施例的一种自组装石墨烯原位生长Fe2O3纳米棒阵列复合膜的制备方法,具体制备步骤如下:
(1)将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在38℃条件下搅拌反应26h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到7.5mg/mL,并超声分散,得到氧化石墨烯溶液。
(2)将金属锌片浸没在步骤(1)所得氧化石墨烯溶液中,室温静置反应1h后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离,得到自组装石墨烯薄膜;将所得石墨烯薄膜加入到在浓度为0.15mol/L三氯化铁和1mol/L硝酸钠水溶液中,100℃反应12h,在自组装石墨烯薄膜上原位生长Fe2O3纳米棒阵列,得到自组装石墨烯原位生长Fe2O3纳米棒阵列复合膜(Fe2O3纳米棒阵列/石墨烯薄膜)。
本实施例所得自组装石墨烯原位生长Fe2O3纳米棒阵列复合膜的扫描电镜图如图3所示。
本实施例所得Fe2O3纳米棒阵列/石墨烯薄膜的光催化性能测试:取4~10cm2Fe2O3纳米棒阵列/石墨烯薄膜样品作为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极,在0.5M Na2SO4电解液中作光电流测试。磁力搅拌下使用高压氙灯进行光照,使用电化学工作站记录工作电极在偏压1V时,电流随光照时间的变化,Fe2O3纳米棒阵列/石墨烯薄膜的光生电流值达到1mA/cm2
实施例5
本实施例的一种自组装石墨烯原位生长WO3纳米棒阵列复合膜的制备方法,具体制备步骤如下:
(1)将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在40℃条件下搅拌反应30h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到8mg/mL,并超声分散,得到氧化石墨烯溶液。
(2)将金属锌片浸没在步骤(1)所得氧化石墨烯溶液中,室温静置反应1h后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离,得到自组装石墨烯薄膜;将所得石墨烯薄膜加入到混合1.25g钨酸、20ml H2O2、1.6g草酸、2mlHCl和80ml乙腈的混合溶液中,180℃反应2h,在自组装石墨烯薄膜上原位生长WO3纳米棒阵列,得到自组装石墨烯原位生长WO3纳米棒阵列复合膜。
本实施例所得自组装石墨烯原位生长WO3纳米棒阵列复合膜的扫描电镜图如图4所示。
本实施例所得WO3纳米棒阵列/石墨烯薄膜的光催化性能测试:取6cm2WO3纳米棒阵列/石墨烯薄膜样品作为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极,在0.5MNa2SO4电解液中作光电流测试。磁力搅拌下使用高压氙灯进行光照,使用电化学工作站记录工作电极在偏压1V时,电流随光照时间的变化,WO3纳米棒阵列/石墨烯薄膜的光生电流值达到0.8mA/cm2
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于包括如下制备步骤:
将金属锌片浸没在氧化石墨烯溶液中,室温静置反应后取出,干燥,得到锌片上原位自组装还原的石墨烯薄膜,再将石墨烯薄膜从锌片上直接剥离得到自组装石墨烯薄膜;将所得自组装石墨烯薄膜加入到纳米棒阵列生长溶液中进行水热反应,原位定向生长纳米棒阵列,得到自组装石墨烯原位生长纳米棒阵列复合膜。
2.根据权利要求1所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于所述的氧化石墨烯溶液通过如下方法制备:
将高纯石墨在搅拌条件下加入到浓硫酸中,再加入高锰酸钾,在35℃~40℃条件下搅拌反应24~30h,反应完成后,搅拌条件下滴加双氧水,待反应液由棕色变成黄色后,将反应液离心分离,沉淀依次经酸洗、去离子水洗及透析,得到氧化石墨,然后将氧化石墨加入适当蒸馏水调节浓度到7~9mg/mL,并超声分散,得到氧化石墨烯溶液。
3.根据权利要求2所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于:所述酸洗是指用1mol/L盐酸溶液洗涤,所述的透析是指用截留分子量为14000的透析袋在去离子水中透析。
4.根据权利要求1所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于所述的纳米棒阵列生长溶液及水热反应过程为以下(1)~(4)中任意一种:
(1)将自组装石墨烯薄膜浸没在浓度为40~50mmol/L硝酸锌和40~50mmol/L乌洛托品的水溶液中,95℃反应3~7h,在自组装石墨烯薄膜上生长ZnO纳米棒阵列;
(2)将石墨烯薄膜浸没在含有10~15g/L钨酸、1.5~1.7g/L草酸、1~2v/v%盐酸的双氧水-乙腈混合溶液中,170~180℃反应2~3h,在自组装石墨烯薄膜上生长WO3纳米棒阵列;
(3)将石墨烯薄膜浸没在浓度为0.1~0.2mol/L三氯化铁和0.9~1mol/L硝酸钠的水溶液中,100~120℃反应12~15h,在自组装石墨烯薄膜上生长Fe2O3纳米棒阵列;
(4)将石墨烯薄膜浸没在浓度为5~10mmol/L谷胱甘肽、20~40mmol/L硝酸镉、60~80mmol/L硫脲的水溶液中,180~210℃反应3~6h,在自组装石墨烯薄膜上生长CdS纳米棒阵列。
5.根据权利要求4所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于:(1)中所述硝酸锌和乌洛托品的摩尔浓度比为1:1。
6.根据权利要求4所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于:(2)中所述钨酸、草酸、盐酸的浓度分别为12.5g/L、1.6g/L、2v/v%;所述双氧水-乙腈混合溶液中双氧水和乙腈的体积比为1:(4~6)。
7.根据权利要求4所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于:(3)中所述三氯化铁和硝酸钠的摩尔浓度分别为0.15mol/L和1.0mol/L。
8.根据权利要求4所述的一种自组装石墨烯原位生长纳米棒阵列复合膜的制备方法,其特征在于:(4)中所述谷胱甘肽、硝酸镉和硫脲的摩尔浓度分别优选为8mmol/L、25mmol/L和75mmol/L。
9.一种自组装石墨烯原位生长纳米棒阵列复合膜,其特征在于:通过权利要求1~8任一项所述的方法制备得到。
CN201710511499.6A 2017-06-28 2017-06-28 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法 Active CN107188163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710511499.6A CN107188163B (zh) 2017-06-28 2017-06-28 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710511499.6A CN107188163B (zh) 2017-06-28 2017-06-28 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107188163A true CN107188163A (zh) 2017-09-22
CN107188163B CN107188163B (zh) 2019-12-24

Family

ID=59880210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710511499.6A Active CN107188163B (zh) 2017-06-28 2017-06-28 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107188163B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052368A (zh) * 2018-10-30 2018-12-21 郑州大学 一种以大蒜为原料采用水热技术制备碳量子点膜的方法
CN109629228A (zh) * 2018-12-19 2019-04-16 苏州大学 一种多功能织物及其制备方法和应用
CN110006972A (zh) * 2019-03-12 2019-07-12 华南农业大学 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法
CN115629501A (zh) * 2022-09-28 2023-01-20 贵州大学 一种原位自组装大面积多色电致变色器件及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801292A (zh) * 2015-04-22 2015-07-29 哈尔滨工业大学 一种氧化锌纳米中空球/石墨烯复合材料的制备方法
KR20150107425A (ko) * 2014-03-14 2015-09-23 한국과학기술원 염료 자가 흡착형 광촉매 필름 및 그의 제조방법
CN104973805A (zh) * 2015-06-01 2015-10-14 浙江工业大学 导电聚合物-石墨烯复合电致变色薄膜及其制备方法
CN106847648A (zh) * 2017-03-01 2017-06-13 杭州电子科技大学 一种场发射用石墨烯/氧化锌/石墨烯三明治结构的复合阴极材料的制备方法
CN107237208A (zh) * 2017-07-04 2017-10-10 济南大学 一种三维石墨烯‑氧化锌复合纳米纸的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150107425A (ko) * 2014-03-14 2015-09-23 한국과학기술원 염료 자가 흡착형 광촉매 필름 및 그의 제조방법
CN104801292A (zh) * 2015-04-22 2015-07-29 哈尔滨工业大学 一种氧化锌纳米中空球/石墨烯复合材料的制备方法
CN104973805A (zh) * 2015-06-01 2015-10-14 浙江工业大学 导电聚合物-石墨烯复合电致变色薄膜及其制备方法
CN106847648A (zh) * 2017-03-01 2017-06-13 杭州电子科技大学 一种场发射用石墨烯/氧化锌/石墨烯三明治结构的复合阴极材料的制备方法
CN107237208A (zh) * 2017-07-04 2017-10-10 济南大学 一种三维石墨烯‑氧化锌复合纳米纸的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052368A (zh) * 2018-10-30 2018-12-21 郑州大学 一种以大蒜为原料采用水热技术制备碳量子点膜的方法
CN109629228A (zh) * 2018-12-19 2019-04-16 苏州大学 一种多功能织物及其制备方法和应用
CN110006972A (zh) * 2019-03-12 2019-07-12 华南农业大学 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法
CN110006972B (zh) * 2019-03-12 2021-09-21 华南农业大学 一种基于酶诱导生物刻蚀双模分离式免疫传感器及其制备方法
CN115629501A (zh) * 2022-09-28 2023-01-20 贵州大学 一种原位自组装大面积多色电致变色器件及其制备方法和应用

Also Published As

Publication number Publication date
CN107188163B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
Gong et al. Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution
Teng et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition
Gong et al. NiSe/Cd0. 5Zn0. 5S composite nanoparticles for use in p–n heterojunction-based photocatalysts for solar energy harvesting
Chen et al. Nano-architecture and material designs for water splitting photoelectrodes
Wang et al. In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction
Yang et al. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production
Tarek et al. Hetero-structure CdS–CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol
Luo et al. Constructing a direct Z-scheme La2NiO4/g-C3N4 hybrid photocatalyst with boosted visible light photocatalytic activity
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
Zhang et al. Molybdenum carbide-based photocatalysts: synthesis, functionalization, and applications
Rangappa et al. Highly efficient hydrogen generation in water using 1D CdS nanorods integrated with 2D SnS2 nanosheets under solar light irradiation
Wu et al. P-type Cu-doped Zn0. 3Cd0. 7S/graphene photocathode for efficient water splitting in a photoelectrochemical tandem cell
CN107188163A (zh) 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法
Zeng et al. Enhancing interfacial charge transfer on novel 3D/1D multidimensional MoS2/TiO2 heterojunction toward efficient photoelectrocatalytic removal of levofloxacin
Chen et al. Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials
Saboo et al. Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh
Ampelli et al. The use of a solar photoelectrochemical reactor for sustainable production of energy
Li et al. Effect of visible light irradiation on hydrogen production by CoNi2S4/CdWO4 controllable flower spherical photocatalyst
Wei et al. Cooperation effect of heterojunction and co-catalyst in BiVO 4/Bi 2 S 3/NiOOH photoanode for improving photoelectrochemical performances
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Shi et al. Hierarchical WO3 nanoflakes architecture with enhanced photoelectrochemical activity
Zhang et al. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting
Dubey et al. Synthesis of self-aligned and vertically oriented carbon incorporated titania nanotube for improved photoelectrochemical hydrogen generation
Tao et al. Near-infrared-driven photoelectrocatalytic oxidation of urea on La-Ni-based perovskites
Xiong et al. Well-defined Z-scheme Na2Ti3O7/Ag/CdS multidimensional heterojunctions with enhanced H2 production from seawater under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant