CN110003011B - 一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法 - Google Patents

一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法 Download PDF

Info

Publication number
CN110003011B
CN110003011B CN201910294607.8A CN201910294607A CN110003011B CN 110003011 B CN110003011 B CN 110003011B CN 201910294607 A CN201910294607 A CN 201910294607A CN 110003011 B CN110003011 B CN 110003011B
Authority
CN
China
Prior art keywords
nitrate
reaction
olefin
copper
nitroolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910294607.8A
Other languages
English (en)
Other versions
CN110003011A (zh
Inventor
邓清海
李思源
关振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201910294607.8A priority Critical patent/CN110003011B/zh
Publication of CN110003011A publication Critical patent/CN110003011A/zh
Application granted granted Critical
Publication of CN110003011B publication Critical patent/CN110003011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/01Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms
    • C07C205/03Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • C07C205/04Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/07Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • C07C205/08Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to acyclic carbon atoms
    • C07C205/09Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/27Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
    • C07C205/32Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups bound to acyclic carbon atoms and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/39Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups
    • C07C205/42Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups having nitro groups or esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/54Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/26Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0072Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the A ring of the steroid being aromatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及以硝酸盐为硝基源的硝基烯烃衍生物及其制备方法,在氮气氛下,将烯烃类化合物、硝酸盐、三甲基氯硅烷(TMSCl)和铜盐在乙腈中,在0‑30℃下搅拌,同时通过TLC点板监测反应程度,待烯烃类化合物消耗完全后,加入碱,搅拌20‑30min,然后将混合物用旋转蒸发器移除溶剂后,通过硅胶柱纯化,即可得到硝基烯烃衍生物。与现有技术相比,本发明具有反应条件温和、产率高、具有高E式选择性等优点。

Description

一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法
技术领域
本发明涉及有机合成领域,具体涉及一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法。
背景技术
硝基烯烃是一类具有生物活性的化合物,其在抗菌,抗癌,抗肿瘤或作为细胞信号传导因子等方面都用着重要的应用。从海洋沉积物中分离出的含硝基烯烃结构的新型抗生素lajollamycin展现出了抗甲氧西林金黄色葡萄球菌的抗菌活性和耐万古霉素肠球菌活性,它还可以抑制小鼠黑色素瘤细胞的生长。同时硝基烯烃还可以用于迈克尔加成,尤其是不对称的迈克尔加成;硝基烯烃的环加成反应,可以用构建各种含氮取代基的环状化合物;通过氢化还原还可以把硝基烯烃转化成各种有用的含氮化合物等。而目前工业上合成硝基烯烃一直沿用的是1895年Henry开发的反应,而Henry反应需要使用硝基烷烃作为原料,且和醛或酮脱水缩合之后往往得到的是顺反混合物,反应条件苛刻、选择性差且会产生大量的废碱液等问题。
自Henry反应以后,有无数的有机化学家尝试由烯烃出发,直接得到硝基烯烃,例如利用氮氧化物或混酸体系实现了烯烃的直接硝化(Suzuki,H.;Mori,T.J.Org.Chem.1997,62,6498.Wing-Wah,S.;Arnold,B.Tetrahedron Lett.1985,26,1193.Jovel,I.;Prateeptongkum,S.;Beller,M.Adv.Synth.Catal.2008,350,2493.)这些体系要么使用有毒的亚硝酸盐和外加氧化剂(如臭氧、碘等),要么使用NO等作为硝基源不仅立体选择性较差,而且底物适用范围也不好。2013年Maiti课题组在JACS上刊文(Maity,S.;Manna,S.;Maiti,D.J.Am.Chem.Soc.2013,135,3355.),他们利用亚硝酸银和TEMPO体系实现了烯烃的直接硝化,填补了有机合成上直接硝化方法学的空白。但因为亚硝酸银和外加氧化剂TEMPO的价格昂贵,使得这种方法依旧不适用于大规模制备硝基烯烃,从而限制了该方法在工业上的应用。Maiti也意识到了这个问题,不断对该方法进行优化,最终使用亚硝酸特丁酯-TEMPO体系实现了烯烃的直接硝化(Maity,S.;Naveen,T.;Sharma,U.;Maiti,D.Org.Lett.2013,15,3384)。2016年,我国湖南大学郭灿城教授利用亚硝酸钠代替了亚硝酸银在100℃时也实现了这个反应(An,Z.;Qing,J.;Cancheng,G.TetrahedronLetters.2016,57,80.)。2014年泰国科学家也利用亚硝酸钠+oxone+碘化钾体系在室温下实现了烯烃的直接硝化(Hlekhlai,S.;Kuhakarn,C.Eur.J.Org.Chem.2014,33,7433.)。但是这些方法均需要外加氧化剂,且要么反应温度较高,要么试剂昂贵或者需要大过量的硝基源,因此也不能取代Henry反应应用于工业。
2001年意大利萨宝集团公司在中国申请的专利(CN1438977A)公开了一种制备硝基烯烃的方法。该方法以苯乙烯衍生物为原料,在亚硝酸钠、乙酸异丙酯和碘的作用下直接硝化。该方法使用了过氧化物,大大降低了碘的用量,从而一定程度上提升了产品收率,可以大量制备;但底物适用性较差,使用大量亚硝酸盐对人体危害性大,且仍需要外加碘,后处理繁琐。中国专利(CN106083597A)公开了一种共轭硝基烯烃的合成方法。该方法利用脂肪醛和硝基烷烃在二胺的条件下进行羟醛缩合反应,反应过程中通过马来酸的添加来进行共轭烯烃的消去反应。但该反应步骤多,有大量酸性废液产生污染环境。中国专利(CN104710315A)公开了一种α,β-不饱和硝基烯烃化合物的绿色合成方法。该方法利用离子功能化液体与水作为催化体系,芳香醛和硝基烷烃微波加热反应,可使反应条件温和,提高产物收率,但该方法利用离子功能化液体,成本高,难以工业化应用。中国专利(CN107641086A)公开了一种硝基烯烃类化合物的合成方法。利用肉桂醛和硝酸盐(硝酸银、硝酸铜和硝酸铁)反应,虽然此反应简单,但底物适用性较差,且产物收率低。中国专利(CN106995373A)公开了一种以碘化铵为硝基源一锅合成α,β-不饱和硝基烯烃衍生物的方法,该方法利用卟啉铁、碘化铵和叔丁基过氧化氢体系对烯烃直接进行硝化,其过氧化物将碘化铵氧化,再在卟啉铁的作用下生成硝基自由基,然后对底物实现硝化反应,底物适用性较广,但产物收率不高,同时卟啉铁、叔丁基过氧化氢价格昂贵,不利于工业制备。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种在温和条件下以硝酸盐为硝基源合成的高产率具有E式选择性的硝基烯烃衍生物及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种以硝酸盐为硝基源的硝基烯烃衍生物上的制备方法,该方法采用式1结构的烯烃类化合物在铜盐、硝酸盐、三甲基氯硅烷(TMSCl)和碱的乙腈体系中两步一锅反应,生成式2结构的硝基烯烃衍生物;
Figure BDA0002026060520000031
其中,R1、R2和R3独立选自氢、芳烃基、脂肪烃基、杂环基、含取代基的脂肪烃基或甾体类衍生物,或者R1和R2为脂肪环烃基或含芳环的脂肪环烃基。
本发明技术方案中,溶剂极性会对烯烃的硝化产生较大影响,如在乙腈溶液中反应可以顺利进行,而采用二氯甲烷(DCM)、二氯乙烷(DCE)、四氢呋喃(THF)、甲苯(MeOH)、乙醇(EtOH)、乙酸(AcOH)等作为反应溶剂时,硝化反应几乎不能发生;使用乙腈和乙酸的混合溶剂时,虽然反应能顺利发生,但是烯烃的硝化产率不如乙腈。乙腈是本发明的最佳反应溶剂,反应效果相对其他反应溶剂要高出很多。
(1)在氮气氛下,将式1结构的烯烃类化合物、硝酸盐、三甲基氯硅烷(TMSCl)和铜盐在乙腈中,在0-30℃下搅拌12-36h;优选地,反应温度为0-25℃,反应时间为12-24h。
(2)通过TLC点板监测反应程度,待烯烃类化合物消耗完全后,加入碱,搅拌20-30min,然后将混合物用旋转蒸发器移除溶剂后,通过硅胶柱纯化,得到硝基烯烃衍生物。
进一步地,所述烯烃类化合物与硝酸盐的物质的量之比为1:1.2-2.2;所述烯烃类化合物与TMSCl的物质的量之比为1:2-6;所述烯烃类化合物与铜盐的物质的量之比为1:0.01-0.1;所述烯烃类化合物与碱的物质的量之比为1:1.5-3;优选地,烯烃类化合物、硝酸盐、TMSCl和三乙胺的摩尔比为1:2.2:4:2。
进一步地,所述芳烃基包括苯基,一取代苯基、二取代苯基、三取代苯基或萘基;所述杂环基包括吡啶基、喹啉基、异喹啉基、苯并噻吩基、咔唑基、苯并呋喃基或咔唑基。
进一步地,所述取代苯基具有式3结构:
Figure BDA0002026060520000041
其中,R4和R5独立选自氢、烷基、烷氧基、乙酰氧基、酯基、卤素、硝基、氰基或烯基。
进一步地,所述取代苯基为对甲苯基、对硝基苯基、对氰基苯基、对甲氧甲酰苯基、对氟苯基、对氯苯基、对溴苯基、对乙酰氧基苯基、对乙烯基苯基、邻氯苯基、邻溴苯基、邻甲氧基苯基、间乙烯基苯基、间氰基苯基、间氯苯基、2,6-二氯苯基或2,4,6-三甲基苯基的一种或多种;
最优选的烯烃类化合物为:
Figure BDA0002026060520000042
对应生成的硝基烯烃衍生物为:
Figure BDA0002026060520000043
Figure BDA0002026060520000051
本发明的烯类化合物进行硝基化反应,烯烃上的取代基可以是饱和或不饱和的脂肪烃、也可以是芳烃基、杂环基等,但不同取代基对其硝化有不同的影响。以含有一个取代基的烯烃为例,芳基乙烯、杂环乙烯和烷基乙烯的硝化效率依次降低。而芳基乙烯进行硝化时,苯环上的取代基对硝化反应的影响不是很明显,如具有给电子基团的苯环和具有吸电子基团的苯环硝化反应均可以顺利进行,且苯环上二取代或三取代对其硝化也影响甚小,都可以得到优异的硝化收率,同时可以进行10克级以上放大反应,产率基本不变。
进一步地,所述铜盐包括氯化亚铜(CuCl)、氯化铜(CuCl2)、三水合硝酸铜(Cu(NO)3·3H2O)、五水硫酸铜(CuSO4·5H2O)、铜粉(Cu)、氧化铜(CuO)、氧化亚铜(Cu2O)、三氟甲烷磺酸铜(Cu(OTf)2)或醋酸铜(Cu(OAc)2)的一种或多种。优选的方案,所述铜盐为氯化亚铜(CuCl)、氯化铜(CuCl2)、三水合硝酸铜(Cu(NO3)2·3H2O)、五水硫酸铜(CuSO4·5H2O)、铜粉(Cu)、氧化铜(CuO)、氧化亚铜(Cu2O)等,几乎所有实验室常见铜盐均能催化本发明所述硝化反应,反应效果相差不大,均能得到中等到优异的收率。从成本经济适用性考虑,本发明优选催化剂为五水硫酸铜。较为优选的方案,所述五水硫酸铜的用量为烯烃类化合物摩尔量的1~10%。催化剂用量减少,硝化反应速率减慢,反应完成时间大大延长,但仍能以高产率得到目标产物。
所述硝酸盐为硝酸胍、硝酸锂、硝酸钠、硝酸锂、硝酸银;所述碱为三乙胺(Et3N)、碳酸钠(Na2CO3)、碳酸钾(K2CO3)、磷酸钾(K3PO4)、氢氧化钠(NaOH)、氢氧化钾(KOH)。本发明的技术方案中,硝酸盐作为硝基源,所述硝酸盐为硝酸胍、硝酸锂、硝酸钠、硝酸锂、硝酸银等都可以做本发明的硝酸盐。硝酸盐在三甲基氯硅烷的作用下生成三甲硅基硝酸酯,为硝基烯烃衍生物提供硝基取代基。大量实验事实表明,所述硝酸盐都可以使本发明的硝化反应发生,且硝化效率中等到优异,综合成本和硝化效率考虑,优选的硝酸盐为硝酸胍,其硝化效率可高达99%。
本发明由烯类化合物合成硝基烯烃衍生物的反应机理如下,以硝酸胍、三甲基氯硅烷、五水硫酸铜和三乙胺的乙腈溶液为反应体系,通过式1烯烃类化合物为底物合成式2结构的硝基烯烃衍生物,以此为例对反应机理进行说明:首先CNH(NH2)2·HNO3在三甲基氯硅烷的作用下生成盐酸胍和TMSONO2,TMSONO2在Cu2+的作用下发生单电子转移生成[TMSONO2 ]和Cu+,Cu+和[TMSONO2 ]反应生成三甲硅氧铜离子和硝基正离子,三甲硅氧铜离子和TMSCl反应释放Cu2+并生成三甲硅醚;硝基正离子和式1烯烃类底物反应生成活泼正离子中间体A,中间体A经path a直接β-H消除,得到E式选择性的硝基烯烃衍生物;或中间体A经path b结合反应体系中的Cl-得到中间体B,中间体B再在三乙胺的作用下脱氯化氢得到E式选择性的硝基烯烃衍生物。机理方程如下:
Figure BDA0002026060520000061
本发明通过以下反应对本发明的烯烃类化合物硝化反应的机理进行了验证,说明该反应机理的合理性。以1-环丙基苯乙烯为例(反应1),本发明的反应条件下反应,得到了质子开环产物;以萘乙烯的硝化反应为例,加入TEMPO自由基捕获剂(反应2),未抑制硝化反应的发生,故说明本发明的硝化反应在铜盐的催化下主要是NO2 +与烯烃类化合物反应作用。
Figure BDA0002026060520000071
与现有技术相比,本发明具有以下优点:
1)本发明技术方案采用市场上廉价易得的五水硫酸铜等铜盐作为催化剂,硝酸胍等廉价硝酸盐作为硝基源,在室温下,一锅反应,便能实现对烯烃类化合物的硝化,不但产率高,且能进行10克级以上放大制备,具有潜在的工业应用价值。相对现有技术,原料廉价易得、反应条件温和,无需高温加热,大大降低了生产成本,简化了生产工艺,有利于工业生产,与现有合成硝基烯烃的工艺相比更加经济廉价。
2)本发明采用硝酸盐直接作为烯烃硝化的硝基源,相比现有技术中的氮氧化物、无机胺类、亚硝酸盐类化合物,无需外加氧化剂如TEMPO、I2等,具有低成本、安全、环保等优点。
3)本发明利用常见铜盐作为烯烃类化合物的硝化反应的催化剂,相比现有技术中使用的催化剂铁卟啉,廉价易得,大大优化了生产工艺,降低生产成本。
4)本发明在0-30℃下实现烯烃类化合物的直接硝化,相比现有技术中的高温或使用微波等,更节约能源,环境友好。
5)本发明技术方案具有广阔的底物适用性,特别是对杂环烯烃一步反应即可达到中等到良好的硝化收率。
6)本发明的技术方案实现了硝基烯烃衍生物的一锅法合成,不仅产率高,而且目标产物易于分离提纯,简化了工艺步骤,有利于工业化生产。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下实施例中采用的所有溶剂、铜盐、硝酸盐、三甲基氯硅烷、三乙胺和烯烃都是从商业来源购买。
所有目标化合物采用NMR(1H)光谱数据表征。
若未特殊说明,所有硝化反应在10mL的斯奈克管里进行。
以下实施例中的目标产物的收率均为分离产率,按目标产物为E式结构的目标产物进行计算,反应的E式选择性几乎为100%。
实施例1
按以下反应方程式反应:
Figure BDA0002026060520000081
烯烃:
Figure BDA0002026060520000082
目标产物:
Figure BDA0002026060520000083
具体操作步骤为:将烯烃(100mmol),TMSCl(4当量,400mmol),硝酸胍(2.2当量,220mmol),五水硫酸铜(0.1当量,10mmol),三乙胺(2当量,200mmol)和乙腈(400mL)加入到1000mL的斯奈克瓶中。首先将烯烃、五水硫酸铜、硝酸胍加入斯奈克瓶中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌24小时,并通过TLC监测。反应完成后,过滤,然后滤液中加入三乙胺,搅拌30min后,将混合物用水洗涤,并用DCM萃取3次,然后用旋转蒸发器移除溶剂,所得即为硝基苯乙烯。
Yellow solid:Yield=92%,1H NMR(400MHz,Chloroform-d)δ8.01(d,J=13.7Hz,1H),7.59(d,J=13.7Hz,1H),7.57-7.53(m,2H),7.53-7.42(m,3H).
实施例2-21均按以下反应方程式反应:
Figure BDA0002026060520000084
具体操作步骤为:将烯烃(0.5mmol),TMSCl(4当量,2mmol),硝酸胍(2.2当量,1.1mmol),五水硫酸铜(0.1当量,0.05mmol),三乙胺(2当量,1mmol)和乙腈(3mL)加入到10mL的斯奈克管中。首先将烯烃、五水硫酸铜、硝酸胍加入斯奈克管中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌8-36小时,并通过TLC监测。反应完成后,加入三乙胺,将混合物搅拌25分子后,用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
实施例2
烯烃:
Figure BDA0002026060520000091
目标产物:
Figure BDA0002026060520000092
Yellow solid:Yield=99%,1H NMR(400MHz,Chloroform-d)δ8.17(d,J=13.7Hz,1H),8.03(d,J=1.8Hz,1H),7.89(ddd,J=9.0,7.2,3.0Hz,3H),7.71(d,J=13.6Hz,1H),7.65-7.50(m,3H).
实施例3
烯烃:
Figure BDA0002026060520000093
目标产物:
Figure BDA0002026060520000094
Yellow solid:Yield=84%,1H NMR(400MHz,Chloroform-d)δ7.99(d,J=13.7Hz,1H),7.57(d,J=13.7Hz,1H),7.45(d,J=8.2Hz,2H),7.29-7.24(m,2H),2.41(s,3H).
实施例4
烯烃:
Figure BDA0002026060520000095
目标产物:
Figure BDA0002026060520000096
Yellow solid:Yield=72%,1H NMR(400MHz,Chloroform-d)δ8.35-8.29(m,2H),8.04(d,J=13.8Hz,1H),7.76-7.70(m,2H),7.64(d,J=13.8Hz,1H).
实施例5
烯烃:
Figure BDA0002026060520000097
目标产物:
Figure BDA0002026060520000098
Yellow solid:Yield=87%,1H NMR(400MHz,Chloroform-d)δ7.99(d,J=13.7Hz,1H),7.79-7.73(m,2H),7.69-7.63(m,2H),7.61(d,J=13.7Hz,1H).
实施例6
烯烃:
Figure BDA0002026060520000101
目标产物:
Figure BDA0002026060520000102
Yellow solid:Yield=82%,1H NMR(400MHz,Chloroform-d)δ8.11(d,J=8.3Hz,2H),8.02(d,J=13.7Hz,1H),7.67-7.58(m,3H),3.95(s,3H).
实施例7
烯烃:
Figure BDA0002026060520000103
目标产物:
Figure BDA0002026060520000104
Yellow solid;79%,1H NMR(400MHz,Chloroform-d)δ7.98(d,J=13.7Hz,1H),7.60-7.48(m,3H),7.15(t,J=8.4Hz,2H).
实施例8
烯烃:
Figure BDA0002026060520000105
目标产物:
Figure BDA0002026060520000106
Yellow solid:Yield=89%;1H NMR(400MHz,Chloroform-d)δ7.97(d,J=13.7Hz,1H),7.56(d,J=13.7Hz,1H),7.49(dt,2H),7.44(dt,2H).
实施例9
烯烃:
Figure BDA0002026060520000107
目标产物:
Figure BDA0002026060520000108
Yellow solid:Yield=98%;1H NMR(400MHz,Chloroform-d)δ7.95(d,J=13.7Hz,1H),7.65-7.54(m,3H),7.45-7.39(m,2H).
实施例10
烯烃:
Figure BDA0002026060520000109
目标产物:
Figure BDA00020260605200001010
Yellow solid:Yield=94%;1H NMR(400MHz,Chloroform-d)δ7.99(d,J=13.7Hz,1H),7.60-7.52(m,3H),7.23-7.18(m,2H),2.33(s,3H).
实施例11
烯烃:
Figure BDA0002026060520000111
目标产物:
Figure BDA0002026060520000112
Yellow solid:Yield=53%;1H NMR(400MHz,Chloroform-d)δ7.99(d,J=13.7Hz,1H),7.59(d,J=13.7Hz,1H),7.50(q,J=8.4Hz,4H),6.74(dd,J=17.6,10.9Hz,1H),5.88(d,J=17.6Hz,1H),5.40(d,J=10.9Hz,1H).
实施例12
烯烃:
Figure BDA0002026060520000113
目标产物:
Figure BDA0002026060520000114
Yellow solid:Yield=92%;1H NMR(400MHz,Chloroform-d)δ8.41(d,J=13.7Hz,1H),7.64-7.56(m,2H),7.53-7.47(m,1H),7.43(ddd,J=8.1,7.4,1.7Hz,1H),7.34(dddd,J=7.8,7.3,1.3,0.6Hz,1H).
实施例13
烯烃:
Figure BDA0002026060520000115
目标产物:
Figure BDA0002026060520000116
Yellow solid:Yield=90%;1H NMR(400MHz,Chloroform-d)δ8.40(d,J=13.6Hz,1H),7.69(dd,J=7.8,1.6Hz,1H),7.58(dd,J=7.6,1.9Hz,1H),7.54(d,J=13.7Hz,1H),7.41-7.31(m,2H).
实施例14
烯烃:
Figure BDA0002026060520000117
目标产物:
Figure BDA0002026060520000118
Yellow solid:Yield=70%;1H NMR(400MHz,Chloroform-d)δ8.15(d,J=13.6Hz,1H),7.88(d,J=13.6Hz,1H),7.46(t,J=7.3Hz,2H),7.02(t,J=7.5Hz,1H),6.98(d,J=8.3Hz,1H),3.96(s,3H).
实施例15
烯烃:
Figure BDA0002026060520000119
目标产物:
Figure BDA00020260605200001110
Yellow solid:Yield=46%1H NMR(400MHz,Chloroform-d)δ8.01(d,J=13.7Hz,1H),7.60(d,J=13.6Hz,1H),7.54(dd,J=5.9,1.8Hz,2H),7.47-7.39(m,2H),6.73(dd,J=17.6,10.9Hz,1H),5.82(d,J=17.5Hz,1H),5.37(d,J=10.9Hz,1H).
实施例16
烯烃:
Figure BDA0002026060520000121
目标产物:
Figure BDA0002026060520000122
Yellow solid:Yield=92%,1H NMR(400MHz,Chloroform-d)δ7.98(d,J=13.7Hz,1H),7.83(d,J=1.7Hz,1H),7.78(dd,J=7.8,1.7Hz,2H),7.66-7.55(m,2H).
实施例17
烯烃:
Figure BDA0002026060520000123
目标产物:
Figure BDA0002026060520000124
Yellow solid:Yield=84%,1H NMR(400MHz,Chloroform-d)δ7.94(d,J=13.7Hz,1H),7.59-7.52(m,2H),7.50-7.37(m,3H).
实施例18
烯烃:
Figure BDA0002026060520000125
目标产物:
Figure BDA0002026060520000126
Yellow solid:Yield=74%,1H NMR(400MHz,Chloroform-d)δ8.26(d,J=14.0Hz,1H),7.85(d,J=14.0Hz,1H),7.49-7.36(m,2H),7.31(dd,J=8.8,7.4Hz,1H).
实施例19
烯烃:
Figure BDA0002026060520000127
目标产物:
Figure BDA0002026060520000128
Yellow solid:Yield=88%,1H NMR(400MHz,Chloroform-d)δ8.28(d,J=13.9Hz,1H),7.32(d,J=13.9Hz,1H),6.95(s,2H),2.39(s,6H),2.31(s,3H).
实施例20
烯烃:
Figure BDA0002026060520000131
目标产物:
Figure BDA0002026060520000132
Yellow solid:Yield=97%,1H NMR(400MHz,Chloroform-d)δ7.50-7.40(m,3H),7.44-7.25(m,3H),7.28-7.19(m,1H).
实施例21
烯烃:
Figure BDA0002026060520000133
目标产物:
Figure BDA0002026060520000134
White Yellow solid:Yield=99%;1H NMR(400MHz,Chloroform-d)δ7.98(s,1H),7.59(d,J=13.7Hz,1H),7.55(d,J=8.3Hz,2H),7.48(d,J=8.3Hz,2H),4.61(s,2H).
实施例22-29均按以下反应方程式反应:
Figure BDA0002026060520000135
具体操作步骤为:将烯烃(0.5mmol),TMSCl(4当量,2mmol,),硝酸胍(2.2当量,1.1mmol,134mg),五水硫酸铜(0.1当量,0.05mmol,12.6mg),和乙腈(3mL)加入到10mL的斯奈克管中。首先将烯烃、五水硫酸铜、硝酸胍加入斯奈克管中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌8-36小时,并通过TLC监测。反应完成后,将混合物用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
实施例22
烯烃:
Figure BDA0002026060520000136
目标产物:
Figure BDA0002026060520000137
Yellow solid:Yield=79%,1H NMR(400MHz,Chloroform-d)δ8.71(d,J=5.3Hz,1H),8.05(d,J=13.2Hz,1H),7.95(d,J=13.2Hz,1H),7.81(td,J=7.7,1.8Hz,1H),7.50(d,J=7.7Hz,1H),7.40(dd,J=7.7,4.8Hz,1H).
实施例23
烯烃:
Figure BDA0002026060520000141
目标产物:
Figure BDA0002026060520000142
Yellow solid:Yield=47%,1H NMR(400MHz,Chloroform-d)δ9.30(s,1H),8.94(s,2H),7.96(d,J=13.9Hz,1H),7.68(d,J=13.9Hz,1H).
实施例24
烯烃:
Figure BDA0002026060520000143
目标产物:
Figure BDA0002026060520000144
Yellow solid:Yield=42%,1H NMR(400MHz,Chloroform-d)δ9.03(d,J=3.6Hz,1H),8.76(dd,J=13.3,1.7Hz,1H),8.50(d,J=8.6Hz,1H),8.28(d,J=8.4Hz,1H),7.88-7.83(m,1H),7.82-7.75(m,1H),7.68(dd,J=13.4,1.7Hz,1H),7.58(ddd,J=8.7,4.1,1.7Hz,1H).
实施例25
烯烃:
Figure BDA0002026060520000145
目标产物:
Figure BDA0002026060520000146
Yellow solid:Yield=62%,1H NMR(400MHz,Chloroform-d)δ9.36(s,1H),8.74(d,J=13.5Hz,2H),8.16(d,J=8.2Hz,1H),8.00(d,J=7.3Hz,1H),7.94(d,J=5.9Hz,1H),7.75-7.63(m,2H),0.07(s,2H).
实施例26
烯烃:
Figure BDA0002026060520000147
目标产物:
Figure BDA0002026060520000148
Yellow solid:Yield=90%,1H NMR(400MHz,Chloroform-d)δ9.07(s,1H),8.34(d,J=2.2Hz,1H),8.21-8.12(m,2H),7.90(dd,J=8.2,1.4Hz,1H),7.84(ddd,J=8.4,6.9,1.4Hz,1H),7.79(d,J=13.8Hz,1H),7.65(ddd,J=8.1,6.9,1.1Hz,1H).
实施例27
烯烃:
Figure BDA0002026060520000151
目标产物:
Figure BDA0002026060520000152
Yellow solid:Yield=51%,1H NMR(400MHz,Chloroform-d)δ8.53(d,J=13.6Hz,1H),8.03(d,J=8.0Hz,1H),7.75-7.67(m,2H),7.67-7.61(m,2H),7.42(t,J=7.8Hz,1H).
实施例28
烯烃:
Figure BDA0002026060520000153
目标产物:
Figure BDA0002026060520000154
Yellow solid:Yield=50%,1H NMR(400MHz,Chloroform-d)δ8.31(d,J=13.7Hz,1H),8.03-7.89(m,3H),7.77(d,J=13.7Hz,1H),7.59-7.44(m,2H).
实施例29
烯烃:
Figure BDA0002026060520000155
目标产物:
Figure BDA0002026060520000156
Yellow solid:Yield=77%,1H NMR(400MHz,Chloroform-d)δ7.96(d,J=13.6Hz,1H),7.56(d,J=13.7Hz,1H),7.35(q,J=8.2Hz,2H),7.28(s,1H),3.02-2.89(m,2H),2.52(dd,J=18.8,8.6Hz,1H),2.43(dd,J=11.1,4.8Hz,1H),2.34(td,J=10.6,4.0Hz,1H),2.22-2.03(m,3H),2.02-1.96(m,1H),1.71-1.42(m,6H),0.92(s,3H).
对比实验组1:
对照实验组例1~10均按以下方程式反应:
Figure BDA0002026060520000161
具体操作步骤为:将烯烃(0.5mmol),TMSCl(x当量),硝基源(2.2当量,1.1mmol),Cu(OTf)2(0.05当量,0.025mmol),三乙胺(2当量,1mmol)和乙腈(3mL)加入到10mL的斯奈克管中。首先将烯烃、Cu(OTf)2、硝基源加入斯奈克管中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌2-72小时,并通过TLC监测。反应完成后,加入三乙胺,继续搅拌25分钟,然后将混合物用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
表1不同TMSCl用量以及不同硝基源对应的目标产物的收率
Figure BDA0002026060520000162
a:without Cu(OTf)2
b:GN=guanidine nitrate
从表1可以看出,没有Cu(OTf)2,本发明的硝化反应不进行(Entry 1);使用不同的硝基源目标产物的收率大不相同,其中无机硝酸盐中硝酸银、硝酸钠、硝酸锂都能很好的进行硝化反应;亚硝酸钠和亚硝酸银也能使本发明的硝化反应进行,但收率较低。当TMSCl使用量为4当量时,使用硝酸银作为硝基源在2小时便能达到80%的收率(Entry 3);用有机硝酸盐四甲基硝酸铵和四丁基硝酸铵,该硝化反应搅拌3天也几乎不发生;而使用硝酸胍作为硝基源时,在4当量的TMSCl和Cu(OTf)2作用下,12小时便可以拿到92%的目标产物(Entry6)。综合时间和经济成本,硝酸胍作为硝酸盐其优势远远大于硝酸银、硝酸锂等此类无机硝酸盐。
对比实验组2:
对照试验组例11-19均按以下方程式反应:
Figure BDA0002026060520000171
具体操作步骤为:将烯烃(0.5mmol),TMSX或RCOCl(2当量,1mmol),GN(2.2当量,1.1mmol),Cu(OTf)2(0.05当量,0.025mmol),三乙胺(2当量,1mmol)和乙腈(3mL)加入到10mL的斯奈克管中。首先将烯烃、Cu(OTf)2、硝基源加入斯奈克管中,然后加入乙腈,最后加入TMSX或RCOCl。将反应置于室温下均匀搅拌8-72小时,并通过TLC监测。反应完成后,加入三乙胺,继续搅拌25分钟,然后将混合物用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
表2不同TMSX和不同酰氯对应的目标产物的收率
Figure BDA0002026060520000172
从表2可以看出,将TMSCl换成其他TMSX后,要么不反应,要么体系杂乱;但当用酰氯替换TMSCl后,AcCl、PivCl和MeOCOCl都能反应,其中AcCl体系反应24小时,也能得到80%的目标产物,但效果不如TMSCl好。由此可见,本发明技术方案优选TMSCl。
对比实验组3:
对照实验组例20~31均按以下方程式反应:
Figure BDA0002026060520000181
具体操作步骤为:将烯烃(0.5mmol),TMSCl(4当量,2mmol,),硝酸胍(2.2当量,1.1mmol),催化剂(0.1当量,0.05mmol),和乙腈(3mL)加入到10mL的斯奈克管中。首先将烯烃、催化剂、硝酸胍加入斯奈克管中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌5-72小时,并通过TLC监测。反应完成后,将混合物用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
表3不同催化剂对应的目标产物的收率
Figure BDA0002026060520000182
从表3可以看出,在标准条件下换用不同的金属催化剂,除了铜盐,其他金属盐(例如镁盐、铁盐、锰盐等)反应72小时几乎没有目标产物,而铜盐无论是二价铜还是亚铜盐,硝化效果都相差不大,都有90%以上的目标产物收率,即使是铜粉,也有90%的产率,说明铜是本发明技术方案中的有效催化物种。考虑成本问题,故选用五水硫酸铜作为本发明技术方案条件筛选的催化剂。
对比实验组4:
对照实验组例33~45均按以下方程式反应:
Figure BDA0002026060520000191
具体操作步骤为:将烯烃(0.5mmol),TMSCl(4当量,2mmol),硝酸胍(2.2当量,1.1mmol),五水硫酸铜(0.05当量,0.05mmol),和溶剂(3mL)加入到10mL的斯奈克管中。首先将烯烃、五水硫酸铜、硝酸胍加入斯奈克管中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌24-72小时,并通过TLC监测。反应完成后,加入Et3N搅拌25分钟,然后将混合物用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
表4不同溶剂对应目标产物的收率
Figure BDA0002026060520000192
从表4可以看出,除了乙腈外,DCM、DCE、THF、Tolune、EtOH、AcOH和乙腈:H2O(50:1)等作溶剂时,本发明的硝化反应几乎不发生。而用乙腈和AcOH、乙腈和TFA、乙腈和DMSO作为混合溶剂,该硝化反应虽然能够进行,但是目标产物的收率都不如用乙腈作溶剂时的收率高,故本发明技术方案的最优溶剂是乙腈。
对比实验组5:
对照实验组例46~57均按以下方程式反应:
Figure BDA0002026060520000201
具体操作步骤为:将烯烃(0.5mmol),TMSCl(x当量),硝酸胍(y当量),五水硫酸铜(z当量),和溶剂(3mL)加入到10mL的斯奈克管中。首先将烯烃、五水硫酸铜、硝酸胍加入斯奈克管中,然后加入乙腈,最后加入TMSCl。将反应置于室温下均匀搅拌8-120小时,并通过TLC监测。反应完成后,加入碱搅拌25分钟,然后将混合物用旋转蒸发器移除溶剂,用石油醚(PE)/乙酸乙酯(EA)作为洗脱剂,采用硅胶(200目筛)进行柱色谱纯化。
表5各类试剂的用量和不同碱对应的目标产物的收率
Figure BDA0002026060520000202
从表5可以看出,TMSCl的用量为烯烃的2-6当量(Entry 47-49),本发明的硝化反应可以顺利进行,其中4当量到时候硝化效果最好,增加或减少TMSCl的当量目标产物的收率都会下降。硝酸胍的用量为1.2-2.2当量的时候(Entry 50-52),目标产物的收率随着硝酸胍用量的增加而增加,其中,2.2当量的硝酸胍硝化效率最高,产率最好。催化剂CuSO4·5H2O的用量降低到0.01当量的时候,本发明技术方案所得到的目标产物收率仍有91%,仅仅是反应时间增长。当把Et3N换成其他碱,如Na2CO3、K3PO4等,虽然也能得到可观的目标产物,但整体上目标产物的收率不如用Et3N的时候高。综上,本发明技术方案的试剂最优用量为:TMSCl(4当量)、硝酸胍(2.2当量)、CuSO4·5H2O(0.1当量)。

Claims (6)

1.一种以硝酸盐为硝基源的硝基烯烃衍生物上的制备方法,其特征在于,该方法采用式1结构的烯烃类化合物在铜盐、硝酸盐、三甲基氯硅烷(TMSCl)和碱的乙腈体系中两步一锅反应,生成式2结构的硝基烯烃衍生物;
Figure FDA0003500242250000011
其中,R1或R2为苯基,一取代苯基、二取代苯基、三取代苯基或萘基或吡啶基、喹啉基、异喹啉基、苯并噻吩基、苯并呋喃基或咔唑基;R3为H;
所述硝酸盐为硝酸胍、硝酸锂、硝酸钠、硝酸锂或硝酸银;所述铜盐包括氯化铜、三水合硝酸铜、五水硫酸铜、三氟甲烷磺酸铜或醋酸铜的一种或多种。
2.根据权利要求1所述的一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法,其特征在于,包括以下步骤:
(1)在氮气氛下,将式1结构的烯烃类化合物、硝酸盐、三甲基氯硅烷(TMSCl)和铜盐在乙腈中,在0-30℃下搅拌12-36h;
(2)通过TLC点板监测反应程度,待烯烃类化合物消耗完全后,加入碱,搅拌20-30min,然后将混合物用旋转蒸发器移除溶剂后,通过硅胶柱纯化,得到硝基烯烃衍生物。
3.根据权利要求1或2所述的一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法,其特征在于,所述烯烃类化合物与硝酸盐的物质的量之比为1:1.2-2.2;所述烯烃类化合物与TMSCl的物质的量之比为1:2-6;所述烯烃类化合物与铜盐的物质的量之比为1:0.01-0.1;所述烯烃类化合物与碱的物质的量之比为1:1.5-3。
4.根据权利要求1所述的一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法,其特征在于,所述取代苯基具有式3结构:
Figure FDA0003500242250000012
其中,R4和R5独立选自氢、烷基、烷氧基、乙酰氧基、酯基、卤素、硝基、氰基或烯基。
5.根据权利要求1或4的一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法,其特征在于:所述取代苯基为对甲苯基、对硝基苯基、对氰基苯基、对甲氧甲酰苯基、对氟苯基、对氯苯基、对溴苯基、对乙酰氧基苯基、对乙烯基苯基、邻氯苯基、邻溴苯基、邻甲氧基苯基、间乙烯基苯基、间氰基苯基、间氯苯基、2,6-二氯苯基或2,4,6-三甲基苯基的一种或多种。
6.根据权利要求1或2所述的一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法,其特征在于,所述碱为三乙胺、碳酸钠、碳酸钾、磷酸钾、氢氧化钠或氢氧化钾。
CN201910294607.8A 2019-04-12 2019-04-12 一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法 Active CN110003011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910294607.8A CN110003011B (zh) 2019-04-12 2019-04-12 一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910294607.8A CN110003011B (zh) 2019-04-12 2019-04-12 一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法

Publications (2)

Publication Number Publication Date
CN110003011A CN110003011A (zh) 2019-07-12
CN110003011B true CN110003011B (zh) 2022-06-07

Family

ID=67171459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910294607.8A Active CN110003011B (zh) 2019-04-12 2019-04-12 一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法

Country Status (1)

Country Link
CN (1) CN110003011B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590557B (zh) * 2019-08-28 2022-07-05 上海师范大学 一种芳基酚类或芳基醚类衍生物的硝化方法
CN111704548B (zh) * 2020-05-20 2023-04-25 郑州师范学院 芳基乙烷与硝酸盐制备硝基烯烃的方法
CN113121357B (zh) * 2021-03-26 2023-05-16 上海大学 2-硝基乙烯基环丙烷类化合物及其合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174728A (ja) * 1988-09-08 1990-07-06 Kokusan Kagaku Kk ニトロ化剤
CN106632200A (zh) * 2016-09-30 2017-05-10 兰州大学 一种α‑硝基环烷酮的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174728A (ja) * 1988-09-08 1990-07-06 Kokusan Kagaku Kk ニトロ化剤
CN106632200A (zh) * 2016-09-30 2017-05-10 兰州大学 一种α‑硝基环烷酮的合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
B. Gopal Reddy etal.Trimethylsilylnitrate-Trimethylsilyl Azide: A Novel Reagent System for the Synthesis of 2-Deoxyglycosyl Azides from Glycals. Application in the Synthesis of 2-Deoxy-â-N-glycopeptides.《J. Org. Chem.》.2004,全文. *
ipso‐Nitrosation of Arylboronic Acids with Chlorotrimethylsilane and Sodium Nitrite;G. K. Surya Prakash etal;《ChemInform》;20140826;全文 *
Product Class 1:Nitroalkanes;Aitken, R. A.etal;《Science of Synthesis》;20091231;全文 *
Trimethylsilyl and trimethylgermyl nitrate;Drake, John E.etal;《 Journal of Inorganic and Nuclear Chemistry》;19781231;全文 *
芳族化合物与硝酸钠/三甲基氯硅烷的硝化反应;庄武;《中国医药工业杂志》;19941231;全文 *

Also Published As

Publication number Publication date
CN110003011A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN110003011B (zh) 一种以硝酸盐为硝基源的硝基烯烃衍生物的制备方法
Oi et al. Nitrogen-directed ortho-arylation and-heteroarylation of aromatic rings catalyzed by ruthenium complexes
CN110590557B (zh) 一种芳基酚类或芳基醚类衍生物的硝化方法
CN105175328B (zh) 一种利用芳香胺、芳香醛、酮合成喹啉衍生物的方法
CN109232363B (zh) 一种3-硒氰基吲哚化合物的合成方法
CN105801575A (zh) 一种咪唑并[1,2-a]吡啶的合成方法
CN114380741B (zh) 一种2-甲基喹啉类化合物的4号位烷基化衍生物的制备方法
CN103130810B (zh) 一种吡唑并[1,5-c]喹唑啉类化合物的合成方法
CN109942433B (zh) 一种3’,4’,5’-三氟-2-氨基联苯的化学合成方法
CN109776407B (zh) 一种2-甲基-4-羟甲基喹啉及其衍生物的制备方法
Ma et al. Cu (OAc) 2/malononitrile/water: a simple reaction system for synthesis of aromatic nitriles from aldoximes
CN107032939B (zh) α,β-不饱和硝基烯烃衍生物的合成方法
CN111018795B (zh) 一种碱性条件下合成喹喔啉-3-酮的方法
Wu et al. Intramolecular C N Bond Formation under Metal‐free Conditions: Synthesis of Indolizines
CN107353211A (zh) 烯胺化物的合成方法及芳香醛类化合物的合成方法
CN102718694B (zh) 3-氰基取代吲哚化合物及其合成方法
Cai et al. Promotion Mechanism of H2O for Stereoselectivity in Pd (II)-catalyzed C―H Arylation of Diarylphosphinamides with Arylboronic Acids
CN111499539B (zh) 一种以芳基羧酸为原料的芳基氰化物合成方法
CN109867694A (zh) 一种氧导向的7-炔基吲哚类化合物的合成方法
CN104910090B (zh) 二氢异噁唑类化合物及其合成方法
Younis et al. Nickel-Catalyzed Double Carbonylation of Halodienes: A Possible New Mechanism for the Double Carbonylation Reaction
CN110054589B (zh) 一种杂原子导向合成苯并喹啉酯类衍生物的合成方法
CN115806502B (zh) 一种α-酰胺酮衍生物及其制备方法和应用
CN110294686B (zh) α-酮酰胺的绿色制备方法
CN114031577B (zh) 一种2h-苯并噻唑c2位芳基酰基化的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant