CN109989086B - 一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法 - Google Patents

一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法 Download PDF

Info

Publication number
CN109989086B
CN109989086B CN201910315473.3A CN201910315473A CN109989086B CN 109989086 B CN109989086 B CN 109989086B CN 201910315473 A CN201910315473 A CN 201910315473A CN 109989086 B CN109989086 B CN 109989086B
Authority
CN
China
Prior art keywords
photonic crystal
aluminum sheet
structural color
oxidation
saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910315473.3A
Other languages
English (en)
Other versions
CN109989086A (zh
Inventor
徐芹
彭琪
郝圣圳
孙春心
兰天
王拥国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201910315473.3A priority Critical patent/CN109989086B/zh
Publication of CN109989086A publication Critical patent/CN109989086A/zh
Application granted granted Critical
Publication of CN109989086B publication Critical patent/CN109989086B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明为一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法。该方法包括以下步骤:高纯铝片经过退火、抛光、洗涤后作为阳极,以石墨为阴极,浸入到草酸溶液中,采用恒电位正弦脉冲进行第一次阳极氧化制备光子晶体。洗涤后放入草酸溶液中,使用直流稳压电源提供的大电压进行第二次阳极氧化,得到具有高饱和度结构色的阳极氧化铝光子晶体模板。本发明无需去除铝基底,也无需在氧化铝薄膜中沉积其它材料就能观察到饱和度较高的结构色,进一步拓展了光子晶体结构色在彩显、防伪、装饰等领域的应用。

Description

一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备 方法
技术领域
本发明涉及一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法,属于光学技术和电化学技术领域。
背景技术
近年来,随着人们环保意识的逐渐提高,色素、染料等在生产和应用过程中带来的污染问题越来越引起人们的关注。相比于色素的高污染,一种无污染的鲜艳色彩引起了人们极大的兴趣,比如:自然界中蝴蝶的翅膀及昆虫体壁上出现的颜色。这些鲜艳色彩不同于色素,称为结构色,因具有无污染、虹彩效应、并且永不褪色的特征激起人们的研究兴趣。随着对光子晶体的深入研究,人们认识到自然界中存在的这些具有结构色的物体就是天然的光子晶体。而光子晶体结构色的产生就是因为光子晶体中存在光子禁带,当光子晶体的范围在可见光范围内,特定频率的可见光不能透过该晶体。这些不能传播的光被光子晶体反射,在光子晶体表面相干衍射后被人眼感知就形成了高饱和度结构色。由于铝基对光有很高的反射率,光子带隙以外的光到达铝基后会被反射回来,导致实验室中制备的光子晶体结构色饱和度较低,虽可以通过去除铝基观察到较高饱和度的结构色,但去除铝基后的氧化铝光子晶体薄膜易碎,这使光子晶体薄膜的实际应用性较差。且通过沉积其它材料获得高饱和度结构色的操作方法复杂,成本较高。因此,寻找一种制备简单、低成本且能够在铝基上直接显示出高饱和度结构色的方法对于光子晶体结构色的实际应用具有极为重要的意义。
发明内容
本发明的目的在于提供一种在不去除铝基的情况下也能显示出高饱和度结构色的氧化铝光子晶体薄膜的制备方法。本发明在氧化铝光子晶体的基础上,使用0.25~0.35mol/L的草酸溶液进行第二次阳极氧化。在第二次阳极氧化过程中,将草酸溶液中的阳极氧化电压提高到150V~250V,采用大电压进行剧烈的阳极氧化,即可制备出能够在铝基上显示高饱和度结构色的氧化铝光子晶体薄膜。本发明无需去除铝基底,也无需在氧化铝光子晶体薄膜中沉积其它材料就能观察到饱和度较高的结构色。这不仅解决了以往技术操作复杂、制作成本较高的问题,还可以进一步拓展光子晶体结构色在彩显、防伪、装饰等领域的应用。
本发明的技术方案如下:
一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法,包括以下步骤:
(1)高纯铝片置于管式电炉中400~450℃下退火2~3h(采用氩气做保护气体);
(2)将退火后的铝片放入丙酮溶液中超声波清洗,再使用高氯酸与无水乙醇体积比为1:4的抛光液进行抛光:以铝片为阳极,碳板为阴极,直流1~1.05A电流下电解抛光2~3分钟后,用去离子水清洗表面抛光液,然后在超声波震荡器里分别用丙酮和无水乙醇清洗,晾干;
(3)以石墨为阴极,上步得到的处理后的铝片为阳极,浸入到浓度为0.25~0.35mol/L的草酸溶液中,采用恒电位正弦脉冲进行第一次阳极氧化制备光子晶体;正弦脉冲的最大值与最小值分别为45V和5V,脉冲周期为200~300S,氧化时间为10~12h,反应温度为20℃;
(4)将步骤(3)中被氧化后铝片用去离子水冲洗并晾干;随后放入0.25~0.35mol/L的草酸溶液中,使用直流稳压电源以石墨为阴极,铝片为阳极进行第二次阳极氧化;第二次阳极氧化包括增压氧化阶段和恒压氧化阶段;在增压氧化阶段,将氧化电压在10~13S内从25V均匀增加到150~250V,然后保持恒定电压80~140S,得到具有高饱和度结构色的阳极氧化铝光子晶体薄膜;
以上所述的草酸电解液是质量百分浓度为99.5%的草酸溶于去离子水中配制而成;
所述的高纯度铝片的纯度为99.999%。
本发明取得的有益效果如下:
该发明提出了一种能够在铝基上直接显色的多孔氧化铝光子晶体薄膜的制备方法。目前通常通过去除氧化铝光子晶体的铝基或者在阳极氧化铝底部沉积黑色材料这两种方法来获得高饱和度结构色,但去除铝基后的氧化铝薄膜机械强度差且易碎,而在阳极氧化铝底部沉积材料的操作较复杂,制作成本高。采用该发明中提出的方法,即在光子晶体的基础上使用大电压进行恒压阳极氧化制备的光子晶体模板,在不去除铝基的情况下也具有表现出高饱和度结构色的能力,不需沉积其他材料且具有抗易碎特性,制备过程简单,易于操作,制作成本较低,用时较短。以图3为例,采用150V恒压氧化110S即可制备出在铝基上直接显示高饱和度结构色的多孔氧化铝光子晶体薄膜。
附图说明
图1为根据本发明实施例1的未显示高饱和度结构色的多孔阳极氧化铝光子晶体薄膜在自然光下的光学照片。
图2为根据本发明实施例2的显示黄色的具有高饱和度结构色的多孔阳极氧化铝光子晶体薄膜在自然光下的光学照片。
图3为根据本发明实施例3的显示绿色的具有高饱和度结构色的多孔阳极氧化铝光子晶体薄膜在自然光下的光学照片。
图4为根据本发明实施例4的显示绿色的具有高饱和度结构色的环状多孔阳极氧化铝光子晶体薄膜在自然光下的光学照片。
图5为根据本发明实施例1中多孔阳极氧化铝光子晶体的SEM扫描图片(已去除多孔阳极氧化铝模板)。
图6为根据本发明实施例2中多孔阳极氧化铝光子晶体的SEM扫描图片(已去除多孔阳极氧化铝模板)。
图7为根据本发明实施例3中多孔阳极氧化铝光子晶体的SEM扫描图片(已去除多孔阳极氧化铝模板)。
图8为根据本发明实施例4中多孔阳极氧化铝光子晶体的SEM扫描图片(已去除多孔阳极氧化铝模板)。
图9为本发明实施例3中的V-T图。
图10为根据本发明实施例3中提出的实验方法,将光子晶体在150V高压下剧烈阳极氧化110S后的紫外反射图和光子晶体未进行剧烈阳极氧化前的紫外反射图。
具体实施方式
以下具体实施例用于说明本发明。需要指出,这些实施例仅用于说明本发明,而不是限制本发明的范围。
实施例1未显示高饱和度结构色的多孔阳极氧化铝光子晶体薄膜的制备
(1)高纯铝片(99.999%)置于管式炉中400℃下退火2.5h(采用氩气做保护气体),以消除铝片内部的应力;
(2)将退火后的铝片放入丙酮溶液中超声波清洗3min以除去表面油脂,再使用高氯酸与无水乙醇体积比为1:4的抛光液,以铝片为阳极,碳板为阴极,直流1A电流下进行电抛光2min;用去离子水清洗表面抛光液,然后在超声波震荡器里分别用丙酮和无水乙醇清洗抛光后的铝片,晾干;
(3)将处理后的铝片放入盛有400ml浓度为0.3mol/L的草酸溶液(所述的草酸溶液是质量百分浓度为99.5%的草酸溶于去离子水中配制而成,以下实施例同)中,以石墨为阴极,铝片为阳极进行第一次阳极氧化;第一次阳极氧化使用的恒电位正弦脉冲的最大值为45V,最小值为5V,脉冲周期为200S,氧化时间12h,反应温度为20℃;
(4)将步骤(3)中被氧化后的铝片用去离子水冲洗并晾干;随后放入0.3mol/L的草酸溶液中作为阳极,以石墨为阴极,使用直流源进行第二次阳极氧化;将氧化电压在10S内从25V均匀增加到150V后,150V恒压反应50S,反应温度为20℃,反应结束后取出铝片,用去离子水冲洗并晾干。
图1为步骤(4)中制备的多孔阳极氧化铝光子晶体薄膜在自然光下的光学图片,其在自然光下观察到的结构色并不明显,是因为高压阳极氧化时间短。
图5为步骤(4)中制备的多孔氧化铝光子晶体薄膜去除铝基后的扫描电镜照片,图中显示的是多孔阳极氧化铝光子晶体的内部结构图。图中可见,多孔阳极氧化铝光子晶体内部结构规整,直径约为40nm,长度约为1.5μm。
实施例2显示黄色的具有高饱和度结构色的多孔阳极氧化铝光子晶体薄膜的制备
步骤(1)-(3)同实施例1。
(4)将步骤(3)中被氧化后铝片用去离子水冲洗并晾干;随后放入0.3mol/L的草酸溶液中作为阳极,以石墨为阴极,使用直流源进行第二次阳极氧化;将氧化电压在10S内从25V均匀增加到150V后,150V恒压反应100S,取出铝片,用去离子水冲洗并晾干。
图2为步骤(4)中制备的多孔阳极氧化铝光子晶体薄膜在自然光下的光学图片,其在自然光下可以观察到饱和度高、色彩鲜艳且均匀的黄色。
图6为步骤(4)中制备的多孔氧化铝光子晶体薄膜去除铝基后的扫描电镜照片,图中显示的是多孔阳极氧化铝光子晶体的内部结构图。由图中可见,第二次阳极氧化产生的多孔阳极氧化铝光子晶体纳米管孔隙率较大的一层直径约为100nm,厚度为800nm,孔隙率较小的一层直径约为40nm,厚度为1.85μm,总长度约为2.65μm。
实施例3显示绿色的具有高饱和度结构色的多孔阳极氧化铝光子晶体薄膜的制备
步骤(1)-(3)同实施例1。
(4)将步骤(3)中被氧化后铝片用去离子水冲洗并晾干;随后放入0.3mol/L的草酸溶液中作为阳极,以石墨为阴极,使用直流源进行第二次阳极氧化;将氧化电压在10S内从25V均匀增加到150V后,150V恒压反应110S,取出铝片,用去离子水冲洗并晾干。
图3为步骤(4)中制备的多孔阳极氧化铝光子晶体薄膜,其在自然光下可以观察到饱和度高、色彩鲜艳且均匀的绿色。
图7为步骤(4)中制备的多孔氧化铝光子晶体薄膜去除铝基后的扫描电镜照片,图中显示的是多孔阳极氧化铝光子晶体的内部结构图。由图中可见,第二次阳极氧化产生的多孔阳极氧化铝光子晶体纳米管孔隙率较大的一层直径约为100nm,厚度为900nm,孔隙率较小的一层直径约为40nm,厚度为1.94μm,总长度约为2.84μm。
图10为步骤(4)中将光子晶体在150V高压下剧烈阳极氧化110S后的紫外反射图和光子晶体未进行剧烈阳极氧化前的紫外反射图。由图可看出剧烈氧化后的光子晶体和剧烈氧化前的光子晶体反射峰的位置分别在573nm和584nm的位置,反射峰的位置有10nm的蓝移。
实施例4显示绿色环状的具有高饱和度结构色的多孔阳极氧化铝光子晶体薄膜的制备
步骤(1)-(3)同实施例1。
(4)将步骤(3)中被氧化后铝片用去离子水冲洗并晾干;随后放入0.3mol/L的草酸溶液中作为阳极,以石墨为阴极,使用直流源进行第二次阳极氧化;将氧化电压在10S内从25V均匀增加到150V后,150V恒压反应140S,取出铝片,用去离子水冲洗并晾干。
图4为步骤(4)中制备的多孔阳极氧化铝光子晶体薄膜在自然光下的光学照片,其在自然光下可以观察到饱和度高、色彩鲜艳且均匀的绿色呈环状分布。
图8为步骤(4)中制备的多孔氧化铝光子晶体薄膜去除铝基后的扫描电镜照片,图中显示的是多孔阳极氧化铝光子晶体的内部结构图。图中显示的是多孔阳极氧化铝光子晶体的内部结构图。由图中可见,第二次阳极氧化产生的多孔阳极氧化铝光子晶体纳米管的直径约为110nm,总长度为3.7μm。
按本发明实施例1中的实验方法制备的阳极氧化铝光子晶体结构色的饱和度并不高,在实施例1的基础上分别延长高压氧化时间至100S、110S、140S即可得到实施例2、3、4中分别显示黄色、绿色和绿色环状的具有高饱和度结构色的多孔阳极氧化铝光子晶体薄膜。由于高压氧化时间不同,得到的结构色不同,因此,可以通过调整高压氧化时间去调控高饱和度结构色阳极氧化铝光子晶体薄膜的颜色。
本发明未尽事宜为公知技术。

Claims (2)

1.一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法,其特征为该方法由以下步骤组成:
(1)采用氩气做保护气体,将高纯铝片置于管式电炉中400~450 ℃下退火2~3 h;
(2)将退火后的铝片放入丙酮溶液中超声波清洗,再使用高氯酸与无水乙醇体积比为1:4的抛光液进行抛光:以高纯铝片为阳极,碳板为阴极,直流1 ~1.05 A电流下电解抛光2~3分钟后,用去离子水清洗表面抛光液,然后在超声波震荡器里分别用丙酮和无水乙醇清洗,晾干;
(3)以石墨为阴极,上步得到的处理后的高纯铝片为阳极,浸入到浓度为0.25~0.35mol/L的草酸溶液中,采用恒电位正弦脉冲进行第一次阳极氧化制备光子晶体;正弦脉冲的最大值与最小值分别为45 V和5 V,脉冲周期为200~300 s,氧化时间为10~12 h,反应温度为20 ℃;
(4)将步骤(3)中被氧化后高纯铝片用去离子水冲洗并晾干;随后放入0.25~0.35 mol/L的草酸溶液中,使用直流稳压电源以石墨为阴极,高纯铝片为阳极进行第二次阳极氧化;第二次阳极氧化包括增压氧化阶段和恒压氧化阶段;在增压氧化阶段,将氧化电压在10~13s内从25 V均匀增加到150 ~250 V,然后保持恒定电压100~140 s,得到具有高饱和度结构色的阳极氧化铝光子晶体薄膜。
2. 如权利要求1所述的具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法,其特征为所述的高纯铝片的纯度为99.999 %;草酸溶液是质量百分浓度为99.5 %的草酸溶于去离子水中配制而成。
CN201910315473.3A 2019-04-19 2019-04-19 一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法 Expired - Fee Related CN109989086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910315473.3A CN109989086B (zh) 2019-04-19 2019-04-19 一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910315473.3A CN109989086B (zh) 2019-04-19 2019-04-19 一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN109989086A CN109989086A (zh) 2019-07-09
CN109989086B true CN109989086B (zh) 2020-11-03

Family

ID=67134087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910315473.3A Expired - Fee Related CN109989086B (zh) 2019-04-19 2019-04-19 一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN109989086B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670105B (zh) * 2019-10-25 2020-08-18 西安交通大学 一种铝电解电容器用阳极箔的脉冲-直流交替混合阳极氧化方法
CN114293237B (zh) * 2022-01-04 2023-05-12 合肥工业大学 一种基于多孔氧化铝的一维拓扑光子晶体的制备方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752296A (zh) * 2005-06-08 2006-03-29 武汉大学 一种氧化铝纳米模板光子晶体的制备方法
CN101220510A (zh) * 2007-09-26 2008-07-16 武汉大学 一种高质量氧化铝光子晶体的制备方法
CN102041540A (zh) * 2011-01-13 2011-05-04 中国科学院苏州纳米技术与纳米仿生研究所 三维渐变孔阵列纳米结构阳极氧化铝模板及其制备方法
CN102162115A (zh) * 2011-01-20 2011-08-24 浙江大学 基于多孔氧化铝和单原子沉积技术的颜色调控方法
CN102181901A (zh) * 2011-04-02 2011-09-14 河北师范大学 一种颜色可调且具有高饱和度的氧化铝薄膜的制备方法
CN102251232A (zh) * 2011-07-18 2011-11-23 同济大学 一种在有序多孔氧化铝模板中制备银纳米线阵列的方法
CN102330137A (zh) * 2011-09-03 2012-01-25 广亚铝业有限公司 铝型材阳极氧化膜无机彩色电解着色工艺
CN102560650A (zh) * 2010-12-29 2012-07-11 中国科学院合肥物质科学研究院 多孔氧化铝光子晶体及其制备方法和用途
CN102644112A (zh) * 2011-02-17 2012-08-22 中国科学院合肥物质科学研究院 氧化铝光子晶体异质结及其制备方法
CN103243370A (zh) * 2013-04-25 2013-08-14 东华大学 一种两步阳极氧化法制备有序大孔阳极氧化铝薄膜的方法
CN103484940A (zh) * 2012-06-09 2014-01-01 中国科学院合肥物质科学研究院 阳极氧化铝光子晶体的制备方法和用途
CN105887154A (zh) * 2016-04-29 2016-08-24 南阳师范学院 一种氧化铝二维光子晶体制备方法
WO2017013607A1 (es) * 2015-07-21 2017-01-26 Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet) Método de coloración estructural de aluminio anodizado por formación de cristales fotónicos mediante pulsos de corriente
WO2017116291A1 (ru) * 2015-12-28 2017-07-06 Кирилл Сергеевич НАПОЛЬСКИЙ Способ формирования цветного декоративного покрытия с помощью анодирования
KR20170092209A (ko) * 2016-02-03 2017-08-11 주식회사 에이제이테크 알루미늄 및 알루미늄 합금의 아노다이징
CN107245748A (zh) * 2017-04-24 2017-10-13 南京邮电大学 一种铝合金的二次阳极氧化工艺
CN107435159A (zh) * 2016-05-02 2017-12-05 纳米及先进材料研发院有限公司 使用微弧氧化工艺的合金表面色彩处理
CN108274014A (zh) * 2018-01-23 2018-07-13 南开大学 一种具有多重分枝状的纳米合金及其制备方法
KR20180091382A (ko) * 2017-02-06 2018-08-16 이동희 지방산 염을 이용한 양극산화 처리된 금속 표면의 봉공제 조성물
EP3421646A1 (en) * 2017-06-29 2019-01-02 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Colouring method of aluminium alloy member

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752296A (zh) * 2005-06-08 2006-03-29 武汉大学 一种氧化铝纳米模板光子晶体的制备方法
CN101220510A (zh) * 2007-09-26 2008-07-16 武汉大学 一种高质量氧化铝光子晶体的制备方法
CN102560650A (zh) * 2010-12-29 2012-07-11 中国科学院合肥物质科学研究院 多孔氧化铝光子晶体及其制备方法和用途
CN102041540A (zh) * 2011-01-13 2011-05-04 中国科学院苏州纳米技术与纳米仿生研究所 三维渐变孔阵列纳米结构阳极氧化铝模板及其制备方法
CN102162115A (zh) * 2011-01-20 2011-08-24 浙江大学 基于多孔氧化铝和单原子沉积技术的颜色调控方法
CN102644112A (zh) * 2011-02-17 2012-08-22 中国科学院合肥物质科学研究院 氧化铝光子晶体异质结及其制备方法
CN102181901A (zh) * 2011-04-02 2011-09-14 河北师范大学 一种颜色可调且具有高饱和度的氧化铝薄膜的制备方法
CN102251232A (zh) * 2011-07-18 2011-11-23 同济大学 一种在有序多孔氧化铝模板中制备银纳米线阵列的方法
CN102330137A (zh) * 2011-09-03 2012-01-25 广亚铝业有限公司 铝型材阳极氧化膜无机彩色电解着色工艺
CN103484940A (zh) * 2012-06-09 2014-01-01 中国科学院合肥物质科学研究院 阳极氧化铝光子晶体的制备方法和用途
CN103243370A (zh) * 2013-04-25 2013-08-14 东华大学 一种两步阳极氧化法制备有序大孔阳极氧化铝薄膜的方法
WO2017013607A1 (es) * 2015-07-21 2017-01-26 Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet) Método de coloración estructural de aluminio anodizado por formación de cristales fotónicos mediante pulsos de corriente
WO2017116291A1 (ru) * 2015-12-28 2017-07-06 Кирилл Сергеевич НАПОЛЬСКИЙ Способ формирования цветного декоративного покрытия с помощью анодирования
KR20170092209A (ko) * 2016-02-03 2017-08-11 주식회사 에이제이테크 알루미늄 및 알루미늄 합금의 아노다이징
CN105887154A (zh) * 2016-04-29 2016-08-24 南阳师范学院 一种氧化铝二维光子晶体制备方法
CN107435159A (zh) * 2016-05-02 2017-12-05 纳米及先进材料研发院有限公司 使用微弧氧化工艺的合金表面色彩处理
KR20180091382A (ko) * 2017-02-06 2018-08-16 이동희 지방산 염을 이용한 양극산화 처리된 금속 표면의 봉공제 조성물
CN107245748A (zh) * 2017-04-24 2017-10-13 南京邮电大学 一种铝合金的二次阳极氧化工艺
EP3421646A1 (en) * 2017-06-29 2019-01-02 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Colouring method of aluminium alloy member
CN108274014A (zh) * 2018-01-23 2018-07-13 南开大学 一种具有多重分枝状的纳米合金及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"高压下多孔阳极氧化铝薄膜的制备与光学性能研究";任亚璇 等;《功能材料》;20170628;第48卷(第06期);第06109-06112页 *
" Fabrication of one- dimensional alumina photonic crystals with a narrow band gap and their application to high- sensitivity sensors";Peng Y 等;《Journal of Materials Chemistry C》;20130102;第1卷(第8期);第1659-1664页 *
"Structural coloring of aluminum";Liu Y S 等;《Electrochemistry Communications》;20111231;第13卷(第12期);第1336-1339页 *
"The effect of the voltage waveform on the microstructure and optical properties of porous anodic alumina photonic crystals";Zhang, Shiyuan 等;《OPTICAL MATERIALS》;20191231;第98卷;第1-8页 *
"多孔氧化铝膜色彩特性研究进展";胡海宁;《科技导报》;20140328;第32卷(第09期);第71-78页 *

Also Published As

Publication number Publication date
CN109989086A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN109989086B (zh) 一种具有高饱和度结构色的多孔氧化铝光子晶体薄膜的制备方法
Jagminas et al. Growth peculiarities of aluminum anodic oxide at high voltages in diluted phosphoric acid
CN103147108B (zh) 一种阳极氧化铝膜及其制备方法
CN105602558A (zh) 一种窄半高宽荧光碳点及其制备方法和应用
Nakajima et al. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes
Qin et al. Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid
CN101220510A (zh) 一种高质量氧化铝光子晶体的制备方法
CN103436936A (zh) 一种具有渐变孔深的多孔的氧化铝薄膜及其制备方法
CN103451703B (zh) 一种具有虹彩结构色的氧化铝薄膜及其制备方法
CN114427112A (zh) 一种制备多颜色光致变色的Ag/TiO2薄膜的方法
CN104562097B (zh) 一种自支撑镍纳米线阵列膜的制备方法
CN103695983B (zh) 一种尺寸可控的铝表面周期性纳米坑织构的制备方法
Cheng et al. Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films
CN112813476A (zh) 一种阳极氧化和磷酸扩孔交替进行制备锥形aao的方法
Chung et al. Enhancement of surface roughness and growth morphology of nanoporous anodic alumina from commercially aluminum alloy 1050 using two-step electrochemical polishing
Nazemi et al. Aluminium oxide nanowires synthesis from high purity aluminium films via two-step anodization
Sankar et al. Synthesis and characterization of cadmium selenide nanostructures on porous aluminum oxide templates by high frequency alternating current electrolysis
KR102361922B1 (ko) 금속가구 또는 주방용품용 알루미늄 합금 표면에 선명한 색상 구현 개선방법
CN102418116B (zh) 纳米块状基多孔三氧化钨薄膜电极的制备方法以及三氧化钨薄膜电极
CN104862761B (zh) 一种具有虹彩色的多孔氧化铝与NiCo合金复合薄膜的制备方法
KR102242764B1 (ko) 초친수 알루미늄 합금 표면에 선명한 색상 구현 개선방법
CN102181901A (zh) 一种颜色可调且具有高饱和度的氧化铝薄膜的制备方法
KR101010336B1 (ko) 동공직경이 규칙적으로 변형된 나노다공성 알루미나의 경제적 제작 공정
Yanagishita et al. TiO 2 hollow spheres with nanoporous structures fabricated by anodization of Ti particles
CN107012491B (zh) 一种Co纳米层/Co纳米线/多孔氧化铝复合薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201103