CN109957772A - 一种钯/陶瓷复合薄膜 - Google Patents

一种钯/陶瓷复合薄膜 Download PDF

Info

Publication number
CN109957772A
CN109957772A CN201711442671.3A CN201711442671A CN109957772A CN 109957772 A CN109957772 A CN 109957772A CN 201711442671 A CN201711442671 A CN 201711442671A CN 109957772 A CN109957772 A CN 109957772A
Authority
CN
China
Prior art keywords
palladium
film
ceramic composite
ceramic
palldium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711442671.3A
Other languages
English (en)
Inventor
李帅
吕琴丽
何迪
张华�
王树茂
蒋利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201711442671.3A priority Critical patent/CN109957772A/zh
Publication of CN109957772A publication Critical patent/CN109957772A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种钯/陶瓷复合薄膜,该复合薄膜负载于多孔载体上,该复合薄膜由金属钯或钯合金与陶瓷复合而成,其中钯或钯合金的体积占比为30‑99%。该复合薄膜采用物理气相沉积法制备;优选采用磁控溅射法制备,通过同时溅射钯或钯合金靶和陶瓷靶而获得所述复合薄膜。本发明通过对钯膜与陶瓷进行复合,一方面使陶瓷颗粒弥散分布于连续的钯或钯合金中,对钯晶界起到钉扎作用,增加钯晶粒高温晶粒长大和粗化的难度;另一方面,陶瓷的引入可以起到调节钯膜热膨胀系数的作用,降低钯膜与陶瓷或玻璃的热膨胀失配,提高钯膜的高温结构稳定性。

Description

一种钯/陶瓷复合薄膜
技术领域
本发明涉及一种钯/陶瓷复合薄膜,属无机膜材料及应用领域。
背景技术
钯及其合金具有高的氢渗透选择性,广泛应用于催化膜反应、氢分离与纯化领域。传统的催化膜反应、氢分离与纯化用钯元件采用了冷拔纯钯管、钯合金膜管,其工艺简单,膜管致密可靠,但膜管厚度大、成本高、效率低。目前开发的多孔载体钯膜技术将钯或钯合金膜负载于多孔载体表面,在保证器件整体机械强度的前提下,降低了钯膜的厚度及成本,提高了钯膜的氢渗透率,其商业应用前景广阔。
钯膜的多孔载体一般为多孔玻璃、多孔陶瓷、多孔金属等。由于多孔金属载体存在与钯膜的高温元素互扩散问题,多采用多孔陶瓷作为元素扩散阻挡过渡层。因此,不管采用何种多孔载体材料,都存在钯膜与陶瓷或玻璃的热膨胀匹配问题。而钯膜与陶瓷或玻璃热膨胀失配是造成钯膜工作温度下开裂、剥离的主要原因之一。另外,钯膜在工作状态下,长时间处于300-450℃温度下,这就会造成钯膜晶粒长大粗化,进而在钯膜层形成针孔缺陷等,造成钯膜失效。
发明内容
本发明的目的在于提供一种钯/陶瓷复合薄膜,该复合薄膜具有膜基结合强度高,膜层高温结构稳定的特点。
为实现上述目的,本发明采用以下技术方案:
一种钯/陶瓷复合薄膜,该复合薄膜负载于多孔载体上,该复合薄膜由金属钯或钯合金与陶瓷复合而成,其中钯或钯合金的体积占比为30-99%。
其中,所述多孔载体为多孔玻璃、多孔陶瓷和多孔金属中的一种或两种以上。
钯合金元素为Ag、Y、Au、Cu、Pt、In和Ru中的一种或两种以上。
所述陶瓷为Al2O3、SiO2、ZrO2和Cr2O3中的一种或两种以上。
所述复合薄膜采用物理气相沉积法制备;优选采用磁控溅射法制备,通过同时溅射钯或钯合金靶和陶瓷靶而获得所述复合薄膜。
本发明的优点在于:
本发明通过对钯膜与陶瓷进行复合,一方面使陶瓷颗粒弥散分布于连续的钯或钯合金中,对钯晶界起到钉扎作用,增加钯晶粒高温晶粒长大和粗化的难度;另一方面,陶瓷的引入可以起到调节钯膜热膨胀系数的作用,降低钯膜与陶瓷或玻璃的热膨胀失配,提高钯膜的高温结构稳定性。
附图说明
图1为多孔金属载体表面钯/陶瓷复合薄膜的结构示意图。
图2为多孔陶瓷或玻璃载体表面钯/陶瓷复合薄膜的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,但本发明不局限于以下实施例。
作为本发明的一种实施方式,如图1所示,为多孔金属载体表面钯/陶瓷复合薄膜的结构示意图,在多孔金属1表面形成多孔陶瓷层2,再在多孔陶瓷层上形成钯/陶瓷复合薄膜3。
作为本发明的另一种实施方式,如图2所示,多孔陶瓷或玻璃载体表面钯/陶瓷复合薄膜的结构示意图。在多孔陶瓷或玻璃4表面直接形成钯/陶瓷复合薄膜3。
实施例1
多孔氧化铝上钯/氧化铝复合薄膜的制备
在3英寸多孔氧化铝片上制备钯/氧化铝复合薄膜。采用金属钯、氧化铝靶材,金属钯采用直流电源供电,氧化铝采用射频电源供电,Ar作为起辉气体。当背底真空优于2×10- 4Pa后,在溅射室中用Ar等离子体轰击清洗15分钟。通过同时溅射钯靶和氧化铝靶获得钯/氧化铝复合薄膜,溅射腔气压为0.9Pa,靶基距为100mm,钯溅射功率为250W,氧化铝的溅射功率为100W,沉积时间为2小时。采用扫描电子显微镜测试,钯/氧化铝复合薄膜的厚度为2.5微米,金属钯体积含量为95%。
所制备的钯/氧化铝复合薄膜在700℃氢气氛下保温72小时,复合薄膜无针孔、开裂等缺陷产生,氦漏率优于10-9Pa·m3/s。
实施例2
多孔不锈钢上钯铜/氧化锆复合薄膜的制备
在3英寸多孔不锈钢片上制备钯铜/氧化铝复合薄膜,钯铜合金中铜含量为40wt%。采用钯铜合金(铜含量40wt%)、氧化铝靶材,钯铜合金采用直流电源供电,氧化铝采用射频电源供电,Ar作为起辉气体。当背底真空优于2×10-4Pa后,在溅射室中用Ar等离子体轰击清洗15分钟。通过同时溅射钯铜和氧化铝靶获得钯铜/氧化铝复合薄膜,溅射腔气压为0.85Pa,靶基距为100mm,钯铜溅射功率为250W,氧化铝的溅射功率为150W,沉积时间为5小时。采用扫描电子显微镜测试,钯铜/氧化铝复合薄膜的厚度为6微米,钯铜体积含量为85%。
所制备的钯铜/氧化锆复合薄膜在700℃氢气氛下保温72小时,复合薄膜无针孔、开裂等缺陷产生,氦漏率优于10-9Pa·m3/s。
实施例3
多孔玻璃上钯银/氧化铬复合薄膜的制备
在3英寸多孔玻璃片上制备钯银/氧化铬复合薄膜,钯银合金中银含量为23wt%。采用钯银合金(银含量40wt%)、氧化铬靶材,钯银合金采用直流电源供电,氧化铬采用射频电源供电,Ar作为起辉气体。当背底真空优于2×10-4Pa后,在溅射室中用Ar等离子体轰击清洗15分钟。通过同时溅射钯银和氧化铬靶获得钯银/氧化铬复合薄膜,溅射腔气压为0.85Pa,靶基距为100mm,钯银溅射功率为100W,氧化铬的溅射功率为250W,沉积时间为5小时。采用扫描电子显微镜测试,钯银/氧化铬复合薄膜的厚度为3微米,钯银体积含量为85%。
所制备的钯银/氧化铬复合薄膜在600℃氢气氛下保温72小时,复合薄膜无针孔、开裂等缺陷产生,氦漏率优于10-9Pa·m3/s。

Claims (6)

1.一种钯/陶瓷复合薄膜,该复合薄膜负载于多孔载体上,其特征在于,该复合薄膜由金属钯或钯合金与陶瓷复合而成,其中钯或钯合金的体积占比为30-99%。
2.根据权利要求1所述的钯/陶瓷复合薄膜,其特征在于,所述多孔载体为多孔玻璃、多孔陶瓷和多孔金属中的一种或两种以上。
3.根据权利要求1所述的钯/陶瓷复合薄膜,其特征在于,钯合金元素为Ag、Y、Au、Cu、Pt、In和Ru中的一种或两种以上。
4.根据权利要求1所述的钯/陶瓷复合薄膜,其特征在于,所述陶瓷为Al2O3、SiO2、ZrO2和Cr2O3中的一种或两种以上。
5.根据权利要求1所述的钯/陶瓷复合薄膜,其特征在于,所述复合薄膜采用物理气相沉积法制备。
6.根据权利要求5所述的钯/陶瓷复合薄膜,其特征在于,采用磁控溅射法制备,通过同时溅射钯或钯合金靶和陶瓷靶而获得所述复合薄膜。
CN201711442671.3A 2017-12-26 2017-12-26 一种钯/陶瓷复合薄膜 Pending CN109957772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711442671.3A CN109957772A (zh) 2017-12-26 2017-12-26 一种钯/陶瓷复合薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711442671.3A CN109957772A (zh) 2017-12-26 2017-12-26 一种钯/陶瓷复合薄膜

Publications (1)

Publication Number Publication Date
CN109957772A true CN109957772A (zh) 2019-07-02

Family

ID=67022787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711442671.3A Pending CN109957772A (zh) 2017-12-26 2017-12-26 一种钯/陶瓷复合薄膜

Country Status (1)

Country Link
CN (1) CN109957772A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560708A (zh) * 2021-07-29 2021-10-29 西安天力金属复合材料股份有限公司 一种钯基合金薄膜和多孔不锈钢载体的连接方法
CN115029677A (zh) * 2022-06-27 2022-09-09 商丘市鸿大光电有限公司 高透氢同位素和耐高温TaVNbZr/(TaVNbZrM)Nx梯度阻挡层制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050188845A1 (en) * 2004-02-27 2005-09-01 Mikuni Corporation Hydrogen-permeable membrane and process for production thereof
CN101039742A (zh) * 2004-09-15 2007-09-19 韩国能源技术研究院 用于氢分离的钯合金复合膜的制备方法
US20100083836A1 (en) * 2006-12-28 2010-04-08 Mikuni Corporation Hydrogen permeable film and method for manufacturing the same
CN103319210A (zh) * 2013-06-20 2013-09-25 上海合既得动氢机器有限公司 基于磁控溅射的多孔陶瓷真空镀贵重金属膜的工艺
CN104918682A (zh) * 2012-12-11 2015-09-16 韩国energy技术研究院 氢分离膜以及制造氢分离膜的方法
CN105013339A (zh) * 2014-04-23 2015-11-04 中国科学院大连化学物理研究所 一种金属钯膜表面制备分子筛膜的方法
CN105774171A (zh) * 2014-12-24 2016-07-20 北京有色金属研究总院 一种多孔载体表面钯或钯合金复合膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050188845A1 (en) * 2004-02-27 2005-09-01 Mikuni Corporation Hydrogen-permeable membrane and process for production thereof
CN101039742A (zh) * 2004-09-15 2007-09-19 韩国能源技术研究院 用于氢分离的钯合金复合膜的制备方法
US20100083836A1 (en) * 2006-12-28 2010-04-08 Mikuni Corporation Hydrogen permeable film and method for manufacturing the same
CN104918682A (zh) * 2012-12-11 2015-09-16 韩国energy技术研究院 氢分离膜以及制造氢分离膜的方法
CN103319210A (zh) * 2013-06-20 2013-09-25 上海合既得动氢机器有限公司 基于磁控溅射的多孔陶瓷真空镀贵重金属膜的工艺
CN105013339A (zh) * 2014-04-23 2015-11-04 中国科学院大连化学物理研究所 一种金属钯膜表面制备分子筛膜的方法
CN105774171A (zh) * 2014-12-24 2016-07-20 北京有色金属研究总院 一种多孔载体表面钯或钯合金复合膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560708A (zh) * 2021-07-29 2021-10-29 西安天力金属复合材料股份有限公司 一种钯基合金薄膜和多孔不锈钢载体的连接方法
CN115029677A (zh) * 2022-06-27 2022-09-09 商丘市鸿大光电有限公司 高透氢同位素和耐高温TaVNbZr/(TaVNbZrM)Nx梯度阻挡层制备工艺
CN115029677B (zh) * 2022-06-27 2023-10-31 商丘市鸿大光电有限公司 高透氢同位素和耐高温TaVNbZr/(TaVNbZrM)Nx复合梯度阻挡层制备工艺

Similar Documents

Publication Publication Date Title
US6641647B2 (en) Hydrogen-permeable structure and method of manufacturing the same
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN113186510B (zh) 一种金属强化多孔金刚石膜及其制备方法
CN109957772A (zh) 一种钯/陶瓷复合薄膜
Wei et al. Fabrication of H2-permeable palladium membranes based on pencil-coated porous stainless steel substrate
CN108144457A (zh) 一种多孔陶瓷金属梯度复合膜的制备方法
JP5363121B2 (ja) 水素透過膜、及びその製造方法
CN108149211A (zh) 一种Mg-TM超多层复合储氢薄膜及其制备方法
JP6178628B2 (ja) 断熱金型及びその製造方法
EP1746185A1 (en) Method for providing a thermal barrier coating and substrate having such coating
CN106637079B (zh) 一种二次电子发射薄膜的缓冲层及其制备方法
CN103928233A (zh) 具有稳定电极结构的薄膜电容器及其制备方法
US9415343B2 (en) Heat resistant hydrogen separation membrane and method for manufacturing same
CN106338347A (zh) 一种高温声表面波传感器的叉指电极材料及其制备方法
CN110194448A (zh) 一种石墨烯包覆的二维材料或石墨烯的制造方法
US9751051B2 (en) Hydrogen separation membrane, and method for manufacturing same
CN116024528A (zh) 一种SiC纤维增强Ni基复合材料扩散障涂层及其制备方法和应用
JP2006346621A (ja) 水素分離膜及び水素分離方法
KR20110093146A (ko) 다공성 금속지지체에 팔라듐계 박막 코팅방법
CN212396398U (zh) 一种用于氢气分离的复合膜
CN109628898A (zh) 一种多孔载体表面钯银/氧化钛复合薄膜及其制备方法
RU2644640C2 (ru) Способ изготовления композиционных мембран на основе тонких пленок металлов
JP2004122006A (ja) 水素分離膜、その製造方法及び水素の分離方法
JP2012172217A (ja) スパッタリングターゲット及びその製造方法
CN111041423A (zh) 蓝宝石表面结构与成分梯度层设计改善其焊接性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20190702

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Applicant after: Research Institute of engineering and Technology Co., Ltd.

Address before: No. 2, Xinjie street, Xicheng District, Beijing, Beijing

Applicant before: General Research Institute for Nonferrous Metals

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190702

RJ01 Rejection of invention patent application after publication