CN109956742A - 一种高温埋碳法制备高纯度铝酸铈的方法 - Google Patents
一种高温埋碳法制备高纯度铝酸铈的方法 Download PDFInfo
- Publication number
- CN109956742A CN109956742A CN201910352831.8A CN201910352831A CN109956742A CN 109956742 A CN109956742 A CN 109956742A CN 201910352831 A CN201910352831 A CN 201910352831A CN 109956742 A CN109956742 A CN 109956742A
- Authority
- CN
- China
- Prior art keywords
- high temperature
- cerium aluminate
- graphite
- purity
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明属于材料合成领域,具体涉及一种高温埋碳法制备高纯度铝酸铈的方法,以氧化铈、氧化铝和石墨粉为原料,通过配料、破碎与混匀、物料压制成型、埋碳封装、高温还原、取样与制备、得到了高纯度的铝酸铈块体,可以简单、安全、高效地进行大规模的铝酸铈制备。
Description
技术领域
本发明属于材料合成领域,具体涉及一种高温埋碳法制备高纯度铝酸铈的方法。
背景技术
铝酸铈(CeAlO3)作为荧光催化材料、特殊电极材料以及功能型陶瓷等被广泛应用于多种材料领域。但是由于铝酸铈中不稳定的正三价铈使得合成性难度较高的同时,合成出的铝酸铈也不能长期稳定的存在于标准状态下。
目前,常用的铝酸铈合成方法主要有湿法还原和气态还原两种,其中目前应用较多的多为湿法还原制备铝酸铈化合物。湿法还原是以采用柠檬酸水溶液、硝酸铝、硝酸铈以及树脂等原料进行中低温制备后,再置于在1000℃以下进行长时间焙烧得到相应铝酸铈粉末。这些制备方法不仅会产生大量的污染性废液,同时生产工艺相对繁琐,且成本也相对较高。合成出的粉体长期与外界环境接触后自身也会发生一定的还原。气态还原法主要是采用氢气或者一氧化碳等还原性气体,原料则是以氧化铈和氧化铝为主。在保护性气氛下利用还原性气体下将反应原料进行逐渐还原,但是其还原过程中温度较高的同时还原气体利用效率相对较低,还原时间也相对较长,一般情况下其还原温度均要在1550℃以上,还原时间不低于10小时。并且这些还原气体也会对制备过程的安全性带来了较大的威胁,容易发生气体泄漏甚至爆炸。
可以看出,目前的铝酸铈合成方法均存在一定的弊端,不适用于大规模的工业化制备工艺。但随着铝酸铈原料的需求量不断增加,合理的开发一种可以简单、短时且高效的铝酸铈制备方法成为了现阶段需要解决的重要问题。
发明内容
为解决上述技术问题,本发明提供了一种高温埋碳法制备高纯度铝酸铈的方法,可以简单、安全、高效地进行大规模的铝酸铈制备。
具体技术方案如下:
一种高温埋碳法制备高纯度铝酸铈的方法,具体包括如下步骤:
(1)配料、破碎与混匀,将氧化铈、氧化铝和石墨粉按比例进行配料、混合;然后将混合后的物料在球磨机中进行破碎与混匀;
(2)物料压制成型,利用液压机等压制设备将步骤(1)处理后得到的混合料进行压制成型,获得待反应的生坯原料;
(3)埋碳封装,将步骤(2)得到的生坯原料放置于装满石墨的坩埚中心部位,并确保石墨相对压实后再在坩埚顶部放置一块盖板,防止过多的石墨在升温过程中发生氧化;
(4)高温还原,将步骤(3)得到的埋碳后物料放入加热炉进行高温焙烧还原;
(5)取样与制备,待步骤(4)中物料完全冷却后,将反应产物直接从石墨中取出,利用气泵或者鼓风装置去除表面残留的石墨粉末后即得到了高纯度的铝酸铈块体。
步骤(1)中所述氧化铈、氧化铝和石墨粉的质量比为172.11:50.94:6。
步骤(1)中所述破碎后混料的粒度在200目以内。
步骤(2)中所述压制成型的压制力控制在100-200KN,试样厚度在2cm以内。
步骤(3)中所述坩埚和盖板优选纯刚玉材质、纯石墨或镁碳。
步骤(4)中所述还原温度控制在1500℃,反应时间为4小时。
与现有技术相比,本发明具有如下有益技术效果:
(1)本发明配料、破碎与混匀步骤中最后混料的产品粒度需控制在200目以内。确保混料的均匀性的前提下,进一步提升物料间的接触面积,促进后续反应。可以在确保混料的均匀性的前提下,进一步提升物料间的接触面积,与气体还原与湿法还原相比,本发明的反应速度得到了加快。而与传统的高温气体还原相比,混料配碳工艺有利于反应过程更加均与充分。并且石墨、氧化铈与氧化铝等物质的反应温度均相对较高,这也确保了采用其他还原剂后还原效率较低,资源浪费量过大的现象。
(2)本发明与其他方式的方法相比,本发明得到高纯铝酸铈自身为高致密度的原始块体,其自身致密性较高,若短时间内应用于生产则无需考虑对其进行封装及防氧化处理,其自身的纯度也可以得到良好的保证。并且块状物料也可以大大降低铝酸铈原料在运输过程中的运输成本和效率。
(3)本发明采用的埋碳工艺可以在反应过程中确保物料可以在良好的还原条件下进行。过量的石墨并不会固溶或与生成的铝酸铈间发生任何化学反应,使得还原后的铝酸铈自身纯度也可以得到良好的保证。并且与气体还原与湿法还原相比,其生成后的产物一直在石墨的保护下直至完全冷却,生产过程中,相应的保护成分大大的得到降低。
(4)本发明与其他方法相比,其方法相对简单,制备速度和效率也相对较高,在大大缩短能源的消耗的同时大幅度压缩生产流程和时间。本发明更适合大规模的应用于实际生产和制备。同时制备的安全性也得到了良好的保证。
附图说明
图1为本发明方法制备得到的铝酸铈的X射线衍射图。
具体实施方式
下面结合附图对本发明进行详细说明,但本发明的保护范围不受实施例所限。
实施例1:
本实施例选用的实验原料分别为氧化铈分析纯与工业氧化铝粉以及石墨粉,其配比按质量比172.11:50.94:6的比例进行配料。之后将混合后的物料进行球磨机中进行破碎与混匀至200目以内的均匀物料。之后利用液压机等压制设备将混合料在压制力120KN下压制成直径为2cm厚度在1.5cm的生坯。随后将生坯原料放置于装满石墨的刚玉坩埚中心部位,并确保石墨相对压实后再在坩埚顶部放置一块刚玉盖板,防止过多的石墨在升温过程中发生氧化。随手将其放入加热炉进行高温焙烧还原。其还原温度控制在1500℃,还原反应时间为4小时。待物料完全冷却后,将反应产物直接从石墨中取出,利用气泵或者鼓风装置去除表面残留的石墨粉末后既得到了高纯度的铝酸铈块体。
本发明制备出的铝酸铈呈绿色,颜色相对鲜艳,说明制备出的铝酸铈纯度较高。将制备出的铝酸铈块体进行元素含量分析与X射线衍射分析,图1为本发明方法制备得到的铝酸铈的X射线衍射图,相关结果如表1所示,可见,其自身物质结构组成完全为铝酸铈,并且无任何其他杂质。利用本发明方法完全可以达到制备优质、高纯的铝酸铈原料的目的
表1铝酸铈块体中各元素质量含量/%
元素 | Ce | Al | O | 其他 |
含量 | 65.10 | 12.54 | 22.30 | 0.06 |
Claims (6)
1.一种高温埋碳法制备高纯度铝酸铈的方法,其特征在于,具体包括如下步骤:
(1)配料、破碎与混匀,将氧化铈、氧化铝和石墨粉按比例进行配料、混合;然后将混合后的物料在球磨机中进行破碎与混匀;
(2)物料压制成型,利用液压机等压制设备将步骤(1)处理后得到的混合料进行压制成型,获得待反应的生坯原料;
(3)埋碳封装,将步骤(2)得到的生坯原料放置于装满石墨的坩埚中心部位,并确保石墨相对压实后再在坩埚顶部放置一块盖板,防止过多的石墨在升温过程中发生氧化;
(4)高温还原,将步骤(3)得到的埋碳后物料放入加热炉进行高温焙烧还原;
(5)取样与制备,待步骤(4)中物料完全冷却后,将反应产物直接从石墨中取出,利用气泵或者鼓风装置去除表面残留的石墨粉末后即得到了高纯度的铝酸铈块体。
2.根据权利要求1所述的高温埋碳法制备高纯度铝酸铈的方法,其特征在于:步骤(1)中所述氧化铈、氧化铝和石墨粉的质量比为172.11:50.94:6。
3.根据权利要求1所述的高温埋碳法制备高纯度铝酸铈的方法,其特征在于:步骤(1)中所述破碎后混料的粒度在200目以内。
4.根据权利要求1所述的高温埋碳法制备高纯度铝酸铈的方法,其特征在于:步骤(2)中所述压制成型的压制力控制在100-200KN,试样厚度在2cm以内。
5.根据权利要求1所述的高温埋碳法制备高纯度铝酸铈的方法,其特征在于:步骤(3)中所述坩埚和盖板优选纯刚玉材质、纯石墨或镁碳。
6.根据权利要求1所述的高温埋碳法制备高纯度铝酸铈的方法,其特征在于:步骤(4)中所述还原温度控制在1500℃,反应时间为4小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910352831.8A CN109956742B (zh) | 2019-04-29 | 2019-04-29 | 一种高温埋碳法制备高纯度铝酸铈的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910352831.8A CN109956742B (zh) | 2019-04-29 | 2019-04-29 | 一种高温埋碳法制备高纯度铝酸铈的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109956742A true CN109956742A (zh) | 2019-07-02 |
CN109956742B CN109956742B (zh) | 2021-06-18 |
Family
ID=67026771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910352831.8A Active CN109956742B (zh) | 2019-04-29 | 2019-04-29 | 一种高温埋碳法制备高纯度铝酸铈的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109956742B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116043023A (zh) * | 2022-12-30 | 2023-05-02 | 中南大学 | 一种改善铜冶炼渣中有价组分粒径的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541248A (en) * | 1993-03-08 | 1996-07-30 | Dow Corning Corporation | Luminescent ceramic coating compositions |
CN104830337A (zh) * | 2015-04-29 | 2015-08-12 | 甘肃稀土新材料股份有限公司 | 铽掺杂的铝酸铈绿色荧光粉及其制备方法 |
CN107089834A (zh) * | 2017-03-17 | 2017-08-25 | 西安建筑科技大学 | 一种碳‑铝酸钙复合粉及其制备方法 |
-
2019
- 2019-04-29 CN CN201910352831.8A patent/CN109956742B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541248A (en) * | 1993-03-08 | 1996-07-30 | Dow Corning Corporation | Luminescent ceramic coating compositions |
CN104830337A (zh) * | 2015-04-29 | 2015-08-12 | 甘肃稀土新材料股份有限公司 | 铽掺杂的铝酸铈绿色荧光粉及其制备方法 |
CN107089834A (zh) * | 2017-03-17 | 2017-08-25 | 西安建筑科技大学 | 一种碳‑铝酸钙复合粉及其制备方法 |
Non-Patent Citations (2)
Title |
---|
SHISHIDO: "ingle Crystal of Tetragonal Type CeAlO3 Grown from the KF Flux", 《日本化学会志》 * |
李涛: "埋炭条件下制备LiFeO4材料的性能研究", 《广东化工》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116043023A (zh) * | 2022-12-30 | 2023-05-02 | 中南大学 | 一种改善铜冶炼渣中有价组分粒径的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109956742B (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102171150B (zh) | 氧化物的制造方法 | |
Zou et al. | Hydrogen storage properties of Mg–TM–La (TM= Ti, Fe, Ni) ternary composite powders prepared through arc plasma method | |
EP3502052A1 (en) | Method for preparing spherical aluminum nitride powder | |
CN103755350B (zh) | 一种γ-AlON透明陶瓷粉体的制备方法 | |
CN102277506A (zh) | 一种热法镁冶炼工艺 | |
CN101531520A (zh) | 一种基于碳热还原氮化制备γ-AlON陶瓷粉末的方法 | |
CN104761251B (zh) | 一种制备镁铝尖晶石的反应烧结方法 | |
CN113620262B (zh) | 稀土掺杂氮化硼纳米片的制备方法及纳米片 | |
CN105819479B (zh) | 一种C12A7:e‑电子化合物纳米粉末的制备方法 | |
CN105753341B (zh) | 一种铁铝酸钙的制备方法 | |
CN101269793A (zh) | 一种硼氢化钠的制备方法 | |
CN102807191B (zh) | 一种Li-Mg-B-H储氢材料的合成方法 | |
CN106672988A (zh) | 一种高纯稀土硼化物的制备方法 | |
CN109956742A (zh) | 一种高温埋碳法制备高纯度铝酸铈的方法 | |
CN102275918A (zh) | 生产碳化钒的方法 | |
CN101700977A (zh) | 一种快速制备MgAlON透明陶瓷粉末的方法 | |
CN102963895B (zh) | 一种碳化铬粉体的制备方法 | |
CN104843727A (zh) | 多元稀土硼化物(LaxCe1-x)B6固溶体多晶阴极材料及其制备方法 | |
CN103044022A (zh) | 一种介质阻挡层材料及其制备与应用方法 | |
CN102674356B (zh) | 一种纳米富10b碳化硼粉体的制备方法 | |
CN101418397A (zh) | 一种TiB2强化的MgAlB14超硬材料的制备方法 | |
CN101956110A (zh) | 一种低温固相反应制备Mg2BIV基热电材料的方法 | |
Zhang et al. | Rapid preparation of traditional and high-entropy garnet ceramics by SPS at low temperature with ultrafast densification | |
CN102557151A (zh) | 一步还原制备纳米四氧化三铁粉末的方法 | |
CN108063249A (zh) | 一种高纯度氮化铜纳米晶体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |