CN109950521A - 激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法 - Google Patents

激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法 Download PDF

Info

Publication number
CN109950521A
CN109950521A CN201910255407.1A CN201910255407A CN109950521A CN 109950521 A CN109950521 A CN 109950521A CN 201910255407 A CN201910255407 A CN 201910255407A CN 109950521 A CN109950521 A CN 109950521A
Authority
CN
China
Prior art keywords
super
laser
electrode
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910255407.1A
Other languages
English (en)
Other versions
CN109950521B (zh
Inventor
王存山
张雪
赵紫松
葛禄成
董星龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910255407.1A priority Critical patent/CN109950521B/zh
Publication of CN109950521A publication Critical patent/CN109950521A/zh
Application granted granted Critical
Publication of CN109950521B publication Critical patent/CN109950521B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属材料制备技术领域,提供了激光超非稳态扩散制备锂离子电池锡‑石墨复合电极的方法,通过调控激光超非稳态扩散制备工艺与过程,制备出具有良好界面结合的孔状网络结构锡‑石墨复合电极,综合提高了锂离子电池的电化学性能,大幅延长其循环寿命。与传统电极制备方法相比,本发明方法可在不破坏集流体导电性的前提下,制备出具有良好界面结合的孔状网络结构负极,这将有利于Li+的传输,缓冲电极在充放电过程中的体膨胀,维持电极结构稳定性,保持电池在高容量下稳定循环。同时,本发明工艺兼有工艺流程简单、操作方便、制备效率高、环境友好,适合大规模生产等诸多优点。

Description

激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法
技术领域
本发明属材料制备技术领域,提供一种激光超非稳态扩散制备锂离子电池 锡-石墨复合电极的新方法。
背景技术
2018年,我国新能源汽车产量超过100万辆,这是中国首次在全球率先成功 大规模导入高科技民用大宗消费品。电气车辆(EV)、混合动力电动车辆(HEV) 和大规模储能系统迅速兴起,对锂离子电池性能提出了更高的要求,迫切需求 开发具有高功率密度、高能量密度和长寿命的可充电锂离子电池。锂离子电池 主要包括电池正极(阴极)、负极(阳极)、电解液、隔膜、电极壳等。其中, 电极材料的种类和结构特性是决定锂离子电池性能的关键因素。传统石墨负极 材料,由于其低的理论容量(372mAh g-1)已不能满足现代工业对高能量密度 的要求。Sn因其较高的理论容量(933mAh g-1)而受到相关研究领域的广泛关注,有望替代石墨负极成为新一代的锂离子电池负极材料。但Sn在充放电过程 中易发生体积膨胀(约260%),而导致活性材料之间失去电连接,并使活性物质 脱离Cu集流体,从而造成容量的不可逆,这严重限制了Sn在锂离子电池负极方 面的应用。为了克服这些缺点,研究人员充分利用纳米Sn和石墨的优势,研究 了具有多孔结构的复合电极。结果表明,与单一石墨或Sn相比,其具有更高的 容量和更长的循环寿命,这主要归因于以下几个方面:1)由于大的比表面积, 纳米尺寸的Sn可以提供更多的反应位点;2)多孔结构可以为Li+提供传输路径; 3)石墨基质和多孔结构都可以有效地缓解纳米Sn的体积膨胀。这些都有利于保持电极的结构稳定性和长循环寿命。
多孔结构对锂离子电池电极的性能起着重要作用。迄今为止,通常用于合 成多孔电极材料有硬模板、软模板和非模板等方法。虽然这些方法可以制备出 规则分布孔结构,但工艺过程复杂,制备周期长,洁净度低、易导致环境污染。 尤为重要的这些方法所制备的活性材料和集流体之间界面结合差,而直接影响 其使用寿命。因此,迫切需要开发一种有效的工艺方法来制备具有良好界面结 合特征的多孔结构电极。鉴于此,本发明创新性地研发一种激光超非稳态扩散 制备锂离子电池电极的新工艺方法。
激光超非稳态扩散制备技术是利用激光产生的超非稳态温度场,使预制在 Cu集流体表面的负极产生过饱和空位,以此促进负极粉体间表面扩散和体积扩 散,形成孔状网络结构体,并实现电极材料和集流体间的互扩散界面结合。激 光超非稳态扩散制备技术除了具有制造工艺简单、柔性化程度高、工艺成本低 廉、材料选择范围广、材料利用率高、成型速度快等鲜明优点外,相对于其它 电极制备方法,尚具有以下独特优势:1)可通过调控工艺和扫描路径来控制作 用区域与深度,且对集流体的影响小,不会造成集流体微观结构的改变而导致 其导电性能的降低;2)所制备的多孔网络结构具有高的结构稳定性,可实现锂 离子电池的高容量长寿命循环;3)活性物质与集流体间互扩散层的形成,可进 一步维持电极结构的稳定性,防止活性物质从集流体剥离而造成的容量衰减。
发明内容
本发明的目的是提供一种激光超非稳态扩散制备锂离子电池负极的新方 法,籍激光超非稳态温度场所产生的过饱和空位效应,使负极形成孔状网络结 构,并实现电极材料与集流体间良好的界面结合,以此增强锂离子电池的容量, 延长其循环寿命。
本发明的技术方案:
一种激光超非稳态扩散制备锂离子电池锡-石墨复合电极的新方法,通过调 控激光超非稳态扩散制备工艺与过程,制备出具有良好界面结合的孔状网络结 构负极,综合提高锂离子电池的电化学性能,大幅延长其循环寿命,步骤如下:
(1)备料
选取质量纯度99.9%、粒度80-200nm的Sn纳米颗粒为活性物质,质量纯 度99.90%、粒度1.0-10μm的石墨为基质材料,Sn纳米颗粒与石墨按照1:1~1:4 的质量比混合,真空球磨,控制转速为100-300rpm下球磨20-24h混合,得到 成分均匀的混合粉末;
(2)预制涂层
选用去离子水为溶剂,羧甲基纤维素钠(CMC)为粘结剂,将球磨后的混 合粉末与粘结剂按照8:1的质量比调制成糊状;然后用涂膜厚度为25-100μm 的刮刀将其涂覆在Cu集流体上,在80℃-95℃真空干燥20-24h;
(3)激光超非稳态扩散制备电极
将步骤(2)得到的涂膜的Cu集流体置于数控机床惰性气体保护罩内,然 后采用连续CO2激光器对其进行激光超非稳态扩散处理,得到锂离子电池锡-石 墨复合电极;激光超非稳态扩散处理的工艺参数为CO2激光功率30-100W,光 斑直径10-20mm,扫描速度10-30mms-1,搭接率5-20%,惰性气体流量2-4L min-1,通入惰性气体时间5-8min。
本发明的效果和益处:与传统电极制备工艺相比,激光超非稳态扩散工艺 可在不破坏集流体导电性的前提下,制备具有良好界面结合的孔状网络结构负 极,这将有利于Li+的传输,缓冲电极在充放电过程中的体膨胀,维持电极结构 稳定性,保持电池在高容量下稳定循环。同时,其兼有工艺流程简单、操作方 便、制备效率高、环境友好,适合大规模生产等诸多优点。
附图说明
图1是电极截面SEM图及界面处元素分布:(a)未经处理的锡-石墨涂膜电极;(b)激光超非稳态技术制备的锡-石墨电极。
图2是激光超非稳态技术制备的锡-石墨电极与未经处理的锡-石墨涂膜电极的循环寿命与库伦效率曲线。
具体实施方式
下面结合具体实施例,对本发明的技术方案进一步说明。
实施例:
(1)选取质量纯度99.0%、粒度100nm的Sn纳米颗粒为活性物质,质量 纯度99.90%、粒度8μm的石墨为基质材料,按照1:3的质量比进行配制,然后 将其置于真空球磨机中,在球磨机转速为200rpm下进行24h混合,以使其成 分均匀化;
(2)球磨后,选用去离子水为溶剂,羧甲基纤维素钠(CMC)为粘结剂, 将球磨后的混合粉末与粘结剂按8:1的质量比调制成糊状,然后采用涂膜厚度 为50μm的刮刀将其涂覆在Cu集流体上,最后转入干燥箱中在85℃下真空干 燥20h;
(3)将真空干燥后的锡-石墨涂膜电极置于数控机床惰性气体保护罩内,然 后采用CO2激光器对该涂膜电极进行激光超非稳态扩散处理,所采用的工艺参 数为激光功率50W,光斑直径15mm,扫描速度15mm s-1,搭接率10%,惰性 气体流量2.5L min-1,惰性气体通入时间为6min。
如图1所示,激光超非稳态技术处理后的电极出现了孔状网络结构及界面 的元素互扩散层,这都有利于维持电极在充放电过程中的结构稳定性,保持高 容量及长寿命循环。
电池组装:将锂离子电池锡-石墨复合电极作为负极,切割所需的尺寸和形 状;选取纯金属锂片为对电极,聚丙烯薄膜为隔膜;电解液为1mol L-1的LiPF6的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)体积比为1:1的混合溶液;并按照正极壳、 负极、隔膜、金属锂片、垫片、弹簧片、负极壳的顺序进行组装。
如图2所示,在经200次充放电循环后,激光超非稳态技术制备的锡-石墨 电极容量仍能保持在519.5mAh g-1,其库伦效率(库伦效率为充电容量与放电 容量比值的百分数)维持在99.9%,明显高于未经处理的锡-石墨涂膜电极的容 量(212.0mAh g-1)和库库伦效率(97.9%),同时也高于锂离子电池传统石墨负极 材料的理论容量(372.0mAh g-1)。

Claims (1)

1.一种激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法,其特征在于,步骤如下:
(1)备料
选取质量纯度99.9%、粒度80-200nm的Sn纳米颗粒为活性物质,质量纯度99.90%、粒度1.0-10μm的石墨为基质材料,Sn纳米颗粒与石墨按照1:1~1:4的质量比混合,真空球磨,控制转速为100-300rpm下球磨20-24h混合,得到成分均匀的混合粉末;
(2)预制涂层
选用去离子水为溶剂,羧甲基纤维素钠为粘结剂,将球磨后的混合粉末与粘结剂按照8:1的质量比调制成糊状;然后用涂膜厚度为25-100μm的刮刀将其涂覆在Cu集流体上,在80℃-95℃真空干燥20-24h;
(3)激光超非稳态扩散制备电极
将步骤(2)得到的涂膜的Cu集流体置于数控机床惰性气体保护罩内,然后采用连续CO2激光器对其进行激光超非稳态扩散处理,得到激光超非稳态扩散制备的锂离子电池锡-石墨复合电极;激光超非稳态扩散处理的工艺参数为CO2激光功率30-100W,光斑直径10-20mm,扫描速度10-30mm s-1,搭接率5-20%,惰性气体流量2-4L min-1,通入惰性气体时间5-8min。
CN201910255407.1A 2019-04-01 2019-04-01 激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法 Expired - Fee Related CN109950521B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910255407.1A CN109950521B (zh) 2019-04-01 2019-04-01 激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910255407.1A CN109950521B (zh) 2019-04-01 2019-04-01 激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法

Publications (2)

Publication Number Publication Date
CN109950521A true CN109950521A (zh) 2019-06-28
CN109950521B CN109950521B (zh) 2022-06-14

Family

ID=67012342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910255407.1A Expired - Fee Related CN109950521B (zh) 2019-04-01 2019-04-01 激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法

Country Status (1)

Country Link
CN (1) CN109950521B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005963A (zh) * 2021-11-02 2022-02-01 北京化工大学 一种锂离子电池石墨负极片的改性方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933701A (en) * 1996-08-02 1999-08-03 Texas A & M University System Manufacture and use of ZrB2 /Cu or TiB2 /Cu composite electrodes
CN1742397A (zh) * 2003-09-26 2006-03-01 杰富意化学株式会社 复合粒子、使用该复合粒子的锂离子二次电池的负极材料、负极以及锂离子二次电池
CN102340001A (zh) * 2011-08-26 2012-02-01 奇瑞汽车股份有限公司 一种制备高比容量硅碳、锡碳复合负极材料的方法
CN102832374A (zh) * 2012-09-18 2012-12-19 奇瑞汽车股份有限公司 锡碳复合材料及其制备方法、锂离子电池
CN105580184A (zh) * 2013-09-25 2016-05-11 国立大学法人东京大学 非水电解质二次电池
CN105810921A (zh) * 2016-06-06 2016-07-27 田东 一种高容量锂离子电池锡基负极材料的制备方法
CN106848182A (zh) * 2017-01-12 2017-06-13 深圳市沃特玛电池有限公司 一种锂离子电池负极极片的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933701A (en) * 1996-08-02 1999-08-03 Texas A & M University System Manufacture and use of ZrB2 /Cu or TiB2 /Cu composite electrodes
CN1742397A (zh) * 2003-09-26 2006-03-01 杰富意化学株式会社 复合粒子、使用该复合粒子的锂离子二次电池的负极材料、负极以及锂离子二次电池
CN102340001A (zh) * 2011-08-26 2012-02-01 奇瑞汽车股份有限公司 一种制备高比容量硅碳、锡碳复合负极材料的方法
CN102832374A (zh) * 2012-09-18 2012-12-19 奇瑞汽车股份有限公司 锡碳复合材料及其制备方法、锂离子电池
CN105580184A (zh) * 2013-09-25 2016-05-11 国立大学法人东京大学 非水电解质二次电池
CN105810921A (zh) * 2016-06-06 2016-07-27 田东 一种高容量锂离子电池锡基负极材料的制备方法
CN106848182A (zh) * 2017-01-12 2017-06-13 深圳市沃特玛电池有限公司 一种锂离子电池负极极片的制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张方方: "激光烧结Si-Sn锂离子电池负极材料组织与性能", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技II辑》 *
谢凯等: "《新一代锂二次电池技术》", 31 August 2013, 国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005963A (zh) * 2021-11-02 2022-02-01 北京化工大学 一种锂离子电池石墨负极片的改性方法

Also Published As

Publication number Publication date
CN109950521B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN106654221A (zh) 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN110890534B (zh) 一种高性能钾离子电池负极用硒化钴@碳复合材料、其制备方法及相匹配的电解液
CN110931753B (zh) 硅负极材料及其制备方法
CN108281627B (zh) 一种锂离子电池用锗碳复合负极材料及其制备方法
CN104966814B (zh) 一种高安全性的金属锂负极及其制备方法
CN108682813A (zh) 一种硅碳复合材料的制备方法及应用
CN107834005A (zh) 一种锂硒电池复合隔膜的制备方法
CN105914369A (zh) 一种纳米级碳包覆硫化锂复合材料及其制备方法和应用
CN108258241A (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
CN108428882B (zh) 一种硅酸锌/碳微纳分级结构复合物及其制备方法
CN110518188A (zh) 一种硒-磷-碳复合材料及其制备方法与应用
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
CN112289978A (zh) 一种复合锂金属负极及其制备方法
CN113066990B (zh) 一种锌负极改性三维集流体的制备方法及应用
CN109786769A (zh) 一种碳载贵金属氧化物双功能催化剂及其制备方法和应用
CN204885286U (zh) 一种高安全性的金属锂负极
CN109950521A (zh) 激光超非稳态扩散制备锂离子电池锡-石墨复合电极的方法
CN111668492A (zh) 一种锂金属负极集流体及其制备方法、复合负极和锂金属二次电池
CN105990566B (zh) 氧化镍复合负极材料及其制备方法
CN110265650A (zh) 一种锂离子电池用纳米多孔复合负极材料及其制备方法
CN112234175B (zh) 一种高可逆水系锌离子电池负极材料的制备方法
CN111600005B (zh) 一种锂离子电池负极材料多孔Si/C复合材料的制备方法
CN107749470A (zh) 一种用于锂电池的Si/C层状结构负极活性材料及制备方法
CN114243007A (zh) 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用
CN108461721B (zh) 一种石墨烯包覆硅复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220614

CF01 Termination of patent right due to non-payment of annual fee