CN109920992A - 一种制备锂离子电池用硒碳复合正极材料的方法 - Google Patents

一种制备锂离子电池用硒碳复合正极材料的方法 Download PDF

Info

Publication number
CN109920992A
CN109920992A CN201910182405.4A CN201910182405A CN109920992A CN 109920992 A CN109920992 A CN 109920992A CN 201910182405 A CN201910182405 A CN 201910182405A CN 109920992 A CN109920992 A CN 109920992A
Authority
CN
China
Prior art keywords
carbon composite
selenium
lithium ion
anode material
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910182405.4A
Other languages
English (en)
Inventor
廖芳
王迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201910182405.4A priority Critical patent/CN109920992A/zh
Publication of CN109920992A publication Critical patent/CN109920992A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种制备锂离子电池用硒碳复合正极材料的方法,属于电化学中二次电池的技术领域。本发明中所述的硒碳复合材料是以金属有机框架化合物为前驱体,然后经高温热处理和一步化学刻蚀反应制备而成;本发明采用的自上而下设计概念所制备的硒碳复合电极使硒的负载位点具有很高的选择性且负载含量高于一般方法,制备方法简单有效,所制备的硒碳复合电极材料表现出优异的储锂性能,在1000mA/g的电流密度下经过300次循环后仍保持高到280mAh/g的储锂容量。

Description

一种制备锂离子电池用硒碳复合正极材料的方法
技术领域
本发明属于电化学的二次电池领域,具体涉及一种可用于锂离子电池正极的硒碳复合电极材料及其制备方法。
技术背景
锂离子电池(LIBs)具有能量密度高、循环寿命长、工作温度范围广等优点,被广泛应用于各类便携式电子设备中。然而,随着科技的发展和社会的进步,人们对能源的需求也日益增加,传统的LIBs已无法满足人们的实际需求。开发出具有更高容量密度、更长使用寿命、更低价位的新型电池体系已经成为一项重要的开发领域。以S做正极的Li-S电池能量密度约是传统LIBs的2~5倍,且具有超高的体积能量密度(3467 Wh/L),是当前极具前景的电池体系之一。但Li-S电池体系中所使用的正极材料S极易和锂反应,形成多硫分子和锂多硫化合物,且锂多硫化合物易溶于电解液中,导致电池容量的迅速衰减。此外,硫的导电性非常差,限制了电池体系的倍率性能。以上问题极大的限制了Li-S电池的发展。而和S处于同一主族(ⅥA)的Se为我们构筑新型高能量电池体系提供了新的思路。Li-Se电池具有极高的理论能量密度(1155 Wh/kg或3254 Wh/L),以Se作为正极材料,所得的Li-Se电池的体积容量可以与Li-S体系媲美,此外Se的导电性(1×10-3 S/cm)远高于S的导电性(5×10-30 S/cm),从而表现出更好的电化学反应活性、电极材料利用率和倍率性能,且多硫化合物易溶于电解液中类似的溶解问题在Li-Se电池中也可得到改善。
和其它电极材料一样Se也存在诸多问题,主要表现为:循环中Se存在较大的体积变化,造成电极材料易粉化、脱落;充放电中多硒化物中间体易从正极剥离,造成容量的不可逆衰减;块状 Se 的离子/电子传输性较差,影响电极的实际利用率。以上问题直接限制了 Li-Se 电池的循环稳定性和倍率性能。进一步提高 Se 电极的循环稳定性和倍率性能是推进 Li-Se 电池应用的关键。研究表明,将Se与碳进行复合制备纳米级硒碳复合材料,即能有效的发挥纳米材料的小尺寸优势,又能限制Se颗粒在多次充放电中的体积变化,还能极大的改善电极材料的导电性能,对预防多硒化物的剥离也发挥一定作用。近年来,国内外科研工作者们构筑了大量的硒碳复合材料以改善Se正极的电化学性能。然而,传统构筑硒碳复合材料的方法一般为自下而上的设计思路,即首先构筑具有一定空间构型的碳框架,随后通过热融解或高温热分解的办法引入Se,最终得到硒碳复合材料。该类自下而上的制备方法,在合成过程中Se主要依靠物理吸附作用和碳进行复合,产物中难免会有部分Se以块体的形式在碳框架的外侧聚集,充放电中易脱落从而造成容量的不可逆衰减,此外依靠物理吸附法所制备的硒碳复合材料中硒的负载量有限(通常低于60wt%),难以充分发挥Se电极的材料优势。
发明内容
本发明为了实现锂离子电池在高电流密度下仍具有较高的容量保持率和循环寿命,提高Li-Se电池体系的电化学性能,提出了一种自上而下制备硒碳复合材料(Se@C)的结构及其制备方法。该方法简单可行、结构稳定、易于规模化生产。
本发明一种自上而下制备锂离子电池用硒碳复合正极材料的方法的具体实施步骤如下:
(1)将锌盐、2-甲基咪唑分别分散于甲醇中,锌盐溶液在搅拌的同时将2-甲基咪唑溶液加入其中,搅拌或超声使之分散均匀;随后静止陈化24h,然后离心分离、烘干得到干燥粉末;
(2)将一定比例的硒粉与步骤(1)中所得粉末置于同一坩埚中,使Se粉置于上风口,在密闭的条件下以惰性气体为保护气体进行热处理,控制反应的升温速率为1o/min~10o/min,反应温度为400~800 oC,热处理时间为2-12h;
(3)将上述制备产物侵泡在含有三价铁离子的溶液中进行化学刻蚀,以移除其中的金属离子,随后离心分离、烘干得到干燥的目标产物;
步骤(1)中所述锌盐为Zn(NO3)2·6H2O、ZnCl2·6H2O、或ZnSO4·6H2O,且均为分析纯;
步骤(1)中所述2-甲基咪唑和锌盐的摩尔比例为3:1~10:1,最优比例为4:1;
步骤(1)和步骤(3)中所述干燥步骤为在小于80℃的温度下将目标产物干燥至恒重;
步骤(2)中所加的Se粉和步骤(1)所得粉末的质量比例为1:1~5:1;
步骤(2)中所述惰性保护气体为氩气、氮气、或氢气且纯度均高于99.9%;
步骤(3)中所述三价铁盐为FeCl3、Fe(NO3)3、或Fe2(SO4)3且纯度均为分析纯。
步骤(3)中所述三价铁盐的溶液浓度为0.1~3mol/L,反应温度为常温;
步骤(3)中所述化学刻蚀的反应时间为2~48h;
本发明以金属有机框架化合物为前驱体,以Se粉为硒源、经低温热处理,化学刻蚀后得到硒碳复合材料,制备方法简单。产物中原位生成的碳导电基体无需额外引入,碳导电基体和硒紧密结合,能保证电极材料在多次充放电过程仍具有较高的反应活性和稳定的结构。
附图说明
图1为本发明实施例3中所制备的硒碳复合材料的SEM图。
图2为以本发明实施例4中所制备的硒碳复合材料为正极所组装的Li-Se电池在1000mA/g电流下的循环性能图。
具体实施方式:
下面结合附图对本发明的具体实施方式作进一步说明,但本发明不限于以下所述范围。
实施例1:本实施例的自上而下制备锂离子电池用硒碳复合正极材料的方法具体步骤如下:
(1)选取的锌盐为Zn (NO3)2·6H2O,控制2-甲基咪唑和锌盐的摩尔比例为4:1,搅拌至溶液分散均匀后静止孵化24h,产物离心分离、干燥。
(2) 将步骤(1)中所得粉末和硒粉按照1:1的质量比例置于同一坩埚的两侧,并保持硒粉处于管式炉上风方向,热处理时采用氩气为保护气体,在3o/min的升温速率下升温至550oC并保温3h,自然冷却至室温后,收集产物。
(3)将上述热处理后产物浸泡与0.5mol/L的三氯化铁溶液中,室温下搅拌,刻蚀12h。产物离心分离、鼓风干燥后得到最终产物。
(4)将制备好的硒碳复合正极材料,按Se@C:导电碳黑:PVDF=80 :10 :10的质量比例进行混合,加入适量的溶剂 NMP,将其混匀,涂于铝箔上,随后转移至真空干燥箱中100oC下真空干燥8h,制成正极;采用金属锂片为负极;电解液为 1mol/L 的 LiPF6溶解EC:DEC:DMC的混合溶剂中(体积比1 :1 :1),在充满氩气的手套箱中组装成2032扣式电池。对制备好的扣式电池进行充放电测试。测试结果证实该条件下制备的硒碳复合正极材料表现出较高的充放电容量,100mA/g的电流密度下首周充放电容量分别为450mAh/g 和480mAh/g。
实施例2:本实施例的自上而下制备锂离子电池用硒碳复合正极材料的方法具体步骤如下:
(1)选取的锌盐为ZnSO4·6H2O,控制2-甲基咪唑和锌盐的摩尔比例为6:1,搅拌至溶液分散均匀后静止孵化24 h,产物离心分离、干燥。
(2)将步骤(1)中所得粉末和硒粉按照1:4的质量比例置于同一坩埚的两侧,并保持硒粉处于管式炉上风方向,热处理时采用氮气为保护气体,在5oC/min的升温速率下升温至600oC并保温2h,自然冷却至室温后,收集产物。
(3)将上述热处理后产物浸泡与1.0mol/L的Fe(NO3)3溶液中,室温下搅拌,刻蚀7h。产物离心分离、鼓风干燥后得到最终产物。
(4)将制备好的硒碳复合正极材料,按Se@C:导电碳黑: PVDF=80 :10 :10的质量比例进行混合,加入适量的溶剂 NMP,将其混匀,涂于铝箔上,随后转移至真空干燥箱中100oC下真空干燥8h,制成正极;采用金属锂片为负极;电解液为 1mol/L 的 LiPF6溶解EC:DEC:DMC的混合溶剂中(体积比1 :1 :1),在充满氩气的手套箱中组装成2032扣式电池。对制备好的扣式电池进行充放电测试。
实施例3:本实施例的自上而下制备锂离子电池用硒碳复合正极材料的方法具体步骤如下:
(1)选取的锌盐为ZnCl2·6H2O,控制2-甲基咪唑和锌盐的摩尔比例为3.75:1,搅拌至溶液分散均匀后静止孵化24 h,产物离心分离、干燥。
(2)将步骤(1)中所得粉末和硒粉按照1:2的质量比例置于同一坩埚的两侧,并保持硒粉处于管式炉上风方向,热处理时采用氮气为保护气体,在3o/min的升温速率下升温至500oC并保温4h,自然冷却至室温后,收集产物。
(3)将上述热处理后产物浸泡与2.0mol/L的三氯化铁溶液中,室温下搅拌,刻蚀5h。产物离心分离、鼓风干燥后得到最终产物。
(4)对该方法下合成的硒碳复合材料进行物象和形貌分析,所得的SEM如图1所示。该方法所制备的产物为尺寸约为500nm的多面体结构且外部均匀包裹有碳层,在多面体外部未见有吸附硒颗粒的存在,证实该自上而下的方法所得产物能将硒均匀包裹在碳层内部,XRD分析证实该实施例下的产物仅存在硒和碳的衍射峰无其它物象存在,进一步分析后证实该方法下所得产物中硒的含量为66wt%。
(5)将制备好的硒碳复合正极材料,按Se@C:导电碳黑: PVDF=80 :10 :10的质量比例进行混合,加入适量的溶剂 NMP,将其混匀,涂于铝箔上,随后转移至真空干燥箱中100oC下真空干燥8h,制成正极;采用金属锂片为负极;电解液为 1mol/L 的 LiPF6溶解EC:DEC:DMC的混合溶剂中(体积比1 :1 :1),在充满氩气的手套箱中组装成2032扣式电池。对制备好的扣式电池进行充放电测试。测试结果表明该实施例所制备的硒碳复合材料表现出优异的倍率性能在3000mA/g的电流密度下依然维持200mAh/g的容量。
实施例4:本实施例的自上而下制备锂离子电池用硒碳复合正极材料的方法具体步骤如下:
(1)选取的锌盐为ZnNO3·6H2O,控制2-甲基咪唑和锌盐的摩尔比例为5:1,搅拌至溶液分散均匀后静止孵化24 h,产物离心分离、干燥。
(2)将步骤(1)中所得粉末和硒粉按照1:2的质量比例置于同一坩埚的两侧,并保持硒粉处于管式炉上风方向,热处理时采用氩气为保护气体,在2o/min的升温速率下升温至500oC并保温3h,自然冷却至室温后,收集产物。
(3)将上述热处理后产物浸泡与1.0mol/L的三氯化铁溶液中,室温下搅拌,刻蚀12h。产物离心分离、鼓风干燥后得到最终产物。
(4)对该方法下合成的硒碳复合材料进行物象和形貌分析,该方法所制备的产物为形貌与实施例3中相似,但多面体的空间结构保持更为完好,无破损现象。XRD分析证实该实施例下的产物也仅存在硒和碳的衍射峰无其它物象存在,进一步分析后证实该方法下所得产物中硒的含量高达67wt%。
(5)将制备好的硒碳复合正极材料,按Se@C:导电碳黑: PVDF=80 :10 :10的质量比例进行混合,加入适量的溶剂 NMP,将其混匀,涂于铝箔上,随后转移至真空干燥箱中100oC下真空干燥8h,制成正极;采用金属锂片为负极;电解液为 1mol/L 的 LiPF6溶解EC:DEC:DMC的混合溶剂中(体积比1 :1 :1),在充满氩气的手套箱中组装成2032扣式电池。对制备好的扣式电池进行充放电测试。测试结果表明该实施例所制备的硒碳复合材料表现出优异的倍率性能和很好的循环稳定性在1000mA/g的电流密度下经300圈循环后依然维持280mAh/g的容量。
本发明为一种自上而下制备硒碳复合电极材料的方法,该方法首先选择和Se具有较强亲和力的金属离子(M)为中心,和所选的金属离子具有配合力的有机分子为配体,制备金属有机框架化合物前驱体,随后以Se粉为硒源,在低温下使Se和金属有机框架化合物发生反应制备金属硒化物包覆碳结构(MSe@C),最后采用化学刻蚀的方法移除金属M,得到目标的硒碳复合材料(Se@C)。该自上而下的合成方法能有效的克服传统制备硒碳复合材料的方法中吸附块体Se的存在,保证了Se的存在位点具有高度的选择性,且制备产物中Se的含量较高(>60wt.%)。
上述说明书和实施案例中描述的仅说明本发明的原理和最佳实施例的过程,在不脱离本发明实际情况以及原理情况下,本发明还会尝试利用其他金属化合物框架,这些变化和改进都落入要求保护的发明范围内。

Claims (9)

1.一种制备锂离子电池用硒碳复合正极材料的方法,其特征在于,包括以下步骤:
(1)将锌盐、2-甲基咪唑分别分散于甲醇中,锌盐溶液在搅拌的同时将2-甲基咪唑溶液加入其中,搅拌或超声使之分散均匀;随后静止陈化,然后离心分离、烘干得到干燥粉末;
(2)将一定比例的硒粉与步骤(1)中所得粉末置于同一坩埚中,使Se粉置于上风口,在密闭的条件下以惰性气体为保护气体进行热处理,控制反应的升温速率为1o/min~10o/min,反应温度为400~800 oC,热处理时间为2-12h;
(3)将上述制备产物侵泡在含有三价铁离子的溶液中进行化学刻蚀,以移除其中的金属离子,随后离心分离、烘干得到干燥的目标产物。
2.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,
步骤(3)中所述化学刻蚀的反应时间为2~48h。
3.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,步骤(1)中所述锌盐为Zn(NO3)2·6H2O、ZnCl2·6H2O、或ZnSO4·6H2O,且均为分析纯。
4.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,步骤(1)中所述2-甲基咪唑和锌盐的摩尔比例为3:1~10:1,最优比例为4:1。
5.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,步骤(1)和步骤(3)中所述干燥步骤为在小于80℃的温度下将目标产物干燥至恒重。
6.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,步骤(2)中所加的Se粉和步骤(1)所得粉末的质量比例为1:1~5:1。
7.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,步骤(2)中所述惰性保护气体为氩气、氮气、或氢气且纯度均高于99.9%。
8.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,步骤(3)中所述三价铁盐为FeCl3、Fe(NO3)3、或Fe2(SO4)3且纯度均为分析纯。
9.根据权利要求1所述的一种制备锂离子电池用硒碳复合正极材料的方法, 其特征在于,
步骤(3)中所述三价铁盐的溶液浓度为0.1~3mol/L,反应温度为常温。
CN201910182405.4A 2019-03-12 2019-03-12 一种制备锂离子电池用硒碳复合正极材料的方法 Withdrawn CN109920992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910182405.4A CN109920992A (zh) 2019-03-12 2019-03-12 一种制备锂离子电池用硒碳复合正极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910182405.4A CN109920992A (zh) 2019-03-12 2019-03-12 一种制备锂离子电池用硒碳复合正极材料的方法

Publications (1)

Publication Number Publication Date
CN109920992A true CN109920992A (zh) 2019-06-21

Family

ID=66964339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910182405.4A Withdrawn CN109920992A (zh) 2019-03-12 2019-03-12 一种制备锂离子电池用硒碳复合正极材料的方法

Country Status (1)

Country Link
CN (1) CN109920992A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244445A (zh) * 2020-01-16 2020-06-05 中南大学 锂硫电池复合正极活性材料及其制备和应用
CN111463406A (zh) * 2020-04-09 2020-07-28 江苏师范大学 锂离子电池用钴掺杂锌基金属硒化物复合电极的制备方法
CN112909259A (zh) * 2021-02-04 2021-06-04 陕西科技大学 一种电磁感应加热法制备FeNi合金催化生长的碳纳米管材料的方法
CN117832501A (zh) * 2024-03-05 2024-04-05 唐山师范学院 一种多孔碳复合电池电极材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244445A (zh) * 2020-01-16 2020-06-05 中南大学 锂硫电池复合正极活性材料及其制备和应用
CN111244445B (zh) * 2020-01-16 2021-04-27 中南大学 锂硫电池复合正极活性材料及其制备和应用
CN111463406A (zh) * 2020-04-09 2020-07-28 江苏师范大学 锂离子电池用钴掺杂锌基金属硒化物复合电极的制备方法
CN111463406B (zh) * 2020-04-09 2022-03-25 江苏师范大学 锂离子电池用钴掺杂锌基金属硒化物复合电极的制备方法
CN112909259A (zh) * 2021-02-04 2021-06-04 陕西科技大学 一种电磁感应加热法制备FeNi合金催化生长的碳纳米管材料的方法
CN117832501A (zh) * 2024-03-05 2024-04-05 唐山师范学院 一种多孔碳复合电池电极材料及其制备方法
CN117832501B (zh) * 2024-03-05 2024-05-24 唐山师范学院 一种多孔碳复合电池电极材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107226475B (zh) 一种钾离子电池正极材料及其制备方法和钾离子电池
CN109920992A (zh) 一种制备锂离子电池用硒碳复合正极材料的方法
CN101719546A (zh) 掺杂纳米氧化物的锂离子电池正极材料的制备方法
CN106340633B (zh) 一种高性能锂离子电池用复合纳米材料及其制备方法
CN110176601A (zh) 一种碳包覆氧化亚硅负极材料及其制备方法和应用
CN104037412B (zh) 高性能锂离子二次电池负极材料多级结构纳米空心球的制备方法
CN108183213B (zh) 一种三氧化二铁/碳/碳纳米管锂离子电池负极材料的制备方法
CN106981643B (zh) 一种生物凝胶碳化制备双层碳包覆氧化亚锰电极材料的方法
CN109873134A (zh) 原位碳封装的铁基硫族化合物、电极材料、钠离子电池及其制备方法
CN106531986B (zh) 一种氮化钛/氮化硅/氮化碳/石墨烯复合纳米材料及其制备方法
CN106252661A (zh) 硫化铋/碳纳米管复合材料及其制备方法和应用
CN107317001A (zh) 一种硫化锡/氮掺杂碳化细菌纤维素锂离子电池负极材料及其制备方法
CN110504424A (zh) 一种多孔球状磷化二铁锂离子电池负极材料及其制备方法
CN106887572A (zh) 一种锑‑碳复合材料及其制备方法和应用
CN109888236B (zh) 一种锂硫电池正极材料的制备方法
CN108110242A (zh) 一种锂离子电池用镍锰钴复合材料的制备方法
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN110459768A (zh) 一种八面体结构磷化铁/碳复合材料及其制备方法与应用
CN101920953B (zh) 一种球形LiVPO4F正极材料的制备方法
CN107959024A (zh) 一种钠离子电池负极用片状Sb2Se3纳米晶的制备方法
CN107845787B (zh) 石榴状Fe3O4@N-C锂电池负极材料制备方法
CN113471421B (zh) 锂硫电池复合正极材料的制备方法
CN110165181A (zh) 一种富锂锰基/石墨烯复合正极材料、制备方法及其应用
CN105206824B (zh) 一种高比容量富锂正极材料的制备方法
CN112002893B (zh) 一种锑基复合金属硫化物作为钾离子电池负极材料的研究

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190621