CN1097854C - 半导体装置及其保护方法 - Google Patents

半导体装置及其保护方法 Download PDF

Info

Publication number
CN1097854C
CN1097854C CN96112047A CN96112047A CN1097854C CN 1097854 C CN1097854 C CN 1097854C CN 96112047 A CN96112047 A CN 96112047A CN 96112047 A CN96112047 A CN 96112047A CN 1097854 C CN1097854 C CN 1097854C
Authority
CN
China
Prior art keywords
type
mentioned
voltage
semiconductor device
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96112047A
Other languages
English (en)
Other versions
CN1155784A (zh
Inventor
大村一郎
小仓常雄
松下宪一
二宫英彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1155784A publication Critical patent/CN1155784A/zh
Application granted granted Critical
Publication of CN1097854C publication Critical patent/CN1097854C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体装置,具有:主开关器件,具有高电压一侧主电极(12)、低电压一侧主电极(18)和第1栅极电极(17);电场检测器件(20a),具有与主开关器件产生的规定电场相对应,以不通过上述主开关器件内部的路径,使上述高电压一侧主电极与上述第1栅极电极之间变成导通状态的MOS构造(23,26,27);导通电压施加装置(Rg),依据上述导通状态给上述第1栅极电极加上导通电压。

Description

半导体装置及其保护方法
本发明涉及半导体装置及其保护方法,说得更详细一些的话,涉及可以保护已处于截止状态或将达到截止状态下的开关器件使之免受所加高压破坏的电力控制用的半导体装置及其保护方法。
最近,作为电力控制用的半导体器件,IG BT(绝缘栅双极晶体管)受到人们的重视。该IGBT是具有MOS构造的双极型器件,具有电力-MOSFET的高速开关特性和双极型晶体管的高耐压和高导通特性。
这种IGBT,例如如图1所示,在电压为E1的直流电源301和电机线圈302的串联电路内以漏极电极D为正电位一侧,以源极电极S为负电极一侧进行连接,用作主开关器件。在这里,通过用栅极驱动电路303控制IGBT的栅极电极G的电位,控制串联电路的通断。
这种通断控制的定时图例如示于图2。图2中,V是IGBT的源-漏极之间的电压(以下也称之为主电压),I是漏-源之间的电流。或串联电路的电流。Vg是栅极电压。
现在设Vg=0,IGBT是截止状态(时刻t=T1)。即,I=0,V几乎与电源电压相等。其次,给Vg加上规定电压,令IGBT变成导通状态(时刻t=T2)。在这一接通的时候,V虽然快速地下降,但I却缓冲增加。另外,这时线圈302,若设自感为L,则将储有(1/2)LI2的能量。
再其次,令Vg=0,IGBT变成为截止状态(时刻t=T3)。在这一切断之时,V在暂时上跳到比电源电压E1还高的值之后降了下来并稳定于电源电压值E1。在这里,V内上跳部分是因为在IGBT由导通状态变为截止状态的时候,IGBT得到了线圈的能量而发生的。但是,若在IGBT中,和其它的半导体器件一样,当加上比工作时允许的电压还高的电压(以下叫作过电压)时。遭受破坏的可能就会变大。于是必须把V的上跳部分的过电压抑制到某一值以下以保护IGBT。
IGBT的过电压状态,如上所述,是在IGBT为截止状态的时候,或正在向截止状态转变的状态的时候。即,IGBT的过电压状态。是在栅极电压Vg为0或为负的低值的时候,或者在栅极电压Vg下降的时候。因而,要想保护IGBT采用提高栅极电压Vg使IGBT为半导通的办法,降低IGBT的电阻以不使主电压超过允许值是有效的。
IGBT其本身具有不使电压加到超过某一值的功能。这种功能叫作自箝位功能,该值的电压叫作自箝位电压。但是,这种自箝位功能由于是起因于高电场所产生的雪崩现象的电流导通故难于控制,往往用IGBT内的局部的电流集中而引起IGBT的破坏。
因而,为了保护IGBT免受这种切断时的这电压的破坏。通常在漏-栅之间,如图3所示,接上一个稳压二极管ZD。此外,还把栅极介以电阻Rg连接到驱动电路303上。其次用图4对该保护电路进行详细说明。
图4的断面图模式性地示出了这种IGBT及其周边的构成。该IGBT在P型漏极层311上边形成有漏极电极312,在与P型漏极层311的漏极电极312相反的一侧的表面上形成有n型基极层313。在n型基极层313的表面上选择性地扩散形成有P型基极层314。各P型层314的表面上选择性地形成有n型源极层315。
在被n型源极层315和n型基极层313夹在中间的P型基极层314上边界以绝缘膜316设有栅极电极317。此外,在P型基极层314上边和n型源极层315上边设有源极电极318。
接着,栅极电极317介以栅极电阻Rg被连到栅极驱动电路303上。
此外,稳压二极管ZD,为了保护IGBT免受上述过电压的破坏被设于栅极电极317与漏极电极312之间。
为了使这种IGBT导通,在把对于源极电极318一侧变成为正的电压(主电压)加到漏极电极312一侧的状态下,把对于源极电极318为正的电压加到栅极电极317上。以此,在被n型基极层313和n型源极层315夹在中间的P型基极层314的表面上形成n沟。电子电流流进n型基极层313。另一方面,空穴电流则从P型漏极层311流入n型基极层313,并借助于此在n型基极层313上产生导电调制使IGBT导通。
另一方面,为了使之切断,则要给栅极电极317加上对源极电极318为0或负的电压。以此,使n沟消失,使得向n型基极层313的电子注入消失。IGBT迅速地变成切断。即使是在这种状态下仍加有主电压。
在此,IGBT,如上所述在IGBT为截止状态的时候。或正在向截止状态转变的状态的时候,易于变成过电压状态。
在示于图4的构成中,为了防止这种过电压状态的产生,设有稳压二极管ZD。该稳压二极管ZD具有比IGBT的自箝位电压低的齐纳电压(反向耐压)。稳压二极管ZD当加上超过齐纳电压的反方向电压时电流就流动。因此,当把超过齐纳电压的主电压加到IGBT的漏一源之间的时候,通过稳压二极管ZD,电流从漏极一侧流向驱动电路303。因而,借助于栅极电阻Rg所形成的压降。使栅极电压Vg变高、使IGBT变成半导通以保护IGBT免受过电压的破坏。
这样一来,在现有的IGBT中借助于使用稳压二极管,可以防止过电压所引起的器件破坏,然而还存在着下述那样的问题。
首先,在漏-源之间的主电压因电感而上跳到超过电源电压值以上时。虽然IGBT因稳压二极管ZD而被保护为免受过电压破坏,但这时,由于稳压二极管ZD的负阻。将产生很大的噪声。这一噪声将成为使栅极误动作或IGBT遭破坏的原因。
此外,稳压二极管ZD,齐纳电压的不均一性大,即便在相同的电路中使用相同产品的稳压二极管ZD也不一定可相同的电压进行保护。由于存在着这种齐纳电压的分散性,故被保护电压(箝位电压)的设计变得困难。再有,箝位电压一旦把稳压二极管ZD组装到电路中来之后就不能变更。因此,相应于IGBT的工作条件和温度或电路条件来改变箝位电压是困难的。
此外,由于工作电压高,IGBT的箝位电压也变成为高的值。但是,稳压二极管ZD的齐纳电压与IGBT的箝位电压相比却是很低的值。因此,图4中的稳压二极管ZD实际上是把多个稳压二极管作成串联起来构成的。故存在着必须有大的面积的问题。
再有,在主电压突然上升时。当其电压上升率dv/dt大时,IGBT有时会受到破坏。这种破坏叫作dv/dt破坏。在使用了稳压二极管ZD的IGBT中,要防止dv/dt破坏是困难的。
本发明的目的是提供一种极少产生噪声并可稳定地保护不受过电压破坏的半导体装置及其保护方法。
为了实现上述目的,在本发明的第1半导体装置中,特征是具有:主开关器件,它具有高电压一侧的主电极,低电压一侧主电极和第1栅极电极;电场检测器件。它具备MOS构造,这种MOS构造与该主开关器件中所产生的规定的电场相对应。以与上述主开关器件的内部不相同的路径。使上述高电压一侧主电极及上述第1栅极电极之间形成导通状态,导通电压施加装置,用于根据上述导通状态给上述第1栅极电极加上通导电压。
此外,上述MOS构造也可具备第1导电型半导体层和在该第1导电型半导体层和在该第1导电型半导体层上形成的绝缘膜,在这种情况下。也可在上述第1导电型半导体层的与上述绝缘膜相邻接的部分上形成第2导电型沟造层或者第2导电型屏蔽层。
另外,在本发明的第2半导体装置中,特征是具有:主开关器件,它具有高压一侧主电极、低电压一侧主电极和第1栅极电极;电场检测器件,它具备:已电连到上述高电压一侧主电极上的第1导电型半导体层、在该第1导电型半导体层表面上选择性地形成的多个第2导电型半导体层和在被这些第2导电型半导体层夹在中间的第1导电型半导体层上介以栅极绝缘膜形成的并被电连到上述第1栅极电极上的第2栅极电极,并与在上述主开关器件上所产生的规定的电场相对应,以与上述主开关器件的内部不相同的路径使上述高电压一侧主电极与上述第1栅极电极之间形成导通状态;导通电压施加装置,用于根据上述导通状态给上述第1栅极电极加上通导电压。
另外,在上述第2半导体装置中,也可以形成第2导电型沟道层或第2导电型屏蔽层,使之把上述第2导电型半导体层夹在中间。
此外,上述第2半导体装置借助于在上述第2导电型半导体层内选择性地形成第1导电型发射极层,也可使上述电场检测器件具有MOSFET构造。
还有,上述第2半导体装置,也可以具有电连于上述第1栅极电极与第2栅极电极之间的可变电源。
此外,本发明的第3半导体装置具备有:主开关器件,它具有高电压一侧主电极,低电压一侧主电极和第1栅极电极;电场检测器件,它具有已电连到上述高电压一侧主电极上的第1导电型半导体层、在该第1导电型半导体层上边介以绝缘膜形成,并与上述1开关器件的电场相对应,使与上述绝缘膜之间的界面的电阻下降的半导体层;导通电压施加装置,用于根据上述电阻的降低给上述第1栅极电极加上导通电压。
此外,上述第1至第3半导体装置的主开关器件可以是IGBT,也可以是MOSFET。
还有,这种半导体装置的保护方法是一种具有主开关器件(该器件具有高电压一侧主电极、低电压一侧主电极和第1栅极电极)和电场检测器件(具有MOS构造)的半导体装置的保护方法,它具有导通步骤(用于使上述电场检测器件与在上述主开关器件产生的规定的电场相对应,以不通过上述主开关器件的内部的路径,合外述高电压一侧主电极与上述第1栅极电极之间变成导通状态)和加电压步骤(用于根据上述导通状态,导通加压装置给第1栅极电极加上导通电压)。
其次,对以上内容进行补充性说明。
本发明的核心是用具有MOS构造的电场检测器件代替现有的稳压二极管,并用该电场检测器件来保护主开关器件。详细说来就是:MOS构造与所加电压相对应,使与绝缘膜之间的界面上的半导体的载流子状态发生变化。因此,在主开关器件为截止状态或将要达到截止的状态下,在变成了超过箝位电压的高电场时,由于MOS的载流子状态的变化,以与主开关器件的内部不同的路径把高电压一侧主电极与第1栅极电极之间变成导通状态,使来自高电压一侧主电极的电流介以电场检出器反馈到第1栅极电极上去。这样一来,使第1栅极电极的栅极电压增加并使主开关器件半导通。使主开关器件的电阻降低,因而可以使高电压一侧主电极-低电压一侧主电极的主电压抑制到低于箝位电压。另外,这里所说的所谓与主开关器件的内部不同的路径,说的是从电路上看来不同的路径的意思,即便是主开关器件与电场检测器件形成为一个整体也没什么关系。
这样一来,本发明在过压保护中利用了MOS构造的载流下状态的变化所形成的导通状态。不用雪崩现象所形成的伴有负阻的局部性的电流导通。为此,本发明与使用了稳压二极管的现有的情况相比,可以减少噪声的产生,可以稳定地保护主开关器件免受过电压破坏。就是说,由于稳压二极管也因在超过5伏时利用雪崩现象所形成的电流导通故易于产生噪声、但倘采用本发明,则这种噪声就可以避免。
此外,这里所说的MOS构造,除了金属-氧化膜-半导体的三明治构造的意味之外,还包含有实质上起着金属-氧化膜-半导体的作用的构造的意思。比如说包含不用金属而代之以设置多晶半导体的构造、也包括不用氧化膜而代之以设置氧化膜以外的绝缘膜的构造。
在这种MOS构造中,半导体层是第1导电型半导体层,左主开关器件的主电压比箝位电压低的情况下,必须使电场检测器件变成非导通状态。要把电场检测器件变成非导通状态有以下的第1或第2方法。
作为第1方法,在比箝位电压低的电压中,对MOS构造进行控制,使与第1导电型半导体层的绝缘膜之间的界面上形成第2导电型沟道层,并用以该第2导电型沟道层屏蔽来自高电压一侧电极的电流。
作为第2方法,预先设置高阻的第2导电型屏蔽层,并用该第2导电型屏蔽层屏蔽来自高电压一侧主电极的电流。
电场检测器件,比如具体地说,先在第1导电型半导体层的表面上形成选择性地形成的多个第2导电型半导体层,然后在被这些第2导电型半导体层夹在中间的第1导电型半导体层上边介以栅极绝缘膜形成第2栅极电极。接下来,使第2栅极电极电连到第1栅极电极上,并形成为使第1导电型半导体层电连到高电压一侧主电极上。
在与被第2导电型半导体层夹在中间的第1导电型半导体层的栅极绝缘膜邻接的部分上也可以形成第2导电型沟道层或第2导电型屏蔽层。
此外,若在第2导电型半导体层内形成第1导电型发射极层,并使栅极绝缘膜和第2栅极电极向外延伸到该第1导电型发射极层上边,则可以在被第1导电型发射极层和第1导电型半导体层夹在中间的第2导电型半导体层上形成第1导电型沟道。借助于该第1导电型沟道的形成使电场检测器件变成为导通状态,使高电压一侧主电极与第1栅极电极之间变成为导通状态。当采用所谓的MOSFET时,由于电场检测器件本身可兼用作导通电压施加装置,可使电路构成简化,故是理想的。
在想使电场检测器件变成导通状态的电压即箝位电压可变的情况下,在第1栅极电极与第2栅极电极之间设以已电连好了的可变电源并使第2栅极电极的栅极电压可变即可。
其次,作为电场检测器件的另一构成例,先在第1导电型半导体层上边介以绝缘膜形成半导体层。再在该半导体层上与在主开关器件上产生的电场相对应用具有在与绝缘膜之间的界面的电阻降低的性质的构造,并根据该阻的降低给第1栅极加上导通电压。在这种情况下,起MOS构造中的金属作用的是第1导电型半导体层。
本发明的核心,如前所述,在于主开关器件的保护。只要主开关器件是可用栅极驱动的器件,什么器件都行,下边举一个例子。
例如,主开关器件可以使用具有高阻抗的第1导电型基极层,在与该第1导电型基极层之间将形成pn结的第2导电型发射极层,选择性地形成于第1导电型基极层表面上的第2导电型基极层,选择性地形成于第2导电型基极层内的第1导电型发射极层,并用上述第1栅极电极在被上述第1导电型发射极层和上述第1导电型基极层夹在中间的上述第2导电型基极层上形成第1导电型沟道层的构造。作为这样的构造的主开关器件有IGBT,MOS可控制等等。
此外,本发明还可用于MOSFET、GTO、可控硅、SIT、MESFET、SIThy等等中去。
此外,本发明还可以用于平面构造、沟槽(trench)构造、台面构造、倒台面构造等的各种主开关器件中去。此外,主开关器件的构造可以是纵式或横式。
本发明的这些目的和这些之外的目的、特征和利益,用下边的详细说明中的叙述和附图将会进一步变得明确起来。另外,附图中的同一种类的参照标号,在为数众多的图中表示同等的部分。
图1的电路图示出了有主开关器件的现有的串联电路。
图2是用于说明现有的串联电路的通断控制的定时图。
图3是一电路图,它示出了带保护用的稳压二极管的现有的串联电路。
图4的断面图模式性地示出了现有的IGBT及其周边的构成。
图5的断面图模式性地示出了本发明的第1实施例的半导体装置的构成。
图6的电路图模式性地示出了该实施例中的半导体装置的构成。
图7的同一实施例中的箝位电压的波形图。
图8的波形图示出了该实施例中的箝位电压的测定结果。
图9是同一实施例中的现有的比较例的波形图。
图10的断面图模式性地示出了本发明的第2实施例的半导体装置的构成。
图11的断面图模式性地示出了本发明的第3实施例的半导体装置的构成。
图12的断面图模式性地示出了本发明的第4实施例的半导体装置。
图13的断面图模式性地示出了本发明的第5实施例的半导体装置的构成。
图14的平面图模式性地示出了该实施例中的变形构成。
图15用于说明一般性地dv/dt破坏。
图16的断面图模式性地示出了本发明的第6实施例的半导体装置的构成。
图17是同一实施例中的箝位电压的波形图。
图18A用于说明同一实施例中的dv/dt的抑制。
图18B用于说明同一实施例中的dv/dt的抑制。
图19的断面图模式性地示出了本发明的第7实施例的半导体装置的构成。
图20的断面图模式性地示出了本发明的第8实施例的半导体装置的构成。
图21的断面图模式性地示出了本发明的第9实施例的半导体装置的构成。
图22的断面图模式性地示出了本发明的第10实施例的半导体装置的构成。
图23的断面图模式性地示出了本发明的第11实施例的半导体装置的构成。
图24的断面图模式性地示出了本发明的第12实施例的半导体装置的构成。
图25的断面图模式性地示出了本发明的第13实施例的半导体装置的构成。
图26示出了同一实施例中的半导体装置的电场与电阻的关系。
图27的斜视断面图模式性地示出同一实施例中的半导体装置的构成。
图28是同一实施例中的半导体装置的等效电路图。
图29的断面图模式性地示出了本发明的第14实施例的半导体装置的构成。
图30是同一实施例中的半导体装置的等效电路。
图31的断面图模式性地示出了本发明的第15实施例的半导体装置的构成。
图32的断面图模式性地示出了本发明的第16实施例的半导体装置的构成。
图33的断面图模式性地示出了本发明的第17实施例的半导装置的构成。
图34的断面图模式性地示出了本发明的第18实施例的半导体装置的构成。
图35的局部断面图模式性示出了同一实施例中的半导体装置的构成的一部分。
图36示出了同一实施例中的半导体装置的电场与电阻的关系。
图37的局部断面图模式性地示出了本发明的第19实施例的半导体装置的构成的一部分。
图38示出了同一实施例中的半导体装置的电场和电阻的关系。
图39的局部断面图模式性地示出了本发明的第20实施例的半导体装置的构成的一部分。
图40示出了同一实施例中的半导体装置的电场与电阻的关系。
图41的局部断面图模式性地示出了本发明的第21实施例的半导体装置的构成的一部分。
图42的局部断面图模示性地示出了本发明的第22实施例的半导体装置的构成的一部分。
图43的局部断面图模式性地示出了本发明的第23实施例的半导体装置的构成的一部分。
图44示出了同一实施例中的半导体装置的电场与电阻的关系。
图45的断面图模式性地示出了本发明的第24实施例的半导体装置的构成。
图46的断面图模式性地示出了本发明的第25实施例的半导体装置的构成。
图47的断面图模式性地示出了本发明的第26实施例的半导体装置的构成。
图48的断面图模式性地示出了本发明的第27实施例的半导体装置的构成。
图49的断面图模式性地示出了本发明的第28实施例的半导体装置的构成。
图50的断面图模式性地示出了本发明的第29实施例的半导体装置的构成。
图51的断面图模式性地示出了本发明的第30实施例的半导体装置的构成。
图52的断面图模式性地示出了本发明的第31实施例的半导体装置的构成。
图53的断面图模式性地示出了本发明的第32实施例的半导体装置的构成。
图54的断面图模式性地示出了本发明的第33实施例的半导体装置的构成。
图55的断面图模式性地示出了本发明的第34实施例的半导体装置的构成。
图56的断面图模式性地示出了本发明的第35实施例的半导体装置的构成。
图57的断面图模式性地示出了本发明的第36实施例的半导体装置的构成。
图58的断面图模式性地示出了本发明的第37实施例的半导体装置的构成。
图59的断面图模式性地示出了本发明的第38实施例的半导体装置的构成。
以下边参看附图边说明本发明的实施例。另外,在以下的实施例中设第1导电型为n型,第2导电为p型。
第1实施例
图5的断面图模式性地示出了本发明的第1实施例的半导体装置的构成。图6的电路图模式性地示出了该半导体装置的构成。
在图5中,参照标号11是作为第2导电型发射极层的P型漏极层,在P型漏极层11的一方的表面上形成有作为高电压一侧主电极的漏极电极12。
在与P型漏极层11中的漏极电极12相反一侧的表面上形成了作为第1导电型基极层的高阻的n型基极层13。在n型基极层13的表面上选择性地扩散形成有作为第2导电型基极层的P型基极层14。各P型基极层14的表面上选择性地形成有作为第1导电型发射极层的n型源极层15。
在被n型源极层15和n型基极层13夹在中间的P型基极层14上边,介以使用了氧化膜的栅极绝缘膜16设有第1栅极电极17。另外,在P型基极层14上边及n型源支15上边设有作为低电压一侧主电极的源极电极18。
在P型漏极层11和n型基极层13之间还形成有n型缓冲层19。
这样一来,作为主开关器件的平面IGBT就形成了。
此外,栅极电极17介以栅极电阻Rg被连接到栅极驱动电路上。
电场检测器件20a设于IGBT的外部,使得IGBT的漏极电极12与第1栅极电极电连。
该电场检测器件20a采用了MOSFET构造,具体地说形成为上述构造。n型漏极层21设于漏极电极12一侧,在该n型漏极层21的一方的表面上设有漏极电极22。该漏极电极22介以二极管Di被连到漏极电极12上。
二极管Di用于阻止电流通过电场检测器件20a从栅极驱动电路流向漏极电极12一侧,电场检测器件20a和二极管Di的串联配置顺序倒过来也可以。
在n型漏极层21的与漏极电极22相反一侧的表面上形成作为第1导电型半导体层的n型基极层23、在该n型基极层23的表面上选择性地扩散形成有作为第2导电型半导体层的2个P型基极层24。在各P型基极层24的表面上形成有作为第1导电型发射极层的n型源极层25。
在被n型源极层25夹在中间的n型基极层23和P型基极层24上边,介以栅极绝缘膜26,设有第2栅极电极27。另外,在P型基极层24上边和n型源极层25上边设有源极电极28。
而且,第2栅极电极27介以栅极电阻Rc和可变电源Vc连到第1栅极电极17上去。此外,源极电极28也连接到第1栅极电极17上。
这样构成的半导体装置如下述那样地被保护为不受过电压破坏。
当为了关断IGBT而用栅极驱动电路给栅极电阻Rg的一端加上负的电压时,第1栅极电极17的栅极电压(以下叫作第1栅极电压)就开始下降。随着第1栅极电压的下降,IGBT的源-漏间的主电压开始上升,并借助于密勒效应使第2栅极电压变为几乎恒定。
在这期间,第2栅极电极27由可变电源Vc加上负电压。因此,在被P型基极层24夹在中间的n型基极层23的表面上形成了P型沟道层。由于IGBT的主电压所产生的电场被该P型沟道层屏蔽,故第2栅极电极27的电位不变化。为此,电场检测器件20a维持非导通状态。
接着,当IGBT的主电压由增加到规定值,IGBT内部的电场上升到规定的电场时,电场检测器件20a内的电场上升使P型沟道层消灭,在电场检测器件20a漏-栅之间将产生电容。就是说,在电场检测器件20a中,由于电场的上升,因与P型沟道层相接连并在n型基极层23内存在着的耗尽层伸展使P型沟道层消灭而到达栅极绝缘层,介以这些耗尽层和栅极绝缘膜的电容把漏-栅之间连接起来。其结果是:第2栅极电极27的栅极电压(以下,称之为第2栅极电压)急剧上升使该第2栅极电压与源极电极28的电压的极性反转。即,第2栅极电压变成为正电压,由于源极电极28上加有负的电压,故在被n型源极层25和n型基极层23夹在中间的P型基极层24的表面上将形成n型沟道层,电子电流流入n型基极层23,使电场检测器件20a的MOSFET构造接通变成为导通状态。
因此,电流就通过电场检测器件20a从IGBT的漏极电极12流向IGBT的第1栅极电极17、并因栅极电阻Rg的压降使第1栅极电压上升。这样一来,因为IGBT变为半导通而使IGBT的电阻下降,得以保护IGBT免受过电压破坏。
在这里,使电场检测器件20a变导通状态的IGBT的主电压,即箝位电压依赖于P型沟道层的单位面积的累积电荷而变化。该累积电荷可依赖于可变电压Vc而变化。
在半导体中应用了Si,在绝缘膜中应用了SiO2的情况下,累积电荷Q可用下述(1)式表示。
    Q=(εox·Vc)/tox                         …(1)
其中εox是SiO2的常数,Vc为可变电源的Vc的负电压,tox为栅极绝缘膜26的膜厚。
而箝位电压Vclamp可用下述(2)式表示。
    Vclamp=Q2/(2qN·εsi)                    …(2)
其中q为单位电荷,N为n型基极层23的杂质浓度、εsi为Si的介电常数。
从式(1)和式(2)可得:
    Vclamp=(εox 2·Vc 2)/(2qN·εsi·tox 2)    …(3)
因而,Vc越高则箝位电压将变工高,tox越厚则箝位电压将变得越低。
此外,当加在第2栅极电极27上的电压太高时。电场检测器件20a将被破坏,故Vc有一理想的范围,其范围可用下述(4)式表示。
    Vc≤(2.5×105·εsi·tox)/εox            …(4)
设绝缘膜26的膜厚为约100nm。则Vc的最大值约为7.5V。
绝缘膜26在与通常的栅极氧化膜同等的10nm~100nm的厚度下是可以使用的,但也可以厚于这一范围的膜厚。
这样一来,通过使Vc变化就可以使箝位电压可变。这一点在用现有的稳压二极管的装置中是不可能的。
还有,栅极电阻Rc被设定为上述电场检测器件20a的器件面积的每1cm2为10kΩ~1MΩ。
其次,在图7中示出了箝位电压的波形,在图7中,横轴为时刻,纵轴为漏极电压(主电压)。
就像从图7可以知道的那样,Vc高则箝位电压变高、Vc低则箝位电压变低。另外,图7的两条曲线表示是电感为恒定时的情况。
此外,实测箝位电压结果示于图8。在图8中横轴是时间t,其一个刻度为500ns。此外纵轴表示漏极电压V,电流I和IGBT的第1栅极电压Vg。漏极电压V一个刻度为200V。电流I的一个刻度为2A。第1栅极电压Vg的一个刻度为10V。
从图8可知,虽然在800V下进行了箝位但却得到了几乎无噪声的波形。
作为相对于此的比较例,把使用了稳压二极管的情况下的测定结果示于图9。横轴和纵轴的刻度与图8相同。
从图9可知,尽管进行了箝位,但在其波形上载有大的噪声。
如上所述,倘采用本实施例,则电场检测器件20a与高电场对应将变成导通状态,并使来自漏极电极12的电流反馈至第1栅极电极17使主开关器件变成半导通状态。以此,使主开关器件的电阻下降。把主电压抑制到箝位电压以下。在这样的过程中。由于不使用成为噪声根源的稳压二极管的雪崩现象和IGBT的自箝位功能。故减少了噪声的产生,且可进行稳定的保护。
而且,可以对应于保护电路中的可变电源的负电压Vc使箝位电压Vclamp可变。
第2实施例
图10的断面图模式性地示出了本发明的第2实施例的半导体装置的构成。在图10中,与图5相同的部分赋以相同的标号并省去了关于该部分的详细说明,以下相同。
本实施例的半导体装置与第1实施例的半导体装置有4点不同之处。第1点,电场检测器件20b与IGBT形成于同一基板上。第2点,在被P型基极层24夹在中间的n型基极层23的表面上预先形成了高阻P型屏蔽层29,并用该P型屏蔽层29来屏蔽电场。第3点,省掉了可变电源Vc。第4点,不用二极管Di,代之以设置稳压二极管ZD并把该稳压二极管ZD与电场检测器件20b之间的串联配置顺序颠倒了过来。
另外,这些4点的变形内容可分别独立实施,互相任意组合也是可实施的。另外,该稳压二极管ZD设计为辅助性地进行栅极保护,即使略去对电路工作也没什么妨害。
即使作成为以上的那种构造,由于P型屏蔽层29起着与第1实施例的半导体装置中的P型沟道层相同的作用,故过电压保护是可能的。在这里,电场检测器件20b变成为导通状态,是在P型屏蔽层29已完全耗尽化的时候。
另外,P型屏蔽层29的杂质浓度作成为与储备层(reserve层)的杂质浓度同等程度即可。
而可以省掉可变电源Vc的理由如下所述。
假定设置P型屏蔽层29并设置可变电源Vc,则上述的(1)式将被下述式(5)置换。
Q={(εox·Vc)/tox}+(q·Dp)                …(5)
其中Dp为P型屏蔽层29的单位面积的杂质总量。
若省去可变电源Vc,则(5)式的右边的最初一项将变成O。即结果变成箝位电压将随Dp而变化。因此,通过与所期望的箝位电压相对应地变化P型屏蔽层29的杂质浓度的办法,可以省去可变电源Vc
在这种情况下。虽然箝位电压被固定了。但由于借助于IGBT使必要的箝位电压几乎为恒定,故问题不大。另外,本实施例的电路构成比设有可变电源Vc的第1实施例更简洁。此外,本实施例和第1实施例一样,很少产生噪声。
在这里,在第2栅极电极27上也可预先对源极电极28加上比阈值低的正电压。这样一来,可以缩短形成n型沟道层之前的时间。也可加快过电压检测和第1栅极电极27的驱动速度。故是令人满意的。
此外,在将电场检测器件与IGBT之类的双极型器件在同一基板上形成的情况下,距双极型器件为n型基极层13的厚度1/20以上地方来形成,从不会影响n型基极层13中的等离子体(累积载流子)的观点看是人们所希望的。
此外,电场检测器件20b的下边的部分的P型漏极层11可以省去。
如上所述,倘采用第2实施例,则由于P型屏蔽层29起着与第1实施例中所半导体装置的P型沟道层一样的作用,故可以收到与第1实施例的效果一样的效果。
另外,由于电场检测器件20b与IGBT形成于同一基板上,故可以使芯片本身具有保护功能。
再有,通过省略可变电源Vc。可以简化电路构造。
第3实施例
图11的断面图模式性地示出了本发明的第3实施例的半导体装置的构成。
该半导体装置是第2实施例的变形构成,和第2实施例的半导体装置不同,设置可变化源Vc使得给源极电极28加正电压,且给栅极电极17加负电压。
采用这种构成,由于螺积电荷变成为(5)式那样,故与第2实施例不同,可把箝位电压作成为可变。
另外,由于已设置了可变电源Vc。故可以省去P型屏蔽层29。
第4实施例
图12的断面图模式性地示出了本发明的第4实施例的半导体装置的构成。
该半导体装置是第2实施例的变形构成,和第2实施例的半导体装置不同。电场检测器件20c的P型屏蔽层29a兼作IGBT的终端部分的P型储备层。因而,仅仅形成了一个P型基极层24、另外,第2栅极电极27a兼作终端部分的场平面(field plate)。
另外,参照标号30是n型的耗尽层停止器(stopper)层。
采用这样的构成,则除了第2实施例的效果之外,在芯片尺寸相同的情况下,可以实现主开关器件的保护功能,而不会减小主开关器件的有效面积。
第5实施例
图13的断面图模式性地示出了本发明的第5实施例的半导体装置的构成。
该半导体装置是第4实施例的变形构成,与第4实施例的半导体装置不同,P型基极层24与P型屏蔽层29a分离了开来。
采用这样的构成,由于变成为使电场检测器件20c具有MOSFET构造,故即使P型屏蔽层29a不完全耗尽化,也可在抑制噪声的同时,保护主开关器件使之免遭过电压破坏。
另外,如图13中的虚线所示。P型基极层24和P屏蔽层29a也可以部分地连在一起。
此外,如图13中点划线所示,把深的P型层31设置为与P型屏蔽层29a重叠,从耐压的观点考虑是理想的。
还有,P型基极层24与P型屏蔽层29a部分地连在一起的情况的平面图示于图14。在图14中,如用虚线围起来的那样,P型基极层24与P型屏蔽层29a分离开来的部分作为MOSFET而工作。
在以上的实施例中,对把电场检测器件用于过电压保护的例子进行了说明。下边,对为了防止dv/dt破坏而使用电场检测器件的例子进行说明。
第6实施例
在说明本实施例之前,在图15中示出了主开关器件中的dv/dt破坏的情况。图15是主开关器件为GTO的例子,但示出的是主开关器件被破坏的情景。
其次,图16是一断面图,它模式性地示出了本发明的第6实施例的半导体装置。
该半导体装置和第1实施例的半导体装置的不同之处有2点。第2点是形成了P型屏蔽层29。第1点是与电场检测器件20b并联地设有稳压二极管ZD。
在该构成中,稳压二极管ZD被用于过电压保护。电场检测器件20b被用于dv/dt抑制。
此外,在电场检测器件20b不是用于过电压保护而是用于dv/dt抑制的情况下,栅极电阻Rc希望处于电场检测器件20b的器件面积每1cm2数Ω~数KΩ的范围之内。
这里,在图17中示出了箝位电压的波形。在图17中横轴为时间,纵轴为漏极电压。
图17中的A的部分是用电场检测器件20b进行dv/dt抑制的部分,用B表示的部分是用稳压二极管ZD进行过电压保护的部分。就是说漏极电压上升并移往A的部分时的拐点表明用电场检测器件20b进行的抑制开始,而从A的部分进入B的部分时的拐点表明用稳压二极管进行的过电压保护的开始。
由于dv/dt用电场检测器件20b进行抑制,故即使在过电保护中使用和现有技术一样的稳压二极管ZD也可以减低噪声的产生。
当然,不用稳压二极管,而代之以在过电保护中使用电场检测器件,作2个电场检测器件组成的构成也行。
在用电场检测器件20b进行dv/dt抑制的情况下,用Rc抑制电压上升率dv/dt,而电电压上升率dv/dt的抑制开始电压用可变电源的负电压Vc进到控制。这一情况用图18A和图18B进行说明。
首先,在栅极电阻Rc为恒定且电压上升率dv/dt为恒定的情况下,如图18A所示,随着负电压Vc变高,控制开始的电压也将不断变高。
这回在令负电压Vc恒定控制开始的电压恒定的情况下,如图18B所示,随着栅极电阻Rc的变高,电压上升率dv/dt将不断降低。因而在上述的栅极电阻Rc的范围之内,为要防止dv/dt所产生的破坏,用栅极电阻Rc高的一方是理想的。
如上所述,倘采用本实施例,则除了第1实施例的效果之外。采用改变可变电源的的负电压Vc或栅极电阻Rc的办法,就可以依据装置的工作状态或电流密度,外部电路等等细致地对半导体装置进行保护。
下边要说明的三个实施例是在电压检测中使用电场检测器件,在IGBT的栅极驱动中使用别的器件的实施例。
第7实施例
图19的断面图模式性地示出了本发明的第7实施例的半导体装置的构成。
该半导体装置与第1实施例的半导体装置的不同之处有2点。一点是在电场检测器件20d中不设源极层,却设置了P型屏蔽层29。另一点是除电场检测器件20d之外,另外设置了n沟MOSFET或JFET。另外,在以下的各实施例中虽然是以n沟MOSFET为例进行的说明,但如前所述,该n沟MOSFET可用JFET置换。
n沟MOSFET的栅极被连接到第2栅极电极27上,源极则被接到IGBT的第1栅极电极上。此外,n沟MOSFET的漏极被接到+15V的电源上。
在这种构成中,与前述相同,电场检测器件20d检测到高电场后变成为导通状态,给n沟MOSFET的栅极加上正电压,驱动n沟MOSFET。n沟MOSFET变为导通状态并把电源电压加到IGBT的第1栅极电极17上使IGBT半导通。
如上所述,若采用本实施例,由于用电场检测器件20d检测电场故n沟MOSFET的耐压低也没问题。所以除了第1实施例的效果之外,过电压保护动作可以高速化。例如如图19所示,漏极电压约15V也可以。另外,在MOSFET的情况下,由于和JFET的情况相比栅极的阈值电压可以低,故动作还可进一步高速化。
第8实施例
图20的断面图模式性地示出了本发明的第8实施例的半导体装置的构成。
该半导体装置是第7实施例的变形构成,和第7实施例不同,设有偏置用电源VB,用于事先给n沟MOSFET的栅极加上比阈值低的正电压。
采用偏置用电源VB,  则因为预先把正电压加到了n沟MOSFET的栅极上,故驱动第1栅极电极的速度可以比第7实施例还快。
第9实施例
图21的断面图模式性地示出了本发明的第9实施例的半导体装置的构成。
该半导体装置被构成为不设第8实施例的偏置用电源VB,而从IGBT的栅极驱动电路获取n沟MOSFET的偏置用的电压。
具体的构成如下。
在IGBT为导通状态的时候,加于第1栅极电极上的正电压通过电连到该栅极电极上的Di1也加到电容器C1上,电容器C1被充电。充电结束后,电容器C1就可以进行与偏置用电源相同动作。对于电容器C1,第1栅极电极一侧将变成负的电位。该角的电位由稳压二极管ZD1及电容器C2决定。假定第1栅极电极一侧已变为正的时候,就可以用二极管Di2来阻止电流的流动。此外电阻R1用于使电流平坦化。
采用电容器C1,在图21中的A-B之间将产生使A侧为高电位的电位差。通过使2个电阻R2和R3来分担这一电位差的办法供给n沟MOSFET的栅极电压。该栅极电压由电阻值大的电阻R4决定。
同样地用2个可变电阻VR1和VR2供给第2栅极电压,第2栅极电压由电阻R5决定。
电容器C3被设置为用于防止n沟MOSFET与第2栅极电极27的短路。由于使用该电容C3,结果变成为电流的直流成分不能流过,只能流过变动部分。
采用这种构成,则即使省去偏置用电源也能工作,且与第8实施例相比可实现装置的小型化。
第10实施例
图22的断面图模式性地示出了本发明的第10实施例的半导体装置的构成。
该半导体装置是第6实施例的变形构成,和第6实施例的半导体装置不同,稳压二极管ZD被串联配置于电场检测器件20b与二极管Di之间。
在该构成中和第6实施例不一样,电场检测器件20b被用作过电压保护。串接稳压二极管ZD的理由是比如说主开关器件为约4.5KV的高耐压,在电场检测器件20b的耐压比该4.5KV低的情况下。使稳压二极管ZD来分担电压。
倘采用这一构成,则除去第6实施例的效果之外,结果变成为还具有在电场检测器件的耐压比主开关器件的耐压低的情况下可进行有效的保护这样的效果。
第11实施例
图23的断面图模式性地示出了本发明的第11实施例的半导体装置的构成。
该半导体装置与上述第1~第10实施例不同,是把穿通现象用于过电压保护的装置。即,在IGBT的漏极电极12一侧设有P型层32,并设有与该P型层32和作为中间层的n型层34相接连的电极33。另外,在n型层34的与P型层32相反一侧的面上设有P型层35,在P型层35上设置电极36并把该电极36连到第1栅极电极17上。用这些构成了电场检测器件20e。
其次,说明过电压保护动作。
中间层的n型层34被设计为使得用箝位电压进行完全耗尽化。因此,当已变成箝位电压时使n型层34耗尽化,使P型层32,35穿通。借助于这一穿通。电流流向电场检测器件20e、第1栅极电极的第1栅极电压变高,使IGBT半导通,对IGBT进行过电压保护。
即使作成这种构成,也和各实施例一样,可以在抑制噪声产生的同时,对主开关器件进行过电压保护。
第12实施例
图24的断面图模式性地示出了本发明的第12实施例的半导体装置的构成。
该半导体装置是第11实施例的变形构成,与第11实施例的半导体装置不同,不用P型层32,代之以在P型层35内设置与电极36接连的n型层37,并以P型层35为中间层。
即使作成这种构成也可得到与第11实施例相同的效果。
第13实施例
图25的断面图模式性地示出了本发明的第13实施例的半导通装置的构成。
该半导体装置在n型基极层13上边界以绝缘膜26形成有与栅极电极27等效的半导体层以取代上述第1~第10实施例的第2栅极电极27。
具体地说,这种装置是在与IGBT同一基板的n型基极层13上边介以绝缘膜26,在横方向上形成由n型层42a,P型层42b和n型层42c构成的npn构造的电场检测器件20g,npn构造42之中两端的n型层42a,42c连到检测电路上,检测电路连接到栅极驱动电路上而构成。
其中,npn构造42具有中央的P型层42b与n型基极层13中的电场E相对应使与绝缘膜26之间的交界面的电阻Rp下降的性质,这一P型层42b中的电阻Rp的下降介以两端的n型层42a,42c被检测电路进行检测。
检测电路由n型层42a,42c检测npn构造42的电阻Rp的下降,当该电阻Rp的下降超过了规定的阈值时,就向驱动电路送出驱动信号。
上述情况示于图26,横轴为电场E,纵轴为电阻Rp
接着,当驱动电路从检测电路接受到驱动信号之后,就把导通电压加到第1栅极电极17上。
这样一来,使IGBT导通,使n型基极层13中的电场E变小。
即,当IGBT处于截止状态或向截止状态转变的过程中加上了超过允许值的高电压时,若在n型基极层13中产生了电场E,则npn构造42的电阻Rp将与该电场E的大小相对应地下降、当该电阻Rp的下降超过阈值时,就地通电压加到第1栅极电极17上。使IGBT变成导通状态,使n型基极层13的电场E减小,因而可以阻上IGBT的破坏。
在这里用图27和图28做一更为具体的说明。
图27的斜视斜面图模式性地示出了该半导体装置的构成。图28是该半导体装置的等效电路图。
在与IGBT同一基板的n型基极层13上边介以绝缘膜26在多晶硅Si上横方向地形成由n型层42a,P型层42b及n型层42c构成的npn构造42、在npn构造42中,一方的n型层42a连到电源43上,另一方的n型层42c则介以电阻R连到第1栅极电极17上。
其中npn构造42,如图28所示,形成了把n型基极层13作成为与栅极电极等效的MOSFET。npn构造42的P型层42b既可以与n型层42a,42c匠一方形成电位上的短路,也可以电位上浮置。
现在,假定IGBT为截止状态,并从图中未画出的外部电路给漏极电极12加以了超过允许值的正电压,且给源极电极18加上了负电压。
漏极电极12的高电压作为超过允许值的高电场E加到n型基极层13上。该高电场E作用到npn构造42上,使得在与p型层42b中的绝缘膜26的界面上产生n型沟道层,该沟道使npn构造42的两端的n型层42a、42c短路。
这样一来,电源43介以npn构造42和电阻R连到第1栅极电极17上,给栅极电极17加上正电位。
借助于此,IGBT导通,n型基极层13中的高电场E变小。因而,可以阻止IGBT被破坏。
另外,当用示于图8的等效电路进行说明时,借助于已加到IGBT的漏极电极12上的正电压使npn构造42的MOSFET变成为导通状态的办法,把电源43的电压加到第1栅极电极17上,使IGBT导通,因而变成了阻止IGBT被破坏的动作。
这样一来,即使采用本实施例,也可进行与已设置第2栅极电极的情况相同的过电压保护。另外,也不必使npn构造42与IGBT邻接。
第14实施例
图29的断面图模式性地示出了本发明的第14实施例的半导体装置的构成。图30是该半导体装置的等效电路图。
该半导体装置是第13实施例的变形构成,是把电源43省掉以谋求周边构成的简化的装置,成为设置电容器C以取代电源43、该电容器C和IGBT的第1栅极电极17介以二极管Di连在一起的构成。此外,二极管Di的阳极连到第1栅极电极17上。阴极与电容器C连接。
借助于此,在IGBT为导通状态的时候。加于第1栅极电极17上的正电压就介以二极管Di也加到了电容器C上使电容器C充电。充电完毕之后,电容器C就可进行与电源的43相同的动作。
就是说,当因超过了允许值的高电场E使npn构造42变成为短路状态时,电容器C就被连接到npn构造42及电阻R上开始放电并把正电压加到第1栅极电极17上。这样,IGBT就可变为导通,就可阻止被破坏。
借助于采用这种构造,除在第13实施例中能得到的效果之外,与第13实施例相比可获得装置的小型化。
第15实施例
图31的断面图模式性地示出了本发明的第15实施例的半导体装置的构成。
该半导体装置是第14实施例的变形构成,在npn构造42与电容器C之间有一电阻Ra,在电容器C与二极管Di之间有一电阻Rb
电阻Ra用于调整电容器C的充电的时间常数,具有对电容器C和布线进行过电流保护的功能。
电阻Rb用于调整电容器C的放电时间常数,并可以调整加于第1栅极17的正电压。
即使做成这样的构造,也可以得到与第14实施例相同的效果,而且还可以个别地调整电容器C的充放电的时间常数。
第16实施例
图32的断面图模式性地示出了本发明的第16实施例的半导体装置的构成。
该半导体装置是第14实施例的变形构成,这是一种在与IGBT同一基板上形成取代电源43的电容器C并使芯片本身具有保护功能的装置构成,具备取代电容器C,由在n型基极层13的表面上选择性地形成的P型层44、在该P型层44上边选择性地形成的绝缘膜45,在绝缘膜45上边形成的电极46构成的MOS电容器47。
在这里,MOS电容器47的电极46被连到二极管Di的阴极和npn构造42的n型层42a上,而P型层44接地。此外,npn构造42的另一方的n型层42c被连到二极管Di的阳极和电阻R上。
即使做成为这种构成,也可得到与实施例14相同的效果。此外,由于IGBT的芯片外部没有电容器C,故用与现有类型器件同样的使用方法就可以使芯片本身具有保护功能。
第17实施例
图33的断面图模式性地示出了本发明的第17实施例的半导体装置的构成。
该半导体装置是第16实施例的变形构成,具备由在n型基极层13的表面上选择性地形成的P型层48,在该P型层48上边选择性地形成的纸阻n型层49,形成为与该n型层49及P型层48的一部分相接连的绝缘膜50,在绝缘膜50上边形成并且一部分与P型层48接连的源极电极焊盘51构成的MOS电容器52。
其中,MOS电容器52的n型层49被形成为与npn构造42的n型层42a接触,源极电极焊盘51接地。此外,npn构造42的n型层42a连到二极管Di的阴极上,另一方的n型层42c连至二极管Di的阳极和电阻R上。
即使是做成这种构成也可得到与第16实施例相同的效果。
由于做成为使之在源极电极焊盘51的下边有MOS电容器52,故与第16实施例相比,面积变小了。
第18实施例
图34的断面图模式性地示出了本发明的第18实施例的半导体装置的构成。
该半导体装置是第14实施例的变形构成,是一种在保护时切断栅极驱动电路和第一栅极电极17来谋求栅极电压的恒定化的装置,其构成是在与IGBT同一基板的n型基极层13上边界以绝缘膜26在多晶硅Si上横向地形成由p型层53a、高阻P型层53b和P型53c构成的PP-P构造53,PP-P构造53中,一方的P型层53a连到栅极驱动电路上,另一方的P型层53c连到电阻R和第1栅极电极17上。另外,第1栅极电极17介以电阻R连接到二极管Di的阳极和npn构造42的n型层42c上。
在这里,在PP-P构造53中,如图35和图36所示,中央的P型层53b具有与n型基极层13中的电场E相对应地增大与绝缘膜26之间的界面的电阻Rp-的性质。
因此,当给PP-P构造53的n型基极层13加上高电场E时,由于电阻Rp-的增大,就使栅极驱动电路与第1栅极电极17之间的连接被切断。
另一方面,当给npn构造42的n型基极层13加上高电场时,与前述相同,由于电阻Rp下降,介以电阻R把电容器C接到第1栅极电板17上。
因此,在第1栅极电板17中,在被栅极驱动电路切断了的状态下,介以电阻R用电容器C加正电压。借助于此,使IGBT通导以阻止破坏。
这样一来,若采用本实施例,则除了第14实施例的效果之外,由于在保护时切断了栅极驱动电路与第1栅极电极17之间的连接,故可以用电容器C使加到第一栅极电极17上的正电压恒定化。
此外,保护时,切断栅极驱动电路与第1栅极电极17之间的连接。以此消除了向外部的栅极驱动电路流出的电流,所以可以减小电容器C的电容。
第19实施例
图37的局部断面图模式性地示出了本发明的第19实施例的半导体装置的构成的一部分。
该半导体装置是第13~第18实施例的各自的变形构成。具有电场检测器件20h,20h具有np-n构造42x以取代第13~第18实施例的任一实施例的npn构造42。
其中np-n构造42x,如图38所示,中央的高阻P型层22bx具有与n型基极层13中的电场E相对应地使与绝缘膜26之间的界面的电阻Rp-下降的性质。
即使做成为这种构造。也可收到与第13~第18实施例中,已被采用过的实施例相对应的效果。
第20实施例
图39的部分断面图模式性地示出了本发明的第20实施例的半导体装置的构成的一部分。
该半导体装置是第18实施例的变形构成,具有在与IGBT同一基板的n型基极层13的表面上形成的pp-p构造54以取代pp-p构造53。
其中,pp-p构造54的高阻的P型层54b形成于n型基极层13的表面上,在P型层54b上选择性地形成有P型层54a,54c,使得具有到达n型基极层13的深度。另外,pp-p构造54,在两端的P型层54a,54c上单独地形成电极55,56,一方的P型层54a介以电极55连到驱动电路上,另一方的P型层54c介以电极56连到第1栅极电极17和电阻R上,与前述相同,如图40所示,中央的P型层54b具有与n型基极层13中的电场E相对应地增大电阻Rp-的性质。
即使做成这种构成,也可收到与第18实施例相同的效果。÷
第21实施例
图41的部分断面图模式性地示出了本发明的第21实施例的半导体装置的构成的一部分。
该半导体装置是第20实施例的变形构成,形成绝缘膜57,使得被电极55,56夹在中间。并在一方的电极55上边和绝缘膜57上边形成屏蔽兼用电极58。另外,屏蔽兼用电58是然与一方的电极55电连,但与另一方的电极56却电绝缘。
即使做成为这种构成,也可以收到与第6实施例相同的效果。此外,由于把pp-p构造54形成为被绝缘膜57和屏蔽兼用电极58盖了起来,故可以除去器件上方(表面上)的布线等等的电学性的影响。
第22实施例
图42的局部断面图模式性地示出了本发明的第22实施例的半导体装置的构成的一部分。
该半导体装置是第20实施例的变形构成,从P型层54a开始,介以P型层54b到P型层54c的表面上形成了低阻n型层59。
即使做成这种构成也可收到与第20实施例相同的效果。另外,由于在pp-p构造54的表面上形成了n型层59,故可以除去Si界面的电荷等的影响。
第23实施例
图43的局部断面图模式性地示出了本发明的第23实施例的半导体装置的构成的一部分。
该半导体装置是第13~第18实施例的各自的变形构成,具有电场检测器件20i,其构造是在2个P型基极层24上边分别设置电极55和56,使得把绝缘膜26夹在中间,并在一方的电极56上和绝缘膜26上边形成了兼用电极58。
此外,该电场检测器件20i,如图44所示,电极55和56之间的电压具有与n型基极层13中的电场E相对应而增加的性质。
即使采用这种构造,通过在电场检测器件20i的后级上设置比较器之类的电压检测部件,也可以收到与第13~第18实施例中已被采用的实施例相对应的效果。
第24实施例
图45的断面图模式性地示出了本发明的第24实施例的半导体装置的构成。
该半导体装置是可以把IGBT的n型基极层13中的电场E的变化通知系统控制电路100的半导体装置,它被构成为把高频振荡电路102介以由电容器C和电阻R构成的高通滤波器101连到第1栅极电极17上去。
高通滤波器101是检测栅极电压的变化并送往高频振荡电路102内的调制电路103的电路。
高频振荡电路102可以以1MHz~数GHz的任意的频率进行高频振荡,同时具有把该高频信号向着系统控制电路100用同轴电缆104送出去的功能。此外,也可适当地用馈线天线等等来代替同轴电缆104。
调制电路103具有把从高频振荡电路103送出的高频信号,以从高通滤波器101给出的栅极电压的变化相对应地进行调制的功能。
系统控制电路100具有对从同轴电缆104送来的高频信号进行解调,并根据解调结果判定IGBT的状态的功能,和依据判定结果控制调整栅极驱动波形和IGBT的通断的功能。
因此,在给IGBT的n型基极层13加上了高电场E的时候,把与n型基极层13的电场E的变化量相对应而且已通过了高通滤波器101的信号给予高频振荡电路102。
在高频振荡电路102中,调制电路103用该信号对高频信号进行调制,同时把调制后的高频信号送往同轴电缆104。
系统控制电路100对该高频信号进行解调,并依据解调结果判下IGBT的状态,同时,与判定结果相对应地控制调整栅极驱动波形及IGBT的通断。
这样一来,通过采用与n型基极层13的电场E的变化量相对应地对高频信号进行调制并送出去的办法,即使系统控制电路100与IGBT分开来设置,也可通知IGBT的状态,同时还可期待对于异常的迅速对应。
第25实施例
图46的断面图模式性地示出了本发明的第25实施例的半导体装置的构成。
该半导体装置是第24实施例的变形构成,由IGBT,高通滤波器101和高频振荡电路102构成的多个半导体器件介以同轴电缆104单独地连到系统控制电路100a上去。
其中,系统控制电路100a除去前边说过的系统控制电路100的功能之外,还具有单独地对由各同轴电缆104给出的高频信号进行解调,并依据解调结果判定各IGBT的状态的功能,和与此判定结果上对应控制调整栅极驱动波形及IGBT的通断的功能。另外,作为IGBT的状态,例如有各IGBT的非平衡、开关走时的偏离、温度和电流分担等等。
因此,除去第24实施例的效果之外,还可以通知多个IGBT的状态,同时还可期待对于各个IGBT的非平衡或电流分担之类的多个IGBT之间的异常也能迅速地对应。
第26实施例
图47的断面图模式性地示出了本发明的第26实施例的半导体装置的构成。
该半导体装置是第24实施例的变形构成,具有介以绝缘膜110在与IGBT同一基板的n型基极层13上边形成的检测用栅极电极111,和第24实施例不同。上述高通滤波器101被连到该检测用栅极电极111上。
即使采用这种构成也可得到和第24实施例相同的效果。此外,由于用与IGBT分离开来的检测用栅极电极111检测n型基极层13的电场E的变化,故还可避免IGBT对栅极电路的影响,因而可以提高保护功能的可靠性。
第27实施例
图48的断面图模式性地示出了本发明的第27实施例的半导体装置的构成。
该半导体装置是第26实施例的变形构成,是把检测用栅极电极111用到IGBT的电流量检测中去的半导体装置,在检测用栅极电极111上取代高通滤波器101和高频振荡电路102连接上高频振荡电路112。
其中,高频振荡电路具有产生高频振荡并送出至过电流保护电路(没有画出来)的LC振荡器,并且可以用检测用栅极电极111的栅极电容Cg的变化来调制LC振荡器的谐振频率。
其次,说明这种半导体装置的作用。
在这里,设IGBT为导通状态。在n型基极层13中,等离子体区域与电流的增加成比例地扩大。另一方面,检测用栅极电极111的栅极电容Cg与等离子体区域的扩大(或电流的增加)成比例地增加。
高频振荡电路112与栅极电容Cg的变化相对应,边改变高频振荡频率边送往过电流保护电路。过电流保护电路依据此调制后的高频信号检测到栅极电容Cg的增大时,使IGBT变成截止状态,保护它免受过电流产生的破坏。
这样一来,若采用本实施例,则通过采用使与IGBT的电流相对应而变化的栅极电容Cg和LC振荡电路并联连接,并相应于该栅极电容Cg的变化调制高频信号的办法。在已检测到IGBT的电流增加的时候,使过电流保护电路动作,故可以对IGBT进行过电流保护。
第28实施例
图49是模式性地示出了本发明的第28实施例的半导体装置的构成的断面图。该半导体装置的主开关器件是沟槽式(trench)IGBT,在P型漏极层211的一方的表面上形成了漏极电极212。在与P型漏极层211中的漏极电极212相反一侧的表面上边介以n型缓冲层219形成了基极层213。在该n型基极层213的表面上隔一间隔挖有深6μm、宽1μm的沟槽。
在n型基极层213的表面上且没有挖沟槽的部分上选择性地形成了4μm深的P型基极层214,再在P型基极层214的表面上选择性地形成了n型源极层215。此外在沟槽内设置有第1栅极电极217,它被设置于P型基极层214侧面的栅极绝缘膜216围了起来,上述P型基极层214被n型基极层213和n型源极层215夹在中间。此外,在n型源极层215和P型基极层214上边还设有源极电极218。
用这些就形成了作为主开关器件的IGBT。此外,第1栅极电极217介以栅极电阻Rg连到栅极驱动电路上。
另一方面,电场检测器件220a在n型基极层13的表面上而且还没形成IGBT的部分上选择性地形成。该电场检测器件220a的构成具体如下所述。在n型基极层213的表面的尚未挖沟槽的部分上形成4μm深的P型基极层224。再在该P型基极层224的表面上选择性地形成n型源极层225。而在沟槽的部分中,配置电场检测用的第2栅极电极227。该第2栅极电极227被P型基极层224侧面的栅极绝缘膜226包围起来,而P型基极层224则被n型基极层213和n型源极层225夹在中间。接着,在n型源极层225和P型基极层224上边形成源极电极228。此外,第2栅极电极227介以栅极电阻Rc和可变电源Vc也电连到第1栅极电极217和源极电极228上。还有,沟槽的尺寸与IGBT的沟槽相同。
这样构成的半导体装置如下述那样进行过电压保护。
当为使IGBT通导而用栅极驱动电路给栅极电阻Rg的一端加上负电压时,第1栅极电极217的栅极电压(以下和前述一样,称之为第1栅极电压)开始下降。随着第1栅极电压的下降,IGBT的源-漏间的主电压开始上升并因密勒效应使第1栅极电压变成为几乎恒定。
在此期间,第2栅极电极227,用可变电源Vc加上了负电压。因此,在已与栅极绝缘膜226接连的n型基极层213的表面上形成了P型沟道层。此外,在P型沟道层的周围如虚线所示形成了耗尽层。由于IGBT的主电压所产生的电场被该P型沟道层屏蔽,故第2栅极电极227的电位不变。因此,电场检测器件220a维持非导通状态。
当IGBT的主电压增加到规定值,且IGBT内部的电场上升到规定的电场时,电场检测器件220a内的电场变高,P型沟道层消失,在电场检测器件220a的漏-栅之间产生了电容。即,在电场检测器件220a中,由于电场的上升,与P型沟道层相接连并存在于n型基极层213内的耗尽层伸展,使P型沟道层消失并达到栅极绝缘膜226上,介以这些耗尽层和栅极绝缘膜226的电容器把漏极电极212和第2栅极电极227之间连了起来。详细说来,在该漏-栅之间,由于栅极绝缘膜226和第2栅极电极227的已被填埋的沟槽的宽度狭窄,所以几乎都是在已突出到n型基极层213上的栅极绝缘膜226的侧面上连接。
结果是第2栅极电极227的栅极电压(以下,与前述一样,称之为第2栅极电压)将急剧上升使该第2栅极电压与源极电极228的电压极性反转。即,第2栅极电压变为正电压、且由于在源极电极228上加上负电压,故在被n型源极层225和n型基极层213夹在中间的P型基极层224的侧面上形成n型沟道层、电子电流流入n型基极层213,电场检测器件220a和MOSFET构造接通并变成导通状态。
借助于此,通过电场检测器件220a,电流从IGBT的漏极电极212流向IGBT的第1栅极电极217、并用栅极电阻Rg的压降使第1栅极电极电压上升。因此,IGBT变成半导通,其电阻下降,对IGBT进行过电压保护。
其中,使电场检测器件220a变成导通状态的IGBT的主电压即箝位电压,与前述相同,将随着P型沟道层的单位面积的累积电荷的不同而变。该累积电荷可用可变电源Vc使之变化。即,通过用可变电源Vc改变所加电压的办法,就可以使箝位电压可变。这在现有的应用了稳压二极管的装置中是不可能的。
如上所述,若采用本实施例,则借助于沟槽式的电场检测器件220a和沟槽式IGBT,和第1实施例等等一样,可以抑制噪声,同时可以保护主开关器件。
此外,在本实施例的电场检测器件220a中,由于主要是用沟槽的侧面检测高电场,故借助于调整沟槽的尺寸,就可以把检测灵敏度调到所希望的值。
还有,由于电场检测器件220a与IGBT在同一基板上形成,故可以使芯片本身具有保护功能。
第29实施例
图50的断面图模式性地示出了本发明的第29实施例的半导体装置的构成。
该半导体装置是第28实施例的变形构成,与第28实施例不同,在源极电极228与第1栅极电极217之间配置了二极管Di。
若采用这种构造,除了第28实施例的效果之外,还可以确实地阻止电流通过电场检测器件220b从栅极驱动电路向漏极电极212流动。
第30实施例
图51的斜视断面图模式性地示出了本发明的第30实施例的半导体装置的构成。
该半导体装置是第28实施例的变形构成,与第28实施例不同,IGBT的n型源极层215和电场检测器件220c的n型源极层225形成为与沟槽垂直而不是平行。
若采用这种构造,则除了第28实施例的效果之外,还可以不用掩模对准工序而形成n型源极层215和n型源极层225,可提高主开关器件和电场检测器件等的集成密度。
第31实施例
图52的断面图横式性地示出了本发明的第31实施例的半导体装置的构成。
该半导体装置是第28实施例的变形构成,与第28实施例有3点不同之处,第1点是在介以栅极绝缘膜226接连到电场检测用的第1栅极电极227上去的n型基极层213的上边设了P型屏蔽层229。第2点是省去了可变电源Vc。第3点是设置了介以二极管D’,与第2栅极电极227连接的第3栅极电极230。
另外,在图52中,虽然对于多个第2栅极电极227和栅极绝缘膜226设置了P型屏蔽层229,但其理由与其说是在一个第2栅极电极227和栅极绝缘膜226上设置P型屏蔽层229。勿宁说是因为制造工序容易。此外,设置P型屏蔽层229的第2栅极电极227和栅极绝缘膜226的个数可以任意变更。
此外,为要使电流通过电场检测器件220d流向栅极电阻Rg,需要设置没有P型屏蔽层229的第3栅极电极230。但是,在设置了无屏蔽的第3栅极电极230的情况下,箝位电压比规定值要低。因而,使第3栅极电极230和第2栅极电极227之间存在二极和Di’,形成为不能用第3栅极电极230决定箝位电压的构成。
若采用以上这种构造,则P型屏蔽层229成为由可变电源Vc形成的P型沟道层的替代品,可以收到与第28实施例相同的保护效果。另外,若应用这种构成,则虽然箝位电压被P型屏蔽层229的剂量固定,但电路构成可以简化。
第32实施例
图53的断面图模式性地示出了本发明的第32实施例的半导体装置的构成。
该半导体装置是第28实施例的变形构成,与第28实施例有3点不同之处。第1点是使电场检测器件220e与主开关器件分离了开来。第2点是把电场检测器件220e做成了平面构造的MOSFET。第3点是使二极管Di介于漏极电极212与漏极电极22之间,并做成为使电子电流不从栅极驱动电路一侧通过电流检测器件220e流向漏极电极212。
另外,因电场检测器件220e与第1实施例(图5)中的电场检测器件20a是同一MOSFET构造,故其详细说明从略。
即使做成这种构成,也可得到与第28实施例同样的效果。
第33实施例
图54的断面图模式性地示出了本发明的第33实施例的半导体装置的构成。
该半导体装置是第32实施例的变形构成,和第32实施例不同,主开关器件不用沟槽式IGBT而代之以平面MOSFET。
具体地说来,主开关器件变成为不用第1实施例(图5)中的平面IGBT的P型漏极层11和n型缓冲层19而代之以使用设置n型漏极层231而构成的平面MOSFET构造。
即使采用这种构造,也可得到的第32实施例相同的效果。
第34实施例
图55的断面图模式性地示出了本发明的第34实施例的半导体装置的构成。
该半导体装置是第32实施例的变形构成,和第32实施例不同,主开关器件是沟槽式MOSFET。
具体地说,主开关器件变成为不用第28实施例(图49)中的沟槽式IGBT的P型漏极层211和n型缓冲层219,而代之以使用设置n型漏极层231而构成的沟槽式MOSFET构造。
即使做成这种构造,也可得到与第32实施例相同的效果。
第35实施例
图56的断面图模式性地示出了本发明的第35实施例的半导体装置的构成。
该半导体装置是第32实施例的变形构成,与第32实施例不同,主开关器件是双极型晶体管。
在该双极型晶体管的n型集电极层241的一方的表面上设有集电极电极242。该集电极电极242介以二极管Di与电场检测器件220e的漏极电极22相连。
在与n型集电极层241的集电极电极242相反的一侧的表面上形成n型基极层243,再在该n型基极层243的表面上选择扩散形成P型基极层244。P型基极层244的表面上选择性地形成n型发射极层245。
在P型基极层244上边设置基板电极246。基板电极246分别连到电阻Rg、源电极28和可变电源Vc的正电极一侧。
另外,在n型发射极层245上边设有发射极电极247。
这样的双极型晶体管和前边说过的主开关器件的IGBT或MOSFET不同,是电流驱动型器件,但是可以用从电场检测器件220e转入进来的电流把主电压箝位到规定值以下。即,即便是把主开关器件换成为双极型晶体管,也可以得到与第32实施例一样的效果。
第36实施例
图57的断面图模式性地示出了本发明的第36实施例的半导体装置的构成。
该半导体装置在主开关器件的结终端部分上形成有电场检测器件220f。
另外,IGBT的结终端部分的P型基极层254选择性地形成于n型基极层13的表面上,在P型基极层254表面上选择性地形成n型源极层255。在这里,在n型基极层13表面上形成P型储备层259,使得与P型基极层254接连并向外周一侧伸展。此外,在n型基极层13的最外周部分的表面上形成n型停止器层250。
电场检测器件220f被构成为把这样的P型储备层259介以栅极绝缘膜256、第2栅极电极257和电阻Rc连到第1栅极电极17上。第2栅极电极257和第4、第5实施例不同,没有场平面构造。
倘采用这种构造,则P型储备层259比例于电场的大小从终端部分消失。电场检测器件220f检测该P型储备层259的消失而变成为导通状态。
借助于此,和前述一样,电流通过电场检测器件220f从IGBT的漏极电极12流向IGBT的第1栅极电极17,使IGBT变成半导通且其电阻下降,对IGBT进行过电压保护。
因此,可以保护主开关器件而不减小其有放面积。另外,电场检测器件220f的第2栅极电极257下边的栅极绝缘膜256,只要其一部分处于P型储备层259上边即可。理由是电场检测器件220f将因P型储备层259的消失而变为导通。
另外,由于是这种构造,故电场检测器件220f随着第2栅极电极257下边的栅极绝缘膜256的形成位置向结终端部分靠近,将变得可以检测低值的电场。
还有,图57所示的构造,虽然主开关器件是平面IGBT,但如图49所示,主开关器件也可以是沟槽式IGBT。
第37实施例
图58的断面图模式性地示出了本发明的第37实施例的半导体装置的构成。
该半导体装置是由设于SOI(绝缘物上的硅,或硅绝缘物,Siliconon Insulator)基板上的横式器件构成的构造。该半导体装置,具体地说,主开关器件是横式平面IGBT,电场检测器件220g变成了横式MOSFET。
具体地说,主开关器件在硅基板261上边顺次形成了隐埋氧化膜262和n型基极层263。
在n型基极层263中,在其表面上选择性地形成n型缓冲层264,再在n型缓冲层264表面上选择性地形成P型漏极层265。
此外,在n型基极层263中,还在与n型缓冲层264不同的表面上选择性地形成了P型基极层266,并在P型基极层266表面上选择性地形成了n型源极层267。在P型漏极层265上边表成了漏极电极268。在P型基极层266上边和n型源板层267上边选择性地形成了共同的源极电极269。
在n型源极层267、P型基极层266、n型基极层263的P型基极层266一侧一部分上边介以栅极绝缘膜271形成了第1栅极电极270。此外,在栅极绝缘膜271和漏极电极268之间的、n型基极层263上边和n型缓冲层264上边及P型漏极层265上边形成了绝缘膜272。
另一方面,电场检测器件220g具有和前述相同的SOI构造,在n型基极层263的表面上选择性地形成了n型漏极层273。
另外,在n型基极层263中,在与n型漏极层273不同的表面上选择性地形成了P型基极层274,在P型基极层274表面上选择性地形成了n型源极层275。在n型漏极层273上边形成了漏极电极276。在P型基极层274上边及n型源板层275上边选择性地形成了共同的源极电极277。
在n型源极层275、P型基极层274、n型基极层263的P型基极层274一侧一部分上边介以栅极绝缘膜279形成了第2栅极电极278。此外,在栅极绝缘膜279和漏极电极276之间的、n型基极层263上边和漏板层273上边形成了绝缘膜280。
其中,两个漏板电极268和276相互连接。
此外,和例如第1实施例一样,第2栅极电极278介以栅极电阻Rg和可变电源Vc与第1栅极电极270连接。源极电极277也接到第1栅极电极270上。
因此,即便是做成这样的构造,也和第1实施例一样,可以抑制噪声的产生,同时还可以对主开关器件进行过电压保护。
还有,虽然示于图58所构造是把主开关器件与电场检测器件作为分开来的器件而画出来的,但两个器件在制造工序上可以容易地形成于同芯片上。
第38实施例
图59的断面图模式性地示出了本发明的第38实施例的半导体装置的构成。
该半导体装置是第37实施例的变形构成,和第37实施例不同,省掉了可变电源Vc,与P型基极层274接连,在n型基极层263的表面上设有高阻P型屏蔽层291。另外,与前述一样,主开关器件和电场检测器件220h在制造工艺上可以容易地形成于同一芯片上。
即使做成这种构造,也和第37实施例一样,可抑制噪声的同时又可对主开关器件进行过电压保护。
此外,虽然用P型屏蔽层291使箝位电压变得固定,但由于省掉了可变电源Vc,可以简化电路。
以上对本发明的各实施例进行了说明,但本发明并不限定于上述各实施例,在不偏离本发明的宗旨的范围之内可以进行各种各样的变形而实施。

Claims (11)

1.一种半导体装置,包括:
主开关器件,具有高电压一侧主电极(12),低电压一侧主电极(18)和第1栅极电极(17);
电场检测器件(20a),具有:电连到上述高电压一侧主电极上的第1导电型半导体层(23)、在该第1导电型半导体层表面上选择性地形成的多个第2导电型半导体层(24)、在被这些第2导电型半导体层夹在中间的第1导电型半导体层上边介以栅极绝缘膜(26)而形成并电连到上述第1栅极电极上的第2栅极电极(27),并与在主开关器件上产生的规定的电场相对应,以与上述主开关器件的内部不同的路径,使上述高电压一侧主电极及上述第1栅电极之间变成导通状态;
导通电压施加装置(Rg),用于依据上述导通状态给上述第1栅极电极加上导通电压。
2.根据权利要求1所述的半导体装置,其中:
上述MOS构造具有第1导电型半导体层(23),和在该第1导电型半导体层上边形成的绝缘膜(26),
上述第1导电型半导体层,在与上述绝缘膜邻接的部分上形成了第2导电型沟道层或第2导电型屏蔽层(29)。
3.根据权利要求1所述的半导体装置,其中:
上述主开关器件和上述电场检测器件(20a)设置于同一基板上。
4.根据权利要求1所述的半导体装置,其中:
上述主开关器件是IGBT或MOSFET。
5.根据权利要求1所述的半导体装置,其中:
形成有第2导电型沟道层或第2导电型屏蔽层(29),使得被上述各第2导电型半导体层(24)夹在中间。
6.根据权利要求1所述的半导体装置,其中:
由于在上述第2导电型半导体层(24,29a)内选择性地形成第1导电型发射极层(13),使上述电场检测器件(20c)具有MOSFET构造。
7.根据权利要求1所述的半导体装置,其中:
具有已电连于上述第1栅极电极(17)和上述第2栅极电极(27)之间的可变电源(Vc)。
8.一种半导体装置的保护方法,该半导体装置具备:具有高电压一侧主电极(12)、低电压一侧主电极(18)和第1栅极(17)的主开关器件,和具有MOS构造的电场检测器件(20a),
该方法具有下述步骤:
导通步骤:上述电场检测器件与在上述主开关器件所产生的规定的电场相对应,用与上述主开关器件的内部不同的路径,使上述高电压一侧主电极与上述第1栅极电极之间变成导通状态;
加电压步骤:依据上述导通状态,导通电压施加装置把导通电压加到上述第1栅极电极上。
9.根据权利要求9的半导体装置的保护方法,其中:
上述MOS构造具备有第1导电型半导体层(23)和在该第1导电型半导体层上边形成的绝缘膜(26)、
上述第1导电型半导体层,在与上述绝缘膜邻接的部分上形成了第2导电型沟道层或者第2导电型屏蔽层(29)。
10.根据权利要求9所述的半导体装置的保护方法,其中:
上述主开关器件与上述电场检测器件(20a)设置于同一基板上。
11.根据权利要求9所述的半导体装置的保护方法,其中:
上述主开关器件是IGBT或MOSFET。
CN96112047A 1995-11-06 1996-11-06 半导体装置及其保护方法 Expired - Fee Related CN1097854C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28720895 1995-11-06
JP287208/95 1995-11-06
JP7563296 1996-03-29
JP075632/96 1996-03-29

Publications (2)

Publication Number Publication Date
CN1155784A CN1155784A (zh) 1997-07-30
CN1097854C true CN1097854C (zh) 2003-01-01

Family

ID=26416783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96112047A Expired - Fee Related CN1097854C (zh) 1995-11-06 1996-11-06 半导体装置及其保护方法

Country Status (3)

Country Link
US (1) US5883402A (zh)
EP (1) EP0772239A3 (zh)
CN (1) CN1097854C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911566B2 (ja) 1998-01-27 2007-05-09 富士電機デバイステクノロジー株式会社 Mos型半導体装置
JP2982785B2 (ja) * 1998-04-03 1999-11-29 富士電機株式会社 デプレッション型mos半導体素子およびmosパワーic
JP2000012780A (ja) 1998-06-26 2000-01-14 Toshiba Corp 半導体スナバ装置及び半導体装置
JP4198251B2 (ja) * 1999-01-07 2008-12-17 三菱電機株式会社 電力用半導体装置およびその製造方法
US7589007B2 (en) * 1999-06-02 2009-09-15 Arizona Board Of Regents For And On Behalf Of Arizona State University MESFETs integrated with MOSFETs on common substrate and methods of forming the same
JP2002134692A (ja) * 2000-10-20 2002-05-10 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP4225711B2 (ja) * 2001-06-29 2009-02-18 株式会社東芝 半導体素子及びその製造方法
US6700156B2 (en) * 2002-04-26 2004-03-02 Kabushiki Kaisha Toshiba Insulated gate semiconductor device
JP3964819B2 (ja) * 2003-04-07 2007-08-22 株式会社東芝 絶縁ゲート型半導体装置
WO2006068082A1 (ja) * 2004-12-22 2006-06-29 Mitsubishi Denki Kabushiki Kaisha 半導体装置
US8530904B2 (en) * 2010-03-19 2013-09-10 Infineon Technologies Austria Ag Semiconductor device including a normally-on transistor and a normally-off transistor
CN105556647B (zh) * 2013-07-19 2017-06-13 日产自动车株式会社 半导体装置及其制造方法
JP6870240B2 (ja) * 2016-08-31 2021-05-12 富士電機株式会社 ゲート駆動装置
JP6820287B2 (ja) * 2018-02-23 2021-01-27 株式会社 日立パワーデバイス 半導体装置および電力変換装置
CN109087944B (zh) * 2018-08-21 2021-07-02 电子科技大学 一种集成mos电流采样结构的rc-igbt

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594075A (ja) * 1982-06-30 1984-01-10 Toshiba Corp サイリスタ
US5343067A (en) * 1987-02-26 1994-08-30 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device
US4893158A (en) * 1987-06-22 1990-01-09 Nissan Motor Co., Ltd. MOSFET device
JPH0397269A (ja) * 1989-09-11 1991-04-23 Fuji Electric Co Ltd 電流制限回路を内蔵する伝導度変調型mosfet
JP2876694B2 (ja) * 1990-03-20 1999-03-31 富士電機株式会社 電流検出端子を備えたmos型半導体装置
JP2973588B2 (ja) * 1991-06-10 1999-11-08 富士電機株式会社 Mos型半導体装置
US5243211A (en) * 1991-11-25 1993-09-07 Harris Corporation Power fet with shielded channels
GB9216953D0 (en) * 1992-08-11 1992-09-23 Philips Electronics Uk Ltd A semiconductor component
JP3243902B2 (ja) * 1993-09-17 2002-01-07 株式会社日立製作所 半導体装置
JP3156487B2 (ja) * 1994-03-04 2001-04-16 富士電機株式会社 絶縁ゲート型バイポーラトランジスタ

Also Published As

Publication number Publication date
CN1155784A (zh) 1997-07-30
EP0772239A2 (en) 1997-05-07
EP0772239A3 (en) 2000-09-20
US5883402A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
CN1187839C (zh) 半导体装置
CN1097854C (zh) 半导体装置及其保护方法
CN1236499C (zh) 半导体器件
CN1240104C (zh) 半导体元件的驱动装置
CN1199281C (zh) 半导体装置
CN1992523A (zh) 开关电路和二极管
CN1231978C (zh) 绝缘栅型半导体装置
CN1135626C (zh) 半导体器件及其制造方法
CN1295872C (zh) 半导体装置
CN1274027C (zh) 电力半导体器件
CN1268003C (zh) 半导体器件及其制造方法
CN1230915C (zh) Mim电容器
CN1540863A (zh) 半导体器件
CN1794584A (zh) 化合物半导体开关电路装置
CN1790912A (zh) 半导体集成电路装置
CN1445838A (zh) 半导体器件及其制造方法
CN1976229A (zh) 半导体集成电路及泄漏电流降低方法
CN1666325A (zh) 纵向结型场效应晶体管及其制造方法
CN1879296A (zh) 晶体管装置、集成电路及运行场效应晶体管的方法
CN1967850A (zh) 半导体装置
CN1750078A (zh) 等离子显示面板驱动器及等离子显示器
CN1613153A (zh) 半导体存储装置及其制造方法
CN1691355A (zh) 半导体器件
CN1306615C (zh) 半导体器件及其制造方法
CN1359156A (zh) Cmos半导体器件及其制造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030101

Termination date: 20101106