CN109755554A - 一种铝硒二次电池 - Google Patents

一种铝硒二次电池 Download PDF

Info

Publication number
CN109755554A
CN109755554A CN201811639199.7A CN201811639199A CN109755554A CN 109755554 A CN109755554 A CN 109755554A CN 201811639199 A CN201811639199 A CN 201811639199A CN 109755554 A CN109755554 A CN 109755554A
Authority
CN
China
Prior art keywords
aluminium
selenium
carbon
electrolyte
secondary cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811639199.7A
Other languages
English (en)
Inventor
尉海军
刘世奇
张旭
王洁
楚维钦
何世满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811639199.7A priority Critical patent/CN109755554A/zh
Publication of CN109755554A publication Critical patent/CN109755554A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种铝硒二次电池,属于绿色能源电池领域。该铝硒二次电池包括正极、负极、隔膜和电解液,其中,所述铝硒二次电池正极采用碳与单质硒的复合材料,负极为铝箔、铝合金、或多种形貌的金属铝及其制品,电解液为含铝活性离子电解液。本发明的铝硒电池在不同温度的测试条件下均具有较高的放电比容量。同时本发明的铝硒二次电池体系为寻求高能量密度铝离子电池提供了契机。

Description

一种铝硒二次电池
技术领域
本发明属于新能源电池领域,尤其涉及一种可充放式铝硒电池的制备。
背景技术
随着电动汽车和移动电子设备的迅猛发展,市场对高性能二次电池的需求剧增。然而,以锂离子电池为主的新能源器件基于单电子金属的电化学反应,因此其能量密度受到很大限制;锂元素在地壳中的丰度极低,仅为0.0065%,且分布极不均匀,因此锂离子电池的成本严重受制于锂资源,呈现出逐年上涨的趋势;锂的化学活性较强,从而容易导致较严重的安全问题。因此,基于多电子金属如镁、锌、铝等高能量密度二次电池引起了研究者的关注。其中,铝元素是地壳丰度第三的元素和第一的金属元素,质量比含量高达8.3%,因此铝基材料具有明显的低成本优势;铝具有极高的体积比容量(8046mAh/cm3,约为锂的四倍)和较高的质量比容量(2980mAh/g,大于锂);金属铝表面易形成致密氧化层,能有效防止铝的进一步反应,从而具有较高的安全性和易加工性。因此,铝离子电池是新型电化学储能体系的重要选择之一。
由于其高质量比容量(1675mAh/g),单质硫成为了提高铝基电池容量的关键正极材料之一。然而,单质硫存在本征电导率低(5×10-30S cm-1)、电化学充放电过程中多硫化物穿梭效应等问题,导致了硫电池易衰减的循环性能、较差的倍率性能,这限制了铝硫电池的发展和应用。作为与硫同一主族的元素,硒具有与硫相近的化学性质。然而,单质硒的电导率(1.0×10-3S cm-3)高出硫20个数量级,硒在充放电过程中与硫相比可以实现更高利用率,因此电池电化学性能可以显著提升。硒的质量比容量为675mAh/g,而其体积比容量则为~3250mAh/cm3,显著高于多种正极材料。由于以上优点,硒已经作为正极材料被应用于锂硒电池。然而,铝硒电池的研究报道还很少。可以预期,高性能铝硒电池将在便携式电子设备、电动汽车和智能电网等方面得到广泛得利用。
发明内容
本发明的目的是利用高导电率的碳硒复合材料作为正极构筑高性能铝硒电池体系,使电池拥有较优的循环寿命和较高的能量密度。
为了实现上述目的,本发明采用的技术方案为:一种铝硒二次电池,由负极、电解液、隔膜和正极组成。其中负极材料为含铝金属的材料。
本发明所述的负极材料采用固体纯金属铝或铝合金中的任一种,铝合金可任选自金属铝与金属锂、钠、铜、锰、铁、镓、铬、锡、镁、镍、铅、锌或非金属硅组成的二元或多元合金。
电解液:本发明所述含铝电解液分为水系含铝电解液和非水系含铝电解液;水系电解液溶质为水溶性的铝盐,包括但不限于:硫酸铝、硝酸铝、氯化铝、乙酸铝、三氟甲磺酸铝等中的一种或几种,溶剂为去离子水或超纯水。水系电解液中铝盐的浓度优选0.1~21mol/L。
非水系含铝电解液包含离子液体和卤化铝、添加剂制备的电解液。优选卤化铝和离子液体的摩尔比为:(1.0~3.0):1,添加剂的质量百分含量0~50%。
非水系电解液中卤化铝选自:氟化铝、氯化铝、溴化铝、碘化铝中的一种或几种。离子液体中的阳离子包括但不限于:咪唑阳离子(EMI+)、吡咯烷阳离子(Py+)、哌啶阳离子(PP+)、吡啶阳离子、季铵阳离子、季磷阳离子、季硫阳离子、吗啉阳离子;离子液体中的阴离子包括但不限于:卤素离子(Cl-,Br-,I-),BF4 -,PF6 -,TFSI-,FSI-,SCN-,CN-,OTF-,N(CF3SO2)2 -等。所述添加剂包括但不限于尿素、乙二胺、乙酰胺、甲苯等有机物。其中优选非水系电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体。
隔膜,位于正负极间防止电池装置短路的隔膜,适合的隔膜材质包括但不限于:玻璃纤维、聚乙烯(PE)、聚丙烯(PP)滤纸;碳纳米管或石墨烯碳基材料涂覆于玻璃纤维、聚乙烯(PE)、聚丙烯(PP)表面的复合型滤纸;陶瓷类无机材料。
正极材料中的活性材料是由碳基材料与单质硒形成的复合材料。单质硒的质量分数为5%-95%,其中碳基材料包括但不限于:石墨烯、石墨烯气凝胶、碳纳米管、富勒烯、有序介孔碳、无序介孔碳、石墨、软碳、硬碳、导电炭黑、生物质衍生碳、活性碳布和碳纸。单质硒包括但不限于硒量子点、硒纳米棒、多孔状纳米硒、硒纳米管、硒纳米颗粒和硒纳米片。
制备正极活性材料的方法:将单质硒与碳基材料按照质量比配料混合后,将混合物封入充满惰性气氛(氩气或氮气)的石英管中,在200~310℃的温度下加热2-24小时,反应结束后取出材料即为铝硒二次电池的正极活性材料。
然后按照常规的制备方法将正极活性材料、粘结剂、导电剂制备成正极。
本发明的优点是设计出的铝硒电池,适用于工作温度在-40℃~200℃的环境中,在实施例1中,本发明的电池在25℃下循环后可保持1000mAh/cm3以上的高容量,55℃的较高温度下依然可以充放电数十圈,容量可保持在约1000mAh/cm3的高性能。
附图说明
图1是本发明的电池装置示意图;
图2是本发明的实施例1中25℃的铝硒电池的充放电曲线;
图3是本发明的实施例1中25℃的铝硒电池的循环寿命图;
图4是本发明的实施例3中55℃的铝硒电池的循环寿命图。
具体实施方式
以下将结合附图和特定的实施例对本发明进行详细解释,以充分了解本发明的目的、特征和效果。但是下特定面的实施例并不应从任何角度理解为是对本发明范围及等同事物的限制。
实施例1
制备正极活性材料:采用纳米硒颗粒与有序介孔碳CMK-3按照质量比1:1的方式配料混合后,将CMK-3与硒的混合物封入充满惰性气氛(氩气或氮气)的石英管中,在240℃的温度下加热12小时。反应结束后取出黑色粉末即为二次铝硒电池的正极活性材料Se@CMK-3。
电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.3:1混合,静置24小时,即为本实施例铝硒二次电池所需电解液。
正极活性材料Se@CMK-3与导电剂Super P和粘结剂PTFE,按照质量比例为7:2:1的方式进行混料,将所得浆料涂于集流体上,高温烘干极片后使用压力机压成电池正极极片。随后将正极片与聚丙烯隔膜以及负极材料铝金属箔依次装入电池模具中,并滴入氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体,封装成为铝硒二次电池。
在25℃的温度下以1/20C的倍率进行测试,截止电压分别为0.1V和1.3V,最高放电容量为1441.67mAh/cm3,15次循环后的放电容量为1108.12mAh/cm3
实施例2
其他如实施例1。
电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.1:1混合,静置24小时,即为本实施例铝硒二次电池所需电解液。
在25℃的温度下以1/10C的倍率进行测试,截至电压分别为0.1V和1.3V,最高放电容量为2857.14mAh/cm3,50次循环后的放电容量为1445.2mAh/cm3
实施例3
其他如实施例1。
电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.3:1混合,静置24小时,即为本实施例铝硒二次电池所需电解液。
在55℃的温度下以1/10C的倍率进行测试,截止电压分别为0.05V和1.5V,最高放电容量为5316.94mAh/cm3,80次循环后的放电容量为926.89mAh/cm3
实施例4
其他如实施例1。
电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.3:1混合,静置24小时,即为本实施例二次铝硒电池所需电解液。
在25℃的温度下以1/10C的倍率测试,截止电压分别为0.1V和1.3V,最高放电容量为1454.3mAh/cm3
实施例5
正极材料选用单质硒纳米颗粒(颗粒大小约100纳米),电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.3:1混合,静置24小时,负极采用金属铝箔。
在25℃的温度下以1/10C的倍率进行测试,截止电压分别为0.1V和1.3V,最高放电容量为2569.5mAh/cm3,20次循环后的放电容量为1573.6mAh/cm3
实施例6
正极材料选用片状纳米硒材料(厚度约为50纳米),电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.3:1混合,静置24小时,负极采用金属铝箔。
在25℃的温度下以1/10C的倍率进行测试,截至电压分别为0.1V和1.3V,最高放电容量为2893.8mAh/cm3,10次循环后的放电容量为2271.2mAh/cm3
实施例7
制备正极活性材料:采用纳米硒颗粒与氧化石墨烯按照质量比2:1的方式配料混合后,将氧化石墨烯与硒的混合物封入充满惰性气氛(氩气或氮气)的石英管中,在240℃的温度下加热12小时。反应结束后取出黑色粉末即为二次铝硒电池的正极活性材料。
电解液氯化铝-1-乙基-3-甲基溴化咪唑鎓离子液体的配置:将氯化铝和1-乙基-3-甲基溴化咪唑鎓盐按照优选摩尔比1.3:1混合,静置24小时。
负极采用金属铝箔。
在25℃的温度下以1/10C的倍率进行测试,截止电压分别为0.1V和1.3V,最高放电容量为3480.5mAh/cm3,30次循环后的放电容量为2553.7mAh/cm3
实施例8
其他如实施例1。
负极采用铝镁合金的金属箔,其中,铝占铝镁合金的质量分数为80%。
在25℃的温度下以1/10C的倍率进行测试,截至电压分别为0.1V和1.3V,最高放电容量为2879.5mAh/cm3,10次循环后的放电容量为2109.3mAh/cm3
实施例9
其他如实施例1。
负极采用的开孔型泡沫铝金属板。
在25℃的温度下以1/10C的倍率进行测试,截止电压分别为0.1V和1.3V,最高放电容量为2682.1mAh/cm3,30次循环后的放电容量为1793.2mAh/cm3
实施例10
其他如实施例1。
负极采用的开孔型泡沫铝金属板。
在25℃的温度下以1/10C的倍率进行测试,截止电压分别为0.1V和1.3V,最高放电容量为2682.1mAh/cm3,30次循环后的放电容量为1793.2mAh/cm3
实施例11
其他如实施例1。
电解液采用1M AlCl3的水溶液。
在25℃的温度下以1/15C的倍率进行测试,截止电压分别为0.1V和1.1V,最高放电容量为1624.3mAh/cm3,10次循环后的放电容量为983.9mAh/cm3

Claims (8)

1.一种铝硒二次电池,其特征在于,由负极、电解液、隔膜和正极组成;负极由铝基金属制备;电解液选用水系含铝电解液和非水系含铝电解液,水系含铝电解液为铝盐的水溶液,非水系含铝电解液为含离子液体、卤化铝及添加剂所制备的离子液体或类离子液体电解液;隔膜为位于正负极间防止电池装置短路的隔断层;正极为单质硒及含单质硒的复合材料。
2.按照权利要求1所述的一种铝硒二次电池及制备方法,其特征在于,负极材料采用固体纯金属铝或铝合金中的任一种,铝合金任选自金属铝与金属锂、钠、铜、锰、铁、镓、铬、锡、镁、镍、铅、锌或非金属硅组成的二元或多元合金;铝负极的表现方式为金属箔、多孔金属板、三维金属板、开孔型泡沫金属板、闭孔型泡沫金属板、表面包覆碳材料的三维金属板。
3.按照权利要求1所述的一种铝硒二次电池,其特征在于,水系电解液溶质为水溶性的铝盐的水溶液,包括但不限于:硫酸铝、硝酸铝、氯化铝、乙酸铝、三氟甲磺酸铝等中的一种或几种,溶剂为去离子水或超纯水,水系电解液中铝盐的浓度为0.1~21mol/L;非水系含铝电解液中离子液体和卤化铝的摩尔比为(1.0~3.0):1,添加剂的质量百分含量为0~50%;非水系电解液中卤化铝选自:氟化铝、氯化铝、溴化铝、碘化铝中的一种或几种。离子液体中的阳离子包括但不限于:咪唑阳离子(EMI+)、吡咯烷阳离子(Py+)、哌啶阳离子(PP+)、吡啶阳离子、季铵阳离子、季磷阳离子、季硫阳离子、吗啉阳离子;离子液体中的阴离子包括但不限于:卤素离子(Cl-,Br-,I-),BF4 -,PF6 -,TFSI-,FSI-,SCN-,CN-,OTF-,N(CF3SO2)2 -等;所述添加剂包括但不限于尿素、乙二胺、乙酰胺、甲苯等有机物。
4.按照权利要求1所述的一种铝硒二次电池,其特征在于,适合的隔膜的材质包括但不限于:玻璃纤维、聚乙烯(PE)、聚丙烯(PP)滤纸;碳纳米管或石墨烯碳基材料涂覆于玻璃纤维、聚乙烯(PE)、聚丙烯(PP)表面的复合型滤纸;陶瓷类无机材料。
5.按照权利要求1所述的一种铝硒二次电池,其特征在于,正极材料为单质硒或碳基材料与单质硒的复合物,其中单质硒包括但不限于硒量子点、硒纳米棒、多孔状纳米硒、硒纳米管、硒纳米颗粒和硒纳米片;碳基材料与单质硒的复合材料质量比为(10~50):(5~25),其中碳基材料包括但不限于:石墨烯、石墨烯气凝胶、碳纳米管、富勒烯、有序介孔碳、无序介孔碳、石墨、软碳、硬碳、导电炭黑、生物质衍生碳、活性碳布和碳纸。
6.按照权利要求1-5任意项所述的一种铝硒二次电池,其特征在于,其正极材料制备方法:将单质硒与碳基材料按照质量比配料混合后,将混合物封入充满惰性气氛的石英管中,在200~310℃的温度下加热2-24小时,反应结束后取出材料即为铝硒二次电池的正极活性材料。硒的质量分数为10%-95%,优选70%。
7.按照权利要求1所述的一种铝硒二次电池,其特征在于,将正极活性材料、粘结剂、导电剂制备成正极。
8.按照权利要求1所述的一种铝硒二次电池,其特征在于,可供该发明铝硒电池运行的环境温度可在-40℃~100℃。
CN201811639199.7A 2018-12-29 2018-12-29 一种铝硒二次电池 Pending CN109755554A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811639199.7A CN109755554A (zh) 2018-12-29 2018-12-29 一种铝硒二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811639199.7A CN109755554A (zh) 2018-12-29 2018-12-29 一种铝硒二次电池

Publications (1)

Publication Number Publication Date
CN109755554A true CN109755554A (zh) 2019-05-14

Family

ID=66404483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811639199.7A Pending CN109755554A (zh) 2018-12-29 2018-12-29 一种铝硒二次电池

Country Status (1)

Country Link
CN (1) CN109755554A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416542A (zh) * 2019-07-30 2019-11-05 山东大学 多孔硒化锰微球、其制备方法、正极材料及电池
CN111180711A (zh) * 2020-01-22 2020-05-19 河北大学 石墨烯包覆氧化物-硒复合物铝电池正极材料的制备方法
CN113097565A (zh) * 2021-03-29 2021-07-09 北京理工大学 一种用于铝二次电池的类离子液体电解液及制备方法
CN113241434A (zh) * 2021-05-13 2021-08-10 中南大学 一种锂离子电池纳米铝负极材料及其制备方法
CN114864903A (zh) * 2022-05-27 2022-08-05 山东海科创新研究院有限公司 一种内嵌二维金属硒化物的石墨烯基硒正极材料及其制备方法、锂硒电池
CN115441123A (zh) * 2022-10-14 2022-12-06 贺州学院 一种高吸液率、高阻燃的电池隔膜及制备方法
CN117317160A (zh) * 2023-09-07 2023-12-29 中能鑫储(北京)科技有限公司 一种硒掺杂高导纳米复合正极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118786A2 (en) * 2011-03-01 2012-09-07 Uchicago Argonne, Llc Electrode materials for rechargeable batteries
CN104201349A (zh) * 2014-08-13 2014-12-10 东南大学 一种具有多孔结构的硒碳电极材料的制备方法及其应用
CN104733677A (zh) * 2015-03-25 2015-06-24 中国科学院化学研究所 锂-硒电池及其制备技术
CN106848387A (zh) * 2017-02-20 2017-06-13 北京理工大学 铝离子电池电解液及其应用和铝离子电池
CN107492659A (zh) * 2017-08-18 2017-12-19 北京理工大学 铝硫电池及其制备方法和应用
CN108140881A (zh) * 2015-12-15 2018-06-08 里兰斯坦福初级大学理事会 用于可充电金属离子电池的改进的电解质、集电器和粘合剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118786A2 (en) * 2011-03-01 2012-09-07 Uchicago Argonne, Llc Electrode materials for rechargeable batteries
CN104201349A (zh) * 2014-08-13 2014-12-10 东南大学 一种具有多孔结构的硒碳电极材料的制备方法及其应用
CN104733677A (zh) * 2015-03-25 2015-06-24 中国科学院化学研究所 锂-硒电池及其制备技术
CN108140881A (zh) * 2015-12-15 2018-06-08 里兰斯坦福初级大学理事会 用于可充电金属离子电池的改进的电解质、集电器和粘合剂
CN106848387A (zh) * 2017-02-20 2017-06-13 北京理工大学 铝离子电池电解液及其应用和铝离子电池
CN107492659A (zh) * 2017-08-18 2017-12-19 北京理工大学 铝硫电池及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAODAN HUANG等: "Rechargeable aluminum–selenium batteries with high capacity", 《CHEMICAL SCIENCE》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416542A (zh) * 2019-07-30 2019-11-05 山东大学 多孔硒化锰微球、其制备方法、正极材料及电池
CN111180711A (zh) * 2020-01-22 2020-05-19 河北大学 石墨烯包覆氧化物-硒复合物铝电池正极材料的制备方法
CN111180711B (zh) * 2020-01-22 2022-11-22 河北大学 石墨烯包覆氧化物-硒复合物铝电池正极材料的制备方法
CN113097565A (zh) * 2021-03-29 2021-07-09 北京理工大学 一种用于铝二次电池的类离子液体电解液及制备方法
CN113241434A (zh) * 2021-05-13 2021-08-10 中南大学 一种锂离子电池纳米铝负极材料及其制备方法
CN113241434B (zh) * 2021-05-13 2023-02-28 中南大学 一种锂离子电池纳米铝负极材料及其制备方法
CN114864903A (zh) * 2022-05-27 2022-08-05 山东海科创新研究院有限公司 一种内嵌二维金属硒化物的石墨烯基硒正极材料及其制备方法、锂硒电池
CN114864903B (zh) * 2022-05-27 2024-04-19 山东海科创新研究院有限公司 一种内嵌二维金属硒化物的石墨烯基硒正极材料及其制备方法、锂硒电池
CN115441123A (zh) * 2022-10-14 2022-12-06 贺州学院 一种高吸液率、高阻燃的电池隔膜及制备方法
CN115441123B (zh) * 2022-10-14 2024-03-08 贺州学院 一种高吸液率、高阻燃的电池隔膜及制备方法
CN117317160A (zh) * 2023-09-07 2023-12-29 中能鑫储(北京)科技有限公司 一种硒掺杂高导纳米复合正极材料的制备方法

Similar Documents

Publication Publication Date Title
Wang et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes
CN109755554A (zh) 一种铝硒二次电池
CN102945947B (zh) 柔性无粘结剂自支撑复合电极的制备方法
CN107226475B (zh) 一种钾离子电池正极材料及其制备方法和钾离子电池
CN103972497B (zh) 锂离子电池Co2SnO4/C纳米复合负极材料及其制备与应用
CN104617283B (zh) 一种锂硫电池碳纤维增强三维石墨烯-硫正极材料的制备方法和正极的制备方法
CN103579590A (zh) 一种锂电池的包覆正极材料的制备方法
CN102916195B (zh) 一种石墨烯包覆氧化铜复合负极材料及其制备方法
CN111900333B (zh) 一种碳纳米管膜直接复合熔融锂金属的无锂枝晶阳极及其制备方法
CN103219491A (zh) 一种硫化铜正极及其制备方法
CN108172406B (zh) 一种以FeS2-xSex材料为负极材料的钠离子电容器
CN104868119A (zh) 无粘结剂Li3VO4/C锂离子电池负极材料及其制备方法
Abualela et al. NiO nanosheets grown on carbon cloth as mesoporous cathode for High-performance lithium-sulfur battery
Xia et al. Co3O4@ MWCNT modified separators for Li–S batteries with improved cycling performance
CN105047861A (zh) 一种硫碳复合材料及其制备方法
CN101262056A (zh) 一种水溶液可充锂离子电池
Ma et al. A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries with high mass loading
CN108365210A (zh) 一种活性炭碳-硫材料及其制备方法和应用
CN105680050A (zh) 一种2-甲基咪唑锌盐热解所得的电池负极材料
CN104934577B (zh) 嵌入石墨烯网络的介孔Li3VO4/C纳米椭球复合材料及其制备方法和应用
CN112768766B (zh) 一种锂硫电池电解液及其应用
CN104979534B (zh) 一种碘‑硫/碳复合材料及其制备方法与应用
CN108565444A (zh) 一种镍钴铝酸锂复合正极材料以及制备方法
CN108923033B (zh) 一种基于相转移法的锂硫电池多孔碳正极材料的制备方法
CN103762347A (zh) 一种电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190514