CN109701572B - FeCo/MXene复合物及其制备方法和应用 - Google Patents

FeCo/MXene复合物及其制备方法和应用 Download PDF

Info

Publication number
CN109701572B
CN109701572B CN201910067206.9A CN201910067206A CN109701572B CN 109701572 B CN109701572 B CN 109701572B CN 201910067206 A CN201910067206 A CN 201910067206A CN 109701572 B CN109701572 B CN 109701572B
Authority
CN
China
Prior art keywords
mxene
feco
compound
centrifuging
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910067206.9A
Other languages
English (en)
Other versions
CN109701572A (zh
Inventor
姜毅
田明
夏立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201910067206.9A priority Critical patent/CN109701572B/zh
Publication of CN109701572A publication Critical patent/CN109701572A/zh
Application granted granted Critical
Publication of CN109701572B publication Critical patent/CN109701572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开一种FeCo/MXene复合物及其制备方法和应用。包括如下步骤:以三元层状材料MAX相为原料,通过蚀刻法,反复洗涤离心,在下层液中获得多层MXene,在上层液中获得少层MXene。将铁盐、钴盐和尿素的水溶液,与少层MXene分散液混合,在氮气保护下加热,搅拌反应,所得反应物经离心,洗涤,得FeCo/MXene复合物。本发明制备MXene的方法,操作简单安全,以负载FeCo/MXene复合物的玻碳电极为工作电极,研究电催化阳极水氧化过程,起始电位较低,而且催化效果较好。

Description

FeCo/MXene复合物及其制备方法和应用
技术领域
本发明属于电催化水分解领域,具体为铁钴双金属负载在二维层状MXene上获得FeCo/MXene复合物,可提高电催化阳极水氧化效果。
背景技术
随着化石燃料的迅速枯竭和环境污染的日益恶化,如何实现可再生能源的有效转换成为科学家们当前首要解决的一个重要且紧迫问题。在各种能源转换途径中,电催化是常用的有效的能源转换方式,将可再生的电能转换为化学能,这种能源转换方式对于解决目前的能源危机起着重要的作用。氧气析出反应(OER)是许多重要的可再生能源应用中的瓶颈步骤,例如水分解和金属空气电池。然而,要通过使用高效的电催化剂来驱动电荷转移过程,需要克服较高的过电位和缓慢的动力学。贵金属氧化物(例如RuO2,IrO2)代表最活跃的OER催化剂之一,但是成本较高、供应稀缺和耐久性差等缺点不容忽视。
MXene是一种新型的二维早期过渡金属碳化物/氮化物,具有优良的电化学储能性能、较高导电性和优异的机械性能。在蚀刻过程中,Mn+1Xn层之间的A原子被各种官能团取代,产生具有羟基,氧或氟基团终止表面的MXene纳米片。它赋予MXenes高度亲水的表面,丰富的化学性质和可调性能而不牺牲金属过渡金属碳化物的导电性。在传统的二维原子晶体如石墨烯,层状过渡金属二硫化物(LTMD)和双金属氢氧化物(LDH)中难以实现这一优点。例如,石墨烯中反应性的提高必须是以化学功能化过程中失去导电性为代价实现。在这方面,MXenes可能是化学功能化石墨烯的优良替代品,其中需要快速电荷转移动力学,强界面耦合和大活性表面积(例如,催化,电子器件,电化学能量储存和转化)。
发明内容
为了解决上述技术问题,本发明的目的之一是通过一步反应,使铁钴双金属与MXene相结合,获得FeCo/MXene复合物。
本发明的目的之二是将FeCo/MXene复合物应用于电催化水分解领域,在电催化阳极水氧化过程具有较低的起始电位和较低的电流密度为10mA cm-2的催化电位,表现出较好的催化效果。
为了实现上述目的,本发明采用的技术方案是:FeCo/MXene复合物的制备方法,包括如下步骤:
1)将三元层状材料MAX相与HF混合,室温搅拌48~50h后,离心,用去离子水反复洗涤至上清液pH为5~7,于离心所得沉淀物中加入乙醇,超声分散,再次离心取沉淀物;
2)于步骤1)加入乙醇后离心所得沉淀物中加入去离子水,超声分散,收集上层溶液,通过离心和冷冻干燥,得少层MXene粉末;
3)将少层MXene粉末超声分散于水中,加入稳定剂,得少层MXene分散液;将铁盐、钴盐和尿素的水溶液与少层MXene分散液混合,在氮气保护下加热,搅拌反应,所得反应物经离心,洗涤,冷冻干燥,得FeCo/MXene复合物。
进一步的,所述三元层状材料MAX相是Ti3AlC2
更进一步的,所述MXene是Ti3C2
进一步的,步骤2),于步骤1)加入乙醇后离心所得沉淀物中加入去离子水,超声分散,收集上层溶液,反复5~20次,合并收集的上层溶液,通过离心和冷冻干燥得少层MXene粉末。
进一步的,步骤3)中,所述稳定剂为N-甲基吡咯烷酮,所述铁盐为Fe(NO3)3·9H2O,所述钴盐为Co(NO3)2·6H2O。
更进一步的,按物质的量比,Fe(NO3)3·9H2O:Co(NO3)2·6H2O=1:0.5~3。
进一步的,步骤3)中,在氮气保护下于90~110℃下加热搅拌反应5~7h。
上述的方法制备的FeCo/MXene复合物在电催化阳极水氧化中的应用。
进一步的,方法如下:将上述的方法制备的FeCo/MXene复合物,加入到去离子水、无水乙醇和Nafion的混合液体中,超声分散后,室温下搅拌反应1~2h,得混合液;将混合液滴涂到玻碳电极上,常温下干燥,得涂覆了FeCo/MXene复合物的玻碳电极;以涂覆了FeCo/MXene复合物的玻碳电极为工作电极,Pt丝作为对电极,Ag/AgCl为参比电极,构成三电极体系,实现电催化阳极水氧化过程。
本发明的有益效果是:
1、本发明制备MXene的方法,操作简单安全,以MAX相为原料,通过蚀刻法,剥离掉Al原子,反复洗涤离心,下层为多层MXene,上层液为少层MXene,较易获得少层MXene。
2、本发明制备的FeCo/MXene复合物,Fe和Co双金属以氢氧化物的形式负载于少层MXene上,采用的双金属为Fe(NO3)3·9H2O,Co(NO3)2·6H2O,为非贵金属且材料廉价,成本低。
3、本发明中,以负载FeCo/MXene复合物的玻碳电极为工作电极,在电催化阳极水氧化过程具有较低的起始电位和较低的电流密度为10mA cm-2的催化电位,表现出较好的催化效果。
附图说明
图1是实施例1中MAX相(Ti3AlC2)的扫描电镜图(SEM)。
图2是实施例1中制备的多层MXene的扫描电镜图(SEM)。
图3是实例例1中制备的少层MXene的扫描电镜图(SEM)。
图4是实施例1中制备的FeCo/MXene复合物的扫描电镜图(SEM)。
图5是实施例1中MAX(Ti3AlC2)、MXene(Ti3C2)的X射线衍射谱图(XRD)。
图6是实施例2中双金属、Ti3C2以及金属与Ti3C2复合物的水氧化氧气析出线性扫描伏安对比图(LSV)。
图7是实施例2中不同比例的Fe(NO3)3.9H2O和Co(NO3)2.6H2O与Ti3C2复合的水氧化氧气析出线性扫描伏安对比图(LSV)。
具体实施方式
下文参照所附实施图例详细描述本发明的实施方案,此实施方案是为了更明确地理解本发明,但本发明并不限于此实施方案。
实施例1。
(一)FeCo/MXene复合物(FeCo/Ti3C2)的制备
包括如下步骤:
1、MXene(Ti3C2)的制备:
1)于50mL离心管中称取2g Ti3AlC2,缓慢加入30mL 40%HF,室温搅拌48h后,将获得的反应液进行离心(3500rpm,10min),弃上清液。向离心管中的沉淀物中加入40mL去离子水,用手摇一摇,使沉淀与去离子水混合均匀,将离心管放入大功率超声机中超声分散(750W,10min),取出继续离心(3500rpm,10min)弃上清液,重复几次,直到离心后倒出的上清液的pH值为5以上,优选的,pH值为5~7,得到终沉淀物。
2)向步骤1)获得的离心管中的终沉淀物中加入40mL乙醇,超声分散1h后,离心(10000转,10min),收集下层沉淀物,即为多层Ti3C2。在这里乙醇具有插层剂的作用。
3)向步骤2)收集的多层Ti3C2中,加20mL水,摇匀,进行超声(750W,20min)后,收取上层黑粽色液体,即为少层Ti3C2分散液,为了获得更多的少层Ti3C2,反复于多层Ti3C2中加水摇匀超声收集上层黑粽色液体,优选的,反复5~20次,合并收集的黑粽色液体。将收集的黑粽色液体通过离心(3500rpm,3min)取沉淀物,经冷冻干燥得少层Ti3C2粉末。
2、FeCo/Ti3C2复合物的制备
1)称取5mg少层Ti3C2粉末,加入500μL去离子水,超声分散后,加入2mL N-甲基吡咯烷酮作为稳定剂,继续超声分散,得少层Ti3C2分散液。
2)称量0.1212g Fe(NO3)3·9H2O、0.0873g Co(NO3)2·6H2O和1.8g尿素,加入2mL去离子,超声溶解。
3)将步骤1)和步骤2)所得的溶液混合,超声分散均匀后倒入Shleck瓶中,氮气保护下,于100℃加热搅拌5h;所得反应物放入离心管中,离心(10000转,10min)三次,用水反复洗涤。放入冷冻干燥机冷冻,得到粉末状物质,即为FeCo/Ti3C2复合物。
(二)检测
1、图1为Ti3AlC2的扫描电镜图,由图1可见,MAX是紧密堆叠的层状物质。
2、图2为多层Ti3C2的扫描电镜图,由图2可见,用氢氟酸蚀刻掉MAX中的Al原子之后,得到类似风琴状的二维层状结构,是多层的MXene结构。
3、图3为少层Ti3C2的扫描电镜图,由图3可见,经过多次离心收集上清液,在上清液中获得图中单层的MXene(Ti3C2)结构。
4、图4为制备的FeCo/Ti3C2复合物的扫描电镜图,由图4可见,单层的MXene(Ti3C2)单层片状的表面负载了颗粒状物质,颗粒状物质即为在高温反应中双金属与碱(尿素)反应生成的氢氧化物。
5、图5为Ti3AlC2和少层Ti3C2的X射线衍射谱图,由图5可见,由Ti3AlC2蚀刻得到的Ti3C2,可以看出在40度的峰明显消失,在9度的峰发生了明显的偏移,说明蚀刻成功。
实施例2。
涂覆不同复合物对电催化阳极水氧化的影响
(一)催化剂的制备
1、本发明——FeCo/Ti3C2复合物:取实施例1制备的产物
2、对比例——FeCo复合物:称量0.1212g Fe(NO3)3·9H2O、0.0873gCo(NO3)2·6H2O和1.8g尿素,加入2mL去离子,超声溶解后倒入Shleck瓶中,氮气保护下,于100℃加热搅拌5h;所得反应物放入离心管中,离心(10000转,10min)三次,用水反复洗涤。放入冷冻干燥机冷冻,得到粉末状物质,即为FeCo氢氧化物复合物。
(二)电极制备
分别取4mg FeCo/Ti3C2复合物粉末、少层Ti3C2粉末和FeCo氢氧化物复合物,分别加入485μl去离子水、500μl无水乙醇和10μl Nafion,超声分散5min,搅拌1h。所得混合液分别用移液枪转移5μl到玻碳电极上,常温下干燥,使溶剂挥发完全,获得涂覆不同复合物的玻碳电极。
在CHI 760D电化学工作站上使用标准三电极系统在1M KOH中评估阳极水氧化的性能。线性扫描伏安(LSV)在1600rpm的旋转速率、扫描速率为10mV s-1所测得。以涂覆不同复合物的玻碳电极为工作电极,Pt丝作为对电极,Ag/AgCl为参比电极构成三电极体系。本发明中所有在Ag/AgCl电极上测量的电位,根据Evs RHE=Evs Ag/AgCl+0.059pH+0.197转换为相对于RHE的电位。
(三)结果
如图6所示,为FeCo/Ti3C2复合物粉末(图6中a)、少层Ti3C2粉末(图6中c)和FeCo氢氧化物复合物(图6中b)的阳极水氧化过程的线性扫描伏安曲线,通过对比可以看出FeCo/Ti3C2的阳极水氧化的过程,起始电位最低,在电流密度为10mA cm-2处的电位最低,随着电压增大,催化效果好,说明FeCo/Ti3C2的催化效果比单独的双金属和单独的Ti3C2催化效果都好。
实施例3。
不同Fe(NO3)3·9H2O和Co(NO3)2·6H2O物质的量比对电催化阳极水氧化的影响(一)催化剂的制备
1、少层Ti3C2粉末的制备:同实施例1。
2、FeCo/Ti3C2复合物的制备
1)称取5mg少层Ti3C2粉末,加入500μL去离子水,超声分散后,加入2mL N-甲基吡咯烷酮作为稳定剂,继续超声分散,得少层Ti3C2分散液。
2)如表1称量Fe(NO3)3·9H2O和Co(NO3)2·6H2O及1.8g尿素,加入2mL去离子,超声溶解。
表1
物质的量比 1:2 1:3 2:1 3:1 1:1
Fe(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O<sub>/</sub>g 0.1212 0.1212 0.2424 0.3636 0.1212
Co(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O<sub>/</sub>g 0.1746 0.2619 0.0873 0.0873 0.0873
3)将步骤1)和步骤2)所得的溶液混合,超声分散均匀后倒入Shleck瓶中,氮气保护下,于100℃加热搅拌5h;所得反应物放入离心管中,离心(10000转,10min)三次,用水反复洗涤。放入冷冻干燥机冷冻,得到粉末状物质,即分别得到不同物质的量比的FeCo/Ti3C2复合物。
(二)电极的制备
分别取4mg不同物质的量比的FeCo/Ti3C2复合物,分别加入485μl去离子水、500μl无水乙醇和10μl Nafion,超声分散5min,搅拌1h。所得混合液分别用移液枪转移5μl到玻碳电极上,常温下干燥,使溶剂挥发完全,获得涂覆不同物质的量比的FeCo/Ti3C2复合物的玻碳电极。
以涂覆不同物质的量比的FeCo/Ti3C2复合物的玻碳电极,Pt丝作为对电极,Ag/AgCl为参比电极构成三电极体系,以1M的KOH溶液作为电解质,在CHI 760D电化学工作站上使用标准三电极系统在1M KOH中评估电催化剂对阳极水氧化的性能效果。线性扫描伏安(LSV)在1600rpm的旋转速率、扫描速率为10mV s-1所测得。本发明中所有在Ag/AgCl电极上测量的电位,根据Evs RHE=Evs Ag/AgCl+0.059pH+0.197转换为相对于RHE的电位。
(三)结果
图7为加入不同物质的量比例的金属盐与MXene(Ti3C2)复合对阳极水氧化过程的影响,通过对比线性扫描伏安曲线,可以看出当双金属盐比例为1:1时,阳极水氧化过程起始电位最低,在电流密度为10mA cm-2处的电位最低,随着电压增大,催化效果最好。

Claims (6)

1.FeCo/MXene复合物的制备方法,其特征在于,制备方法包括如下步骤:
1)将三元层状材料Ti3AlC2与HF混合,室温搅拌48~50 h后,离心,用去离子水反复洗涤至上清液pH为5~7,于离心所得沉淀物中加入乙醇,超声分散,再次离心取沉淀物;
2)于步骤1)加入乙醇后离心所得沉淀物中加入去离子水,超声分散,收集上层溶液,通过离心和冷冻干燥,得少层Ti3C2粉末;
3)将少层Ti3C2粉末超声分散于水中,加入稳定剂N-甲基吡咯烷酮,得少层Ti3C2分散液;将铁盐、钴盐和尿素的水溶液与少层Ti3C2分散液混合,在氮气保护下于90~110℃下加热搅拌反应5~7h,所得反应物经离心,洗涤,冷冻干燥,得FeCo/MXene复合物。
2.根据权利要求1所述的FeCo/MXene复合物的制备方法,其特征在于,步骤2),于步骤1)加入乙醇后离心所得沉淀物中加入去离子水,超声分散,收集上层溶液,反复5~20次,合并收集的上层溶液,通过离心和冷冻干燥得少层Ti3C2粉末。
3.根据权利要求1所述的FeCo/MXene复合物的制备方法,其特征在于,所述铁盐为Fe(NO3)3·9H2O,所述钴盐为Co(NO3)2·6H2O。
4.根据权利要求3所述的FeCo/MXene复合物的制备方法,其特征在于,按物质的量比,Fe(NO3)3·9H2O :Co(NO3)2·6H2O=1 : 0.5~3。
5.按照权利要求1~4任一项所述的方法制备的FeCo/MXene复合物在电催化阳极水氧化过程中的应用。
6.根据权利要求5所述的应用,其特征在于,方法如下:将权利要求1~4任一项所述的方法制备的FeCo/MXene复合物,加入到去离子水、无水乙醇和Nafion的混合液体中,超声分散后,室温下搅拌反应1~2 h,得混合液;将混合液滴涂到玻碳电极上,常温下干燥,获得涂覆了FeCo/MXene复合物的玻碳电极;以涂覆了FeCo/MXene复合物的玻碳电极为工作电极,Pt丝作为对电极,Ag/AgCl为参比电极,构成三电极体系,实现电催化阳极水氧化过程。
CN201910067206.9A 2019-01-24 2019-01-24 FeCo/MXene复合物及其制备方法和应用 Active CN109701572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910067206.9A CN109701572B (zh) 2019-01-24 2019-01-24 FeCo/MXene复合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910067206.9A CN109701572B (zh) 2019-01-24 2019-01-24 FeCo/MXene复合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109701572A CN109701572A (zh) 2019-05-03
CN109701572B true CN109701572B (zh) 2022-04-05

Family

ID=66261791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910067206.9A Active CN109701572B (zh) 2019-01-24 2019-01-24 FeCo/MXene复合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109701572B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038604B (zh) * 2019-05-10 2022-07-19 辽宁大学 CuCo/Ti3C2Tx复合材料及其制备方法和应用
CN110075890A (zh) * 2019-06-06 2019-08-02 辽宁大学 一种双金属层状氢氧化物螯合Ti3C2复合物及其制备方法和应用
CN111302389B (zh) * 2020-02-17 2022-05-31 陕西科技大学 一种纳米层状复合材料的制备方法
CN111599605A (zh) * 2020-05-06 2020-08-28 兰州大学 一种MXene基柔性生物可降解型超级电容器电极材料的制备方法
CN111659431A (zh) * 2020-05-09 2020-09-15 江苏大学 一种二维MXene/铁钴基复合催化材料的制备及其应用
CN111632614B (zh) * 2020-05-11 2023-05-26 湖北臻润环境科技股份有限公司 三维花瓣状NiAl-LDH/Ti3C2复合光催化剂及其制备方法和应用
CN111704173A (zh) * 2020-05-20 2020-09-25 上海应用技术大学 一种Ti-C@CoMn-LDH复合材料及其制备方法和应用
CN112058287B (zh) * 2020-08-25 2023-04-18 浙江工业大学 一种二维金属硒化物@MXene复合电催化剂的原位制备方法
CN113215616B (zh) * 2021-05-07 2023-02-07 中国石油化工股份有限公司 一种IrCoFe@MXene复合催化剂及其制备方法和应用
CN113638002B (zh) * 2021-07-14 2023-05-30 上海应用技术大学 一种FeCo LDH/Ti3C2 MXene/NF复合材料及其制备方法和应用
CN113588751B (zh) * 2021-07-28 2024-01-26 青岛科技大学 MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用
CN114471646B (zh) * 2021-12-22 2023-07-21 湘潭大学 一种在碳化钛表面负载单原子铁系金属的制备方法及其应用
CN114481202B (zh) * 2022-01-17 2023-05-23 浙江工业大学 一种超薄异质界面Ti3C2Tx/LDH及其制备方法
CN115028897B (zh) * 2022-06-20 2023-04-07 南京工业大学 一种功能化碳化钛纳米阻燃剂的制备及其在环氧树脂中的应用
CN115000426B (zh) * 2022-06-22 2024-01-26 郑州轻工业大学 一种二维碳化钛负载的双组份高效锌空气电池催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167066A (zh) * 2018-09-03 2019-01-08 济南大学 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法

Also Published As

Publication number Publication date
CN109701572A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN109701572B (zh) FeCo/MXene复合物及其制备方法和应用
Gu et al. Engineering cobalt oxide by interfaces and pore architectures for enhanced electrocatalytic performance for overall water splitting
Li et al. Metallic CuCo 2 S 4 nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn-air batteries
TW586250B (en) Anode electrocatalysts for coated substrates used in fuel cells
CN108258218B (zh) 一种碳点掺杂的碳化钛水凝胶复合材料的制备方法和应用
JP7368853B2 (ja) 多機能電極添加剤
CN109921041A (zh) 一种非贵金属氮掺杂空心碳纳米管电催化剂的制备及应用
Sun et al. Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction
He et al. Metal organic framework derived perovskite/spinel heterojunction as efficient bifunctional oxygen electrocatalyst for rechargeable and flexible Zn-air batteries
Ozdemir A novel method to produce few layers of graphene as support materials for platinum catalyst
KR101835420B1 (ko) 그래핀-층상 무기 나노시트 복합체, 이의 제조 방법, 및 이를 포함하는 연료전지 캐소드용 촉매
Kuang et al. One-pot synthesis of highly dispersed palladium nanoparticles on acetylenic ionic liquid polymer functionalized carbon nanotubes for electrocatalytic oxidation of glucose
Chen et al. Enhanced electrochemical performance in microbial fuel cell with carbon nanotube/NiCoAl-layered double hydroxide nanosheets as air-cathode
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Han et al. Highly active electrocatalyst for rechargeable Zn-air battery: 3D Fe/N-based honeycomb-like carbon
CN114284515B (zh) 一种三元异质结构FePc/Ti3C2/g-C3N4复合材料的制备方法与应用
Zaka et al. V2C MXene-TiO2 nanocomposite as an efficient electrode material for oxygen evolution reaction (OER)
CN113394413B (zh) 一种基于二维石墨相氮化碳钴掺杂多孔碳材料阴极氧还原反应催化剂的制备方法
CN110534754A (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用
Yu et al. Recent progress on reduced graphene oxide supported Pt-based catalysts and electrocatalytic oxidation performance of methanol
CN113422070B (zh) 基于铁基多巴胺超分子修饰的氢氧化铜二维纳米复合材料的制备方法
Shi et al. Interconnected porous structural construction of Mn-and N-doped carbon nanosheets for fuel cell application
Norouzi et al. Methanol electrooxidation on novel modified carbon paste electrodes with supported poly (isonicotinic acid)(sodium dodecyl sulfate)/Ni-Co electrocatalysts
Wu et al. CeO2 modified Ni-MOF as an efficient catalyst for electrocatalytic urea oxidation
Du et al. Modulated interfacial electron transfer of MXene-T x@ CoS for the oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant