CN113588751B - MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用 - Google Patents

MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用 Download PDF

Info

Publication number
CN113588751B
CN113588751B CN202110855462.1A CN202110855462A CN113588751B CN 113588751 B CN113588751 B CN 113588751B CN 202110855462 A CN202110855462 A CN 202110855462A CN 113588751 B CN113588751 B CN 113588751B
Authority
CN
China
Prior art keywords
coal
ldh
transition metal
mxene
metal carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110855462.1A
Other languages
English (en)
Other versions
CN113588751A (zh
Inventor
詹天荣
王超
李凯利
丁瑶
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110855462.1A priority Critical patent/CN113588751B/zh
Publication of CN113588751A publication Critical patent/CN113588751A/zh
Application granted granted Critical
Publication of CN113588751B publication Critical patent/CN113588751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种过渡金属碳氮化物@CoAl‑LDH复合膜修饰电极的制备方法和检测应用。先通过剥离方法制备超薄的过渡金属碳氮化物,再采用共沉淀法在其表面原位生长CoAl‑LDH纳米片,得到了过渡金属碳氮化物@CoAl‑LDH复合,采用滴涂法制备了相应的复合膜修饰电极。所得修饰电极充分发挥了超薄过渡金属碳氮化物和类水滑石纳米片的协同作用,增强了导电性,提供了更多的电化学催化位点和吸附位点,大提高了修饰电极对被检测物的吸附捕获和催化能力。基于本发明所述修饰电极的杀螟松电化学传感器,具有检测限低、检测范围宽、灵敏度高和响应快速等优点。

Description

MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农 药的应用
技术领域:
本发明涉及一种在MXene纳米片上原位合成CoAl-LDH复合膜修饰电极;本发明还涉及所述修饰电极的制备方法及其在电化学传感检测方面的应用。
背景技术:
有机磷农药(OPs)是一般结构为O=P(OR)3的剧毒磷酸盐化合物,具有杀虫范围广、高效、易降解、残留时间短等特点,对控制农业病害、提高农产品质量和产量具有积极作用。但是OPs可通过食物和食物链富集进入人体内,与乙酰胆碱酶活性中心进行结合。如果长期摄入低含量的OPs,会严重损害心、肝、肾等器官,严重时会导致记忆力减退和脑死亡;如果摄入过量的OPs,很可能导致呼吸困难、抽搐、缺氧、头晕、心律失常等中毒症。为了加强对OPs的检测,快速、简单、低成本的检测技术的研究与开发变得越来越重要。尽管高效液相色谱、气相色谱等是OPs测定中的常规方法,但它们存在一些缺点,例如安装设备的成本高,分析时间长以及样品制备困难。电化学传感器由于其成本低廉、操作简便,在污染物检测领域展现出了良好的前景。
近年来,二维金属碳化物或氮化物层状材料(MXene)通常在对MAX前驱体(Ti3AlC2)的Al原子层进行选择性蚀刻之后获得的,具有类似于石墨烯的层状结构,呈现出优异的导电性、高柔韧性和定制的表面化学,其中最突出的特性是羟基或氧封端表面的亲水性及过渡金属碳化物的金属导电性。因此,MXene在电化学传感器、电化学储能、生物医学领域展现了广泛的应用潜力。
水滑石(LDH)是一类二维层状纳米材料,因其片层带正电荷,近年来被广泛用于固定带负电荷的生物分子。相比于其它无机基体,LDH具有丰富的化学成分,可调的结构特性和可插层性能,是一种有效的固定客体分子的主体纳米结构来。但LDH本身存在易聚集、导电性差、催化活性位点暴露不充分等缺陷,将其剥离成LDH超薄纳米片可提高其比表面积、充分暴露其催化位点,从而提高其电化学催化性能。但剥离状态的LDH超薄纳米片在水介质中很容易聚集恢复成LDH大块状态,只能以胶体溶液的形式使用,大大限制了类水滑石的在电化学领域的纵深发展。
为了解决以上材料单独使用时存在的缺陷,本发明拟通过在MXene纳米片上原位制备CoAl-LDH,制备MXene@CoAl-LDH纳米复合物,采用该复合物对玻碳电极(GCE)进行修饰,充分发挥MXene和CoAl-LDH作为修饰电极材料的协同作用,进一步拓宽杀螟松的线性检测范围,降低检测限,以实现对杀螟松的高灵敏检测。
发明内容:
针对现有技术的不足以及本领域研究和应用的需求,本发明的目的之一是提供一种过渡金属碳氮化物@CoAl-LDH复合材料修饰电极,即在经选择性刻蚀之后得到的MXene纳米片上原位合成CoAl-LDH制备所述MXene@CoAl-LDH,并以该复合物制备相应的修饰电极。
本发明的目的之二是提供一种MXene@CoAl-LDH复合材料修饰电极的制备方法,其特征在于包括以下具体步骤:
(a)合成剥离的MXene
将1.98g LiF加入到一定量的HCl溶液,混合液用磁性聚四氟乙烯搅拌棒搅拌3-10min得到预混合蚀刻液,将3g前驱体Ti3AlC2粉末逐渐加入到预混合蚀刻液中,反应混合物在30-50℃下保持40-50h,反应完成后,混合物用蒸馏水洗涤五次,3500rpm离心5分钟,直到上清液的pH达到6,然后冷冻干燥得到最终产物为多层MXene;取80mg多层MXene加入到40mL水中,悬浮液在冰浴条件下超声处理2h;将悬浮液3500rpm离心1h,收集所得上清液即为剥离的MXene;
(b)合成过渡金属碳氮化物@CoAl-LDH
取上清液13mg在超纯水中超声30min,将摩尔比为2:1的Co(NO3)2·6H2O、Al(NO3)3·9H2O加入到上述溶液中,使金属盐的总摩尔数为0.075mmol,再将0.45mmol的NH4F加入到上述溶液中,剧烈搅拌1h;将含有NaOH和Na2CO3的溶液逐滴加入上述混合液中至溶液的pH为10,室温老化24h,离心后收集沉淀物,用蒸馏水冲洗干净,冷冻干燥后得过渡金属碳氮化物@CoAl-LDH纳米复合物;
(c)过渡金属碳氮化物@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的过渡金属碳氮化物@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取2~20μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得过渡金属碳氮化物@CoAl-LDH复合膜修饰GCE。
制备方法步骤(b)中所得的过渡金属碳氮化物@CoAl-LDH中CoAl-LDH纳米片均匀分布在MXene纳米片上;步骤(c)中所述基底电极的打磨采用麂皮上的氧化铝粉末依次打磨,超声清洗的时间为30s。
本发明目的之三是提供一种过渡金属碳氮化物@CoAl-LDH复合膜修饰电极在检测杀螟松的应用。检测方法为:以0.1mol/L pH 8.0的磷酸盐缓冲液为支持电解质,将含有不同量的杀螟松的电解质溶液加入电解池中,以修饰电极为工作电极,用差分脉冲伏安法检测,分别得到杀螟松的还原峰电流与其浓度的线性回归方程,采用同样方法测定待测样品中杀螟松的还原峰电流,代入线性回归方程,即得待测样品中杀螟松的含量。
本发明与现有技术相比,具有如下有益效果:
(a)本发明所述的过渡金属碳氮化物@CoAl-LDH复合膜是直接在MXene纳米片上原位合成水滑石纳米片制备得到,制备方法简单;
(b)所述过渡金属碳氮化物@CoAl-LDH复合膜修饰电极在电催化杀螟松方面发挥了CoAl-LDH和MXene的协同效应:MXene增强了CoAl-LDH的导电性,同时提高了修饰电极对被检测物的吸附和捕获能力;
(c)所述过渡金属碳氮化物@CoAl-LDH复合膜修饰电极在对杀螟松检测方面获得了较宽的线性范围(1×10-8~1.2×10-4mol/L)和较低的检测限(杀螟松3.7nmol/L),因此可以很好的实现对杀螟松的检测,检测方法抗干扰性好,灵敏度高。
附图说明:
图1为本发明实施例1制得的过渡金属碳氮化物@CoAl-LDH复合材料的SEM图。
图2为对比例1、对比例2和实施例4对应的裸GCE(a)、CoAl-LDH/GCE(b)、MXene@CoAl-LDH/GCE(c)在含有0.1mmol/L杀螟松的0.1mol/L pH=7.0的磷酸盐缓冲液中的循环伏安结果。
图3为对比例1、对比例2和实施例4对应的裸GCE(a)、CoAl-LDH/GCE(b)、MXene@CoAl-LDH/GCE(c)在含有10.0mmol/L[Fe(CN)6]-3/-4和0.1mol/LKCl溶液中的电化学阻抗图。
图4为不同浓度下杀螟松在实施例4对应MXene@CoAl-LDH/GCE上的差分脉冲伏安图,杀螟松的浓度依次是1×10-8、3×10-8、5×10-8、1×10-7、5×10-7、1×10-6、5×10-6、1×10-5、2×10-5、4×10-5、6×10-5、8×10-5、1.2×10-4mol/L。
图5为杀螟松浓度与峰电流的线性关系图。
具体实施方式:
为进一步理解本发明,下面结合附图和实施例对本发明作进一步说明,但并不以任何方式限制本发明。
实施例1:
(a)合成剥离的MXene
将1.98g LiF加入到30mL的6mol/L HCl溶液,混合液用磁性聚四氟乙烯搅拌棒搅拌5min得到预混合蚀刻液,将3g前驱体Ti3AlC2粉末逐渐加入到预混合蚀刻液中。反应混合物在40℃下保持45h,反应完成后,混合物用蒸馏水洗涤五次,离心(3500rpm,离心5分钟),直到上清液的pH达到6左右。然后冷冻干燥得到最终产物为多层MXene。取80mg多层MXene加入到40mL水中,悬浮液在冰浴条件下超声处理2h。然后将悬浮液3500rpm离心1h,收集上清液。
(b)合成MXene@CoAl-LDH
将MXene(13mg)分散在13mL超纯水中超声30min,加入含有Co(NO3)2·6H2O(0.05mmol)、Al(NO3)3·9H2O(0.025mmol)和NH4F(0.45mmol,16.6mg)的混合金属盐前驱体,剧烈搅拌1h,将含有NaOH(3mmol,120mg)和Na2CO3(7.5mmol,795mg)的溶液(6mL)逐滴加入上述溶液中至溶液的pH为10,室温老化24h,离心后收集沉淀物,用蒸馏水冲洗几次,冷冻干燥后得到MXene@CoAl-LDH纳米复合物MXene@CoAl-LDH。
实施例2:
(a)合成剥离的MXene
按照实施例1中步骤(a)的方法和条件制备;
(b)合成MXene@CoAl-LDH
按照实施例1中步骤(b)的方法和条件制备;
(c)MXene@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的MXene@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取3μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得MXene@CoAl-LDH复合膜修饰GCE记为MXene@CoAl-LDH/GCE;
实施例3:
(a)合成剥离的MXene
按照实施例1中步骤(a)的方法和条件制备;
(b)合成MXene@CoAl-LDH
按照实施例1中步骤(b)的方法和条件制备;
(c)MXene@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的MXene@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取4μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得MXene@CoAl-LDH复合膜修饰GCE记为MXene@CoAl-LDH/GCE;
实施例4:
(a)合成剥离的MXene
按照实施例1中步骤(a)的方法和条件制备;
(b)合成MXene@CoAl-LDH
按照实施例1中步骤(b)的方法和条件制备;
(c)MXene@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的MXene@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取5μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得MXene@CoAl-LDH复合膜修饰GCE记为MXene@CoAl-LDH/GCE;
实施例5:
(a)合成剥离的MXene
按照实施例1中步骤(a)的方法和条件制备;
(b)合成MXene@CoAl-LDH
按照实施例1中步骤(b)的方法和条件制备;
(c)MXene@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的MXene@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取6μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得MXene@CoAl-LDH复合膜修饰GCE记为MXene@CoAl-LDH/GCE;
实施例6:
(a)合成剥离的MXene
按照实施例1中步骤(a)的方法和条件制备;
(b)合成MXene@CoAl-LDH
按照实施例1中步骤(b)的方法和条件制备;
(c)MXene@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的MXene@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取7μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得MXene@CoAl-LDH复合膜修饰GCE记为MXene@CoAl-LDH/GCE;
对比例1:
直接用裸GCE。
对比例2:
(a)CoAl-LDH的制备
Co(NO3)2·6H2O(0.1mmol)、Al(NO3)3·9H2O(0.05mmol)和NH4F(0.45mmol,16.6mg)的混合金属盐前驱体,剧烈搅拌1h,将另一种含有NaOH(3mmol,120mg)和Na2CO3(7.5mmol,795mg)的溶液(6mL)逐滴加入上述溶液中至溶液的pH为10,室温老化24h,离心后收集沉淀物,将其命名为CoAl-LDH。
备用;
(b)CoAl-LDH/GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(a)制备得到的CoAl-LDH超声分散于去离子水中,制备浓度为1mg/mL的分散液,取5μL该分散液滴涂在步骤(b)中处理好的GCE表面,室温自然干燥后即得CoAl-LDH/GCE;
图1为本发明实施例1制得的MXene@CoAl-LDH复合物的SEM图。可以发现,经过剥离,多层MXene变成了单层MXene纳米片,且超薄的类水滑石纳米片均匀的生长在MXene表面。
实施例7:
将实施例4所得的MXene@CoAl-LDH/GCE作为工作电极,铂丝为对电极,饱和甘汞电极为参比电极,作为对比,按照对比例1和对比例2的对应的GCE、CoAl-LDH/GCE作为工作电极,然后在含有0.1mmol/L杀螟松的0.1mol/L pH 7.0的磷酸盐缓冲液中进行循环伏安法测定,扫速为0.1V/s,结果如图2所示。从图中可以明显观察到,杀螟松产生了一对可逆的氧化还原峰O1和R1(2e-,2H+)和一个不可逆的还原峰R2(4e-,4H+)。因为不可逆的还原峰(4e-,4H+)比可逆的氧化还原峰(2e-,2H+)的峰值电流信号更高,因此不可逆的还原峰R2对于检测杀螟松的浓度来说更为灵敏。MXene@CoAl-LDH/GCE的还原峰电流响应(IPC=21.8μA)较裸GCE(IPC=10.84μA)、CoAl-LDH/GCE(IPC=13.27μA)的还原峰电流响应更强。这个结果主要是由于MXene@CoAl-LDH/GCE具有较高的导电性、较多的催化活性中心和较大的表面积,有利于杀螟松还原反应的发生。通过CoAl-LDH纳米片和MXene纳米片的协同作用,加速了反应体系中电子的转移速率。因此,MXene@CoAl-LDH/GCE对杀螟松还原的电催化活性显著提高。
图3为对比例1、对比例2和实施例4对应的裸GCE(a)、CoAl-LDH/GCE(b)和MXene@CoAl-LDH/GCE(e)在含有10.0mmol/L[Fe(CN)6]-3/-4和0.1mol/L KCl溶液中的电化学阻抗图。从图中可以看出,谱图分为两部分,其中高频条件下的半圆对应有效电子转移控制过程,其半圆直径代表电子转移电阻(Rct);而低频段的线性部分对应的是溶质扩散控制过程。由阻抗谱图可知,MXene@CoAl-LDH/GCE的Rct值最小,表明CoAl-LDH与MXene的协同作用使MXene@CoAl-LDH的电荷转移速率显著提高,在电极与电解液界面上表现出快速的电子转移。
图4为不同浓度下杀螟松在实施例4对应MXene@CoAl-LDH/GCE上的差分脉冲伏安图。可以看出,杀螟松的响应值电流在实验的浓度范围内随着浓度的增大而逐渐增大,在一定浓度范围内,杀螟松的浓度与还原峰电流的呈线性关系,按照相关灵敏度的测定规则,测定杀螟松的检测限。测定杀螟松的最佳条件为pH=7.0的磷酸盐缓冲液,差分脉冲伏安法测得杀螟松的浓度在一定范围内与还原峰电流呈较好的线性关系。
如图5所示,杀螟松分别在0.01μM-0.1μM和0.1μM-120μM范围存在线性关系,线性方程分别为I(μA)=0.4343C(μM)+2.8822(R2=0.9702)和I(μA)=0.0986C(μM)+2.8656(R2=0.9938),检测限为3.7nM。
表1为本发明所得CoAl-ELDH-P@Au/GCE检测杀螟松性能与其它电分析方法的比较
从表1可看出,采用本发明所述的MXene@CoAl-LDH纳米复合物修饰基底电极后,其对杀螟松检测时的线性范围接近或优于现有的修饰电极,但检测限明显低于它们,说明MXene@CoAl-LDH复合膜修饰电极对杀螟松具有高灵敏的电催化性能,因而表现出了更好的稳定性和灵敏度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的转换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种过渡金属碳氮化物@CoAl-LDH复合膜修饰电极检测农药杀螟松的方法,其特征在于所述过渡金属碳氮化物@CoAl-LDH复合膜修饰电极由玻碳电极为基底电极,过渡金属碳氮化物@CoAl-LDH复合膜作为电极修饰材料而组成;所述过渡金属碳氮化物@CoAl-LDH复合膜是在经选择性刻蚀之后得到的过渡金属碳氮化物纳米片上原位合成CoAl-LDH所制得的;所述玻碳电极记为GCE;所述过渡金属碳氮化物记为MXene;
所述过渡金属碳氮化物@CoAl-LDH复合膜修饰电极的制备方法,其特征在于,包括以下步骤:
(a)合成剥离的MXene
将1.98g LiF加入到一定量的HCl溶液,混合液用磁性聚四氟乙烯搅拌棒搅拌3-10min得到预混合蚀刻液,将3g前驱体Ti3AlC2粉末逐渐加入到预混合蚀刻液中,反应混合物在30-50℃下保持40-50h,反应完成后,混合物用蒸馏水洗涤五次,3500rpm离心5分钟,直到上清液的pH达到6,然后冷冻干燥得到最终产物为多层MXene;取80mg多层MXene加入到40ml水中,悬浮液在冰浴条件下超声处理2h;将悬浮液3500rpm离心1h,收集所得上清液即为剥离的MXene;
(b)合成过渡金属碳氮化物@CoAl-LDH
取上清液13mg在超纯水中超声30min,将摩尔比为2:1的Co(NO3)2·6H2O、Al(NO3)3·9H2O加入到上述溶液中,使金属盐的总摩尔数为0.075mmol,再将0.45mmol的NH4F加入到上述溶液中,剧烈搅拌1h;将含有NaOH和Na2CO3的溶液逐滴加入上述混合液中至溶液的pH为10,室温老化24h,离心后收集沉淀物,用蒸馏水冲洗干净,冷冻干燥后得过渡金属碳氮化物@CoAl-LDH纳米复合物;
(c)过渡金属碳氮化物@CoAl-LDH复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的过渡金属碳氮化物@CoAl-LDH复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取2~20μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得过渡金属碳氮化物@CoAl-LDH复合膜修饰GCE;
其中制备方法步骤(b)中所得的过渡金属碳氮化物@CoAl-LDH中CoAl-LDH纳米片均匀分布在MXene纳米片上;步骤(c)中所述基底电极的打磨采用麂皮上的氧化铝粉末依次打磨,超声清洗的时间为30s;
一种过渡金属碳氮化物@CoAl-LDH复合膜修饰电极检测农药杀螟松的方法,其特征在于,以0.1mol/L pH 8.0的磷酸盐缓冲液为支持电解质,将含有不同量的杀螟松的电解质溶液加入电解池中,以修饰电极为工作电极,用差分脉冲伏安法检测,得到杀螟松的还原峰电流与其浓度的线性回归方程,采用同样方法测定待测样品中杀螟松的还原峰电流,代入线性回归方程,即得待测样品中杀螟松的含量。
CN202110855462.1A 2021-07-28 2021-07-28 MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用 Active CN113588751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110855462.1A CN113588751B (zh) 2021-07-28 2021-07-28 MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110855462.1A CN113588751B (zh) 2021-07-28 2021-07-28 MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用

Publications (2)

Publication Number Publication Date
CN113588751A CN113588751A (zh) 2021-11-02
CN113588751B true CN113588751B (zh) 2024-01-26

Family

ID=78251115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110855462.1A Active CN113588751B (zh) 2021-07-28 2021-07-28 MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用

Country Status (1)

Country Link
CN (1) CN113588751B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235911A (zh) * 2021-12-23 2022-03-25 重庆大学 一种用于胆碱检测的电化学传感器及其制备方法
CN114481202B (zh) * 2022-01-17 2023-05-23 浙江工业大学 一种超薄异质界面Ti3C2Tx/LDH及其制备方法
CN114512347B (zh) * 2022-02-23 2024-04-02 湖北大学 Ni-Co LDH@MXene高性能电极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701572A (zh) * 2019-01-24 2019-05-03 辽宁大学 FeCo/MXene复合物及其制备方法和应用
CN110075890A (zh) * 2019-06-06 2019-08-02 辽宁大学 一种双金属层状氢氧化物螯合Ti3C2复合物及其制备方法和应用
CN110118814A (zh) * 2019-05-10 2019-08-13 重庆大学 MXene/镍基层状双氢氧化物复合材料及其制备方法
CN110887887A (zh) * 2019-12-12 2020-03-17 北京工商大学 基于电化学葡萄糖传感器的淀粉体外快速消化检测仪及其制备方法和应用
CN111632614A (zh) * 2020-05-11 2020-09-08 湖北臻润环境科技股份有限公司 三维花瓣状NiAl-LDH/Ti3C2复合光催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701572A (zh) * 2019-01-24 2019-05-03 辽宁大学 FeCo/MXene复合物及其制备方法和应用
CN110118814A (zh) * 2019-05-10 2019-08-13 重庆大学 MXene/镍基层状双氢氧化物复合材料及其制备方法
CN110075890A (zh) * 2019-06-06 2019-08-02 辽宁大学 一种双金属层状氢氧化物螯合Ti3C2复合物及其制备方法和应用
CN110887887A (zh) * 2019-12-12 2020-03-17 北京工商大学 基于电化学葡萄糖传感器的淀粉体外快速消化检测仪及其制备方法和应用
CN111632614A (zh) * 2020-05-11 2020-09-08 湖北臻润环境科技股份有限公司 三维花瓣状NiAl-LDH/Ti3C2复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances;Hao Niu et al;Journal of Energy Chemistry;第46卷;105-113 *
Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor;Menghui Li et al;Applied Surface Science;第495卷;143554 *

Also Published As

Publication number Publication date
CN113588751A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN113588751B (zh) MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用
Qiu et al. An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine
Hassannezhad et al. A graphitic carbon nitride (gC 3 N 4/Fe 3 O 4) nanocomposite: an efficient electrode material for the electrochemical determination of tramadol in human biological fluids
CN109100404B (zh) 类水滑石纳米片@zif-67复合材料修饰电极及其制备方法和检测应用
Peng et al. A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode
Long et al. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation
Wu et al. Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide
Linting et al. An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition
Yang et al. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode
Li et al. An acetylcholinesterase biosensor based on graphene/polyaniline composite film for detection of pesticides
Chekin et al. Preparation and characterization of Ni (II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation
Liu et al. Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor
CN110346437B (zh) 一种基于LDHs/MXene的电化学葡萄糖传感器及其制备和应用
Ramki et al. Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: inter-connected path in multi-layered structure for efficient electron transfer
Yang et al. Metal-organic framework derived rod-like Co@ carbon for electrochemical detection of nitrite
Subash et al. Ultrasonication assisted synthesis of NiO nanoparticles anchored on graphene oxide: An enzyme-free glucose sensor with ultrahigh sensitivity
CN108414589A (zh) 泡沫状多孔碳网/镍纳米粒子三维复合物及其合成方法和应用
Dey et al. Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid
Mary et al. Supercapacitor and non-enzymatic biosensor application of an Mn 2 O 3/NiCo 2 O 4 composite material
Hadi et al. Sensitive detection of histamine at metal-organic framework (Ni-BTC) crystals and multi-walled carbon nanotubes modified glassy carbon electrode
Shahnavaz et al. Fabrication of a novel metal chromite–Carbon nanotube composite for the highly efficient electrocatalytic reduction of hydrogen peroxide
Sivakumar et al. Flower-like NiCo2O4 nanoflake surface covered on carbon nanolayer for high-performance electro-oxidation of non-enzymatic glucose biosensor
Wang et al. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT‐9/Mesoporous Carbon Composite
Hao et al. Facile synthesis of a 3D MnO 2 nanowire/Ni foam electrode for the electrochemical detection of Cu (ii)
Nateghi Synthesis of (Ti 0.5 V 0.5) 3 C 2 as Novel Electrocatalyst to Modify Carbon Paste Electrode for Measurement of Propranolol in Real Samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant