CN109678481A - 一种复合铁氧体片的制备方法 - Google Patents

一种复合铁氧体片的制备方法 Download PDF

Info

Publication number
CN109678481A
CN109678481A CN201910115947.XA CN201910115947A CN109678481A CN 109678481 A CN109678481 A CN 109678481A CN 201910115947 A CN201910115947 A CN 201910115947A CN 109678481 A CN109678481 A CN 109678481A
Authority
CN
China
Prior art keywords
burning powder
powder
burning
preparation
refractory metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910115947.XA
Other languages
English (en)
Other versions
CN109678481B (zh
Inventor
顾正青
韩朝庆
计建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Shihua New Material Technology Co ltd
Original Assignee
New Mstar Technology Ltd Suzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Mstar Technology Ltd Suzhou filed Critical New Mstar Technology Ltd Suzhou
Priority to CN201910115947.XA priority Critical patent/CN109678481B/zh
Publication of CN109678481A publication Critical patent/CN109678481A/zh
Application granted granted Critical
Publication of CN109678481B publication Critical patent/CN109678481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种复合铁氧体片的制备方法。其主要步骤为:1)预烧粉制备;2)制浆;3)喷雾造粒;4)多层粉末喷涂;5)放电等离子体烧结。本发明的优点是可以制备出具有多层结构的复合铁氧体片,在很宽的频率范围内可以获得高磁导率,避免传统采用流延方法生产的铁氧体片外观缺陷多,使用频率单一,生产周期长等缺点。

Description

一种复合铁氧体片的制备方法
技术领域
本发明涉及铁氧体片的制备方法,特别是涉及一种多层结构的复合铁氧体片的制备方法,属于电子元器件新材料新工艺领域。
背景技术
随着电子信息产业的快速发展,电子产品的功能越来越丰富、强大,这也伴随着耗电量的迅速加快,一块手机电池往往很难满足用户一天的使用。目前主流的有线充电方式存在容易损环、携带不便、接口不兼容、资源浪费等问题。人们对手机等用电设备的安全性、便携性、即时性要求越来越高,在电池续航没有取得革命性突破的情况下,无线充电方式获得越来越多的人的关注。随着苹果公司在新一代的iphone中集成了Qi标准的无线充电模块,无线充电市场有望迎来大爆发。铁氧体片在无线充电中,位于发射线圈和接收线圈端,作为隔磁片,可以提高线圈之间的耦合系数,进而提高充电效率,还能屏蔽线圈发射出来的电磁场对电池、电路等其器件的电磁干扰,对于提高无线充电设备的安全性必不可少。
目前已经开发出了工作频率在100-300KHz的感应式无线充电和工作频率在数MHz的共振式无线充电,正在研发工作在GHz的微波无线充电,传统的铁氧体片采用流延烧结的方法制备,是一种均质的材料,成分固定,只在某一频段中具有较好的性能,很难同时满足多种无线充电频率的要求。同时传统流延烧结法制备铁氧体片存在翘曲、卷边等外观缺陷,产品良率低,工艺复杂,生产周期长。
发明内容
本发明的目的是针对上述无线充电高频化的技术趋势,提供一种复合铁氧体片的制备方法。本发明提供的复合铁氧体片在数百KHz到GHz的频率范围内都能获得较高的磁导率,频率为 100KHz时,其磁导率实部大于500,频率为6.78MHz时,其磁导率实部大于200,频率为2.4GHz时,磁导率实部大于50。
为了达到上述目的,本发明是这样实现的。
按照原料摩尔配比为:氧化铁46.5%~50%、氧化镍8%~15%、氧化铜6%~12%、氧化锌15%~26%、氧化钴0~5%放入球磨机,加入去离子水球磨2-6小时后烘干,进行煅烧,煅烧温度为780-920℃,煅烧时间为2-4小时得到不同成分组成的预烧粉。
将预烧粉、水、表面活性剂,加入球磨机球磨至粒度为0.5~3μm,再加入粘结剂球磨制备得到均匀弥散不沉降的浆料。其中溶剂水的质量为预烧粉质量的30%~50%。表面活性剂为聚丙烯酸钠、十二烷基苯磺酸钠、二辛基琥珀酸磺酸钠或油酸钠中的一种,质量为所加入的预烧粉的0.3-2.5%。粘结剂为乙烯乙酸酯、丙烯酸、环氧水性树脂或淀粉中的一种,质量为所加入的预烧粉的0.1-5%。
采用喷雾造粒的方法,对浆料进行干燥,造粒,喷雾造粒的粒度d50为5~10 μm。
在石墨模具中首先放置第一块耐高温金属板,然后均匀喷涂具有不同成分的多层预烧粉造粒料,然后放置第二块耐高温金属板。所述的耐高温金属板/多层预烧粉堆积层/耐高温金属板结构可以多次重复出现,即形成耐高温金属板/多层预烧粉堆积层/耐高温金属板/多层预烧粉堆积层/耐高温金属板/···/耐高温金属板的重复结构。
多层预烧粉堆积层中单层预烧粉厚度不超过100μm,耐高温金属板为钼板、钨板、或者以铁、镍、钴为主要成分的高温合金,厚度40-200μm,表面粗糙度小于2μm。
对上述复合体进行放电等离子体烧结,烧结温度为750-880℃,施加压力为20-100MPa。
本发明与现有技术相比,本发明提供的复合铁氧体片在数百KHz到GHz的频率范围内都能获得较高的磁导率,频率为100KHz时,其磁导率实部大于500,频率为6.78MHz时,其磁导率实部大于200,频率为2.4GHz时,磁导率实部大于50。
相比于传统的流延烧结制备铁氧体片的方法,本发明生产工序少,烧结时间大大缩短,制备的铁氧体片不会存在翘曲、波浪边等外观缺陷,并且能够制备较厚的铁氧体片。
附图说明
图1为复合铁氧体片的成型烧结过程示意图。
附图说明:1-石墨模具;2-耐高温金属板;3-多层预烧粉堆积层;31-单层第一组份铁氧体预烧粉造粒料;32-单层第二组份铁氧体预烧粉造粒料;33-单层第三组份铁氧体预烧粉造粒料;4-施加压力的方向。
具体实施方式
下面结合具体实例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例。
实施例1。
按照原料摩尔配比,配制如下两种组分:组分1为氧化铁48.5%、氧化镍15%、氧化铜11%、氧化锌25.5%,组分2为氧化铁48.5%、氧化镍11%、氧化铜11%、氧化锌26%、氧化钴3.5%,分别放入球磨机,加入去离子水球磨4小时后烘干,进行煅烧,煅烧温度为780度,煅烧时间为4小时得到两组预烧粉。
将预烧粉、水、表面活性剂,加入球磨机球磨,粒度为0.5μm,再加入粘结剂,球磨制备得均匀弥散不沉降的浆料。其中溶剂水的质量为预烧粉质量的的30%。表面活性剂为聚丙烯酸钠,质量为所加入的预烧粉的0.3%。粘结剂为乙烯乙酸酯,质量为所加入的预烧粉的0.4%。
采用喷雾造粒的方法,对浆料进行干燥,造粒,喷雾造粒的粒度d50为5μm。
在石墨模具中首先放置第一块钨板,然后均匀喷涂具有不同成分的两种预烧粉造粒料,然后放置第二块钨板。每层预烧粉厚度为100μm,钨板厚度200微米,表面粗糙度为1μm。
对上述复合体进行放电等离子体烧结,烧结温度为750℃,施加压力为40MPa。
制备出的铁氧体盘表面平整无翘曲,组织致密,晶粒尺寸为5μm,孔隙率低,密度为4.95g/cm3。将样品进行磁性能测试,频率为 100KHz时,其磁导率实部550,频率为6.78MHz时,其磁导率实部210,频率为2.4GHz时,磁导率实部为58。
实施例2。
按照原料摩尔配比,配制如下三种组分:组分1为氧化铁48.5%、氧化镍15%、氧化铜11%、氧化锌25.5%,组分2为氧化铁48.5%、氧化镍11%、氧化铜11%、氧化锌26%、氧化钴3.5%,组分3为氧化铁50%、氧化镍15%、氧化铜9%、氧化锌21%、氧化钴5%,分别放入球磨机,加入去离子水球磨4小时后烘干,进行煅烧,煅烧温度为820度,煅烧时间为4小时得到三组预烧粉。
将预烧粉、水、表面活性剂,加入球磨机球磨,粒度为1.5μm,再加入粘结剂,球磨制备得均匀弥散不沉降的浆料。其中溶剂水的质量为预烧粉质量的40%。表面活性剂为十二烷基苯磺酸钠,质量为所加入的预烧粉的0.8%。粘结剂为丙烯酸,质量为所加入的预烧粉的1.0%。
采用喷雾造粒的方法,对浆料进行干燥,造粒,喷雾造粒的粒度d50为7μm。
在石墨模具中首先放置第一块钼板,然后均匀喷涂具有不同成分的三种预烧粉造粒料,然后放置第二块钼板。每层预烧粉厚度为80μm,钼板厚度150微米,表面粗糙度为1.5μm。
对上述复合体进行放电等离子体烧结,烧结温度为780℃,施加压力为80MPa。
制备出的铁氧体盘表面平整无翘曲,组织致密,晶粒尺寸为4μm,孔隙率低,密度为4.92g/cm3。将样品进行磁性能测试,频率为 100KHz时,其磁导率实部580,频率为6.78MHz时,其磁导率实部240,频率为2.4GHz时,磁导率实部为75。
实施例3。
按照原料摩尔配比,配制如下三种组分:组分1为氧化铁49.5%、氧化镍14%、氧化铜12%、氧化锌24.5%,组分2为氧化铁49.5%、氧化镍10%、氧化铜12%、氧化锌24%、氧化钴4.5%,组分3为氧化铁50%、氧化镍15%、氧化铜10%、氧化锌20%、氧化钴5%,分别放入球磨机,加入去离子水球磨5小时后烘干,进行煅烧,煅烧温度为810度,煅烧时间为3小时得到预烧粉。
将预烧粉、水、表面活性剂,加入球磨机球磨,粒度为3μm,再加入粘结剂球磨制备得均匀弥散不沉降的浆料。其中溶剂水的质量为预烧粉质量的50%。表面活性剂为二辛基琥珀酸磺酸钠,质量为所加入的预烧粉的2.5%。粘结剂为淀粉,质量为所加入的预烧粉的3.1%。
采用喷雾造粒的方法,对浆料进行干燥,造粒,喷雾造粒的粒度d50为10μm。
在石墨模具中首先放置第一块钼板,然后均匀喷涂具有不同成分的三种预烧粉造粒料,然后放置第二块钼板。第一层预烧粉厚度为80μm,第二层预烧粉厚度为100μm,第三层预烧粉厚度为90μm,钼板厚度120μm,表面粗糙度为0.8μm。
对上述复合体进行放电等离子体烧结,烧结温度为800℃,施加压力为60MPa。
制备出的铁氧体盘表面平整无翘曲,组织致密,晶粒尺寸为4.5μm,孔隙率低,密度为4.96g/cm3。将样品进行磁性能测试,频率为 100KHz时,其磁导率实部620,频率为6.78MHz时,其磁导率实部280,频率为2.4GHz时,磁导率实部为82。
以上所述仅为本申请较优的实施例,并非因此限定本申请的保护范围,凡事利用本申请说明书及附图内容所做的等效结构,或直接或间接地运用在其他相关的技术领域,均同理包括在本申请的保护范围内。

Claims (7)

1.一种复合铁氧体片的制备方法,其特征在于制备步骤为:
1)预烧粉制备:将氧化铁、氧化镍、氧化铜、氧化锌、氧化钴按比例球磨混合、烘干、预烧,得到不同成分的预烧粉;
2)制浆:将预烧粉、水、表面活性剂,加入球磨机球磨至粒度为0.5~3μm,再加入粘结剂制备得均匀弥散不沉降的浆料;
3)喷雾造粒:采用喷雾造粒的方法使浆料干燥,获得粒度分布均匀的预烧粉造粒料;
4)多层粉末喷涂与叠片:在石墨模具中放置耐高温金属板,依次将不同成分的预烧粉造粒料在石墨模具中喷涂,得到多层预烧粉末堆积层,然后放置耐高温金属片,形成耐高温金属板/多层预烧粉堆积层/耐高温金属板结构;重复前述喷涂多层粉末堆积层步骤,在最表面放置高温金属片;
5)放电等离子体烧结;
所述原料摩尔配比为:氧化铁46.5%~50%、氧化镍8%~15%、氧化铜6%~12%、氧化锌15%~26%、氧化钴0~5%;
所述复合铁氧体片在频率为 100KHz时,磁导率实部大于500;频率为6.78MHz时,磁导率实部大于200;频率为2.4GHz时,磁导率实部大于50。
2.根据权利要求1所述的一种复合铁氧体片的制备方法,其特征在于:所述球磨混合、烘干、煅烧工艺具体为将原料按照配比放入球磨机,加入去离子水球磨2~6小时后烘干,进行煅烧,煅烧温度为780~920℃,煅烧时间为2~4小时得到预烧粉。
3.根据权利要求1所述的一种复合铁氧体片的制备方法,其特征在于:所述浆料中水的质量为预烧粉质量的30%~50%;所述的表面活性剂为聚丙烯酸钠、十二烷基苯磺酸钠、二辛基琥珀酸磺酸钠或油酸钠中的一种,质量为所加入的预烧粉的0.3~2.5%;所述的粘结剂为乙烯乙酸酯、丙烯酸、环氧水性树脂或淀粉中的一种,质量为所加入的预烧粉的0.1~5%。
4.根据权利要求1所述的一种复合铁氧体片的制备方法,其特征在于:所述的喷雾造粒的粒度d50为5~10 μm。
5.根据权利要求1所述的一种复合铁氧体片的制备方法,其特征在于:所述的耐高温金属板/多层预烧粉堆积层/耐高温金属板结构可以多次重复出现,即形成耐高温金属板/多层预烧粉堆积层/耐高温金属板/多层预烧粉堆积层/耐高温金属板/···/耐高温金属板的重复结构。
6.根据权利要求1所述的一种复合铁氧体片的制备方法,其特征在于:所述的多层预烧粉堆积层中单层预烧粉厚度不超过100μm;耐高温金属板为钼板、钨板、或者以铁、镍、钴为主要成分的高温合金,厚度40~200μm,表面粗糙度小于2μm。
7.根据权利要求1所述的一种复合铁氧体片的制备方法,其特征在于:所述的放电等离子体烧结温度为750~880℃,施加压力为20~100MPa。
CN201910115947.XA 2019-02-15 2019-02-15 一种复合铁氧体片的制备方法 Active CN109678481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910115947.XA CN109678481B (zh) 2019-02-15 2019-02-15 一种复合铁氧体片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910115947.XA CN109678481B (zh) 2019-02-15 2019-02-15 一种复合铁氧体片的制备方法

Publications (2)

Publication Number Publication Date
CN109678481A true CN109678481A (zh) 2019-04-26
CN109678481B CN109678481B (zh) 2021-03-16

Family

ID=66195840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910115947.XA Active CN109678481B (zh) 2019-02-15 2019-02-15 一种复合铁氧体片的制备方法

Country Status (1)

Country Link
CN (1) CN109678481B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626820A (zh) * 2022-11-02 2023-01-20 西南科技大学 一种异质叠层共烧铁氧体陶瓷的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812476A (ja) * 1994-06-28 1996-01-16 Tokin Corp 高透磁率酸化物磁性材料の焼結方法
CN1303111A (zh) * 1999-12-16 2001-07-11 Tdk株式会社 用于磁性铁氧体的粉末、磁性铁氧体、多层铁氧体元件及其制法
DE10010082B4 (de) * 1999-03-02 2004-05-13 Murata Mfg. Co., Ltd., Nagaokakyo Magnetische Keramikzusammensetzung und deren Verwendung in einer Induktorkomponente
CN1544391A (zh) * 2003-11-20 2004-11-10 ������ͨ�Ƽ��������ι�˾ 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
JPWO2004097863A1 (ja) * 2003-05-01 2006-07-13 財団法人大阪産業振興機構 磁性材料
EP1842837A1 (fr) * 2006-04-05 2007-10-10 Thales Materiau ferrite à faibles pertes et à basse temperature de frittage, procédé de fabrication et composant magnetique comportant ledit materiau ferrite
JP4587758B2 (ja) * 2004-09-22 2010-11-24 京セラ株式会社 ガラスセラミック基板
CN202585541U (zh) * 2012-05-02 2012-12-05 深圳顺络电子股份有限公司 一种大高频阻抗的叠层磁珠
CN102863222A (zh) * 2012-06-28 2013-01-09 深圳市固电电子有限公司 陶瓷材料及其与铁氧体材料低温叠层共烧方法
US20130062553A1 (en) * 2011-09-14 2013-03-14 Samsung Electro-Mechanics Co., Ltd. Nickel-zinc-copper based ferrite composition, and multilayered chip device using the same
CN106486238A (zh) * 2016-09-13 2017-03-08 深圳振华富电子有限公司 一种叠层片式磁珠及其制备方法
CN108298972A (zh) * 2018-02-24 2018-07-20 苏州世华新材料科技有限公司 一种软磁铁氧体片材的制备方法
CN109133902A (zh) * 2018-11-01 2019-01-04 横店集团东磁股份有限公司 一种nfc用铁氧体片及其烧结方法
CN109231978A (zh) * 2018-08-20 2019-01-18 浙江大学 一种高频高磁导率铁氧体片及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812476A (ja) * 1994-06-28 1996-01-16 Tokin Corp 高透磁率酸化物磁性材料の焼結方法
DE10010082B4 (de) * 1999-03-02 2004-05-13 Murata Mfg. Co., Ltd., Nagaokakyo Magnetische Keramikzusammensetzung und deren Verwendung in einer Induktorkomponente
CN1303111A (zh) * 1999-12-16 2001-07-11 Tdk株式会社 用于磁性铁氧体的粉末、磁性铁氧体、多层铁氧体元件及其制法
JPWO2004097863A1 (ja) * 2003-05-01 2006-07-13 財団法人大阪産業振興機構 磁性材料
CN1544391A (zh) * 2003-11-20 2004-11-10 ������ͨ�Ƽ��������ι�˾ 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
JP4587758B2 (ja) * 2004-09-22 2010-11-24 京セラ株式会社 ガラスセラミック基板
EP1842837A1 (fr) * 2006-04-05 2007-10-10 Thales Materiau ferrite à faibles pertes et à basse temperature de frittage, procédé de fabrication et composant magnetique comportant ledit materiau ferrite
US20130062553A1 (en) * 2011-09-14 2013-03-14 Samsung Electro-Mechanics Co., Ltd. Nickel-zinc-copper based ferrite composition, and multilayered chip device using the same
CN202585541U (zh) * 2012-05-02 2012-12-05 深圳顺络电子股份有限公司 一种大高频阻抗的叠层磁珠
CN102863222A (zh) * 2012-06-28 2013-01-09 深圳市固电电子有限公司 陶瓷材料及其与铁氧体材料低温叠层共烧方法
CN106486238A (zh) * 2016-09-13 2017-03-08 深圳振华富电子有限公司 一种叠层片式磁珠及其制备方法
CN108298972A (zh) * 2018-02-24 2018-07-20 苏州世华新材料科技有限公司 一种软磁铁氧体片材的制备方法
CN109231978A (zh) * 2018-08-20 2019-01-18 浙江大学 一种高频高磁导率铁氧体片及其制备方法
CN109133902A (zh) * 2018-11-01 2019-01-04 横店集团东磁股份有限公司 一种nfc用铁氧体片及其烧结方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626820A (zh) * 2022-11-02 2023-01-20 西南科技大学 一种异质叠层共烧铁氧体陶瓷的制备方法
CN115626820B (zh) * 2022-11-02 2023-10-31 西南科技大学 一种异质叠层共烧铁氧体陶瓷的制备方法

Also Published As

Publication number Publication date
CN109678481B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN103304186B (zh) 一种铁氧体基复合磁介天线基板材料及其制备方法
KR20200020562A (ko) 고-성능 실드 시트, 이의 제조 방법 및 이를 포함하는 코일 모듈
Wang et al. Densification and magnetic properties of low-fire NiCuZn ferrites
WO2019113973A1 (zh) 一种介质陶瓷材料及其制备方法
CN109103010B (zh) 一种提高磁粉芯绝缘层致密度的材料及其方法
CN102664056A (zh) 导电银浆及其制备方法、微波介质陶瓷的表面金属化方法
CN111072394A (zh) 一种含镁铝尖晶石的六铝酸钙质耐火材料的制备方法
CN107706373B (zh) 一种锂离子电池高镍三元材料及其制备方法
CN109678481A (zh) 一种复合铁氧体片的制备方法
CN110494030B (zh) 一种树脂强化的铁氧体固废基宽频带电磁波吸收体的制备方法
CN105016395A (zh) 一种纳米铁氧体材料及其制备方法
CN106753238A (zh) 一种叠层吸波复合材料的制备方法
Wang et al. Co-firing behavior of ZnTiO3–TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters
CN108298972A (zh) 一种软磁铁氧体片材的制备方法
CN109433084B (zh) 抑制浆料中生成团聚物的方法及由其得到的浆料和应用
CN110467450A (zh) 一种高频锰锌软磁铁氧体材料及其制备方法和应用
CN103094694A (zh) 一种超材料介质基板及其加工方法
CN111056849A (zh) 一种高分散反铁电亚微米陶瓷粉体及其制备方法
CN102976726A (zh) 一种微波烧结超薄型铁氧体片材的方法
CN102408227A (zh) 锰锌高磁导率材料及其烧结方法
CN113084151B (zh) 一种5g滤波器用银粉及其生产方法
CN106587037A (zh) 一种Z‑型铁氧体与r‑GO流延叠层吸波复合材料的制备方法
CN107540361A (zh) 一种高直流叠加锰锌铁氧体磁芯及其制备方法
CN109574646B (zh) 一种适用于6.78MHz的铁氧体片及其制备方法
CN106699159A (zh) 铁氧体粉料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240520

Address after: 215200 Wujiang 168 economic and Technological Development Zone, Suzhou, Jiangsu

Patentee after: SUZHOU SHIHUA NEW MATERIAL TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 215200 No.111 futu Road, Wujiang Economic and Technological Development Zone, Suzhou City, Jiangsu Province

Patentee before: SUZHOU SHINUO NEW MATERIAL TECHNOLOGY Co.,Ltd.

Country or region before: China