CN109592984B - 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法 - Google Patents

一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN109592984B
CN109592984B CN201710943996.3A CN201710943996A CN109592984B CN 109592984 B CN109592984 B CN 109592984B CN 201710943996 A CN201710943996 A CN 201710943996A CN 109592984 B CN109592984 B CN 109592984B
Authority
CN
China
Prior art keywords
silicon carbide
powder
sic
precursor
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710943996.3A
Other languages
English (en)
Other versions
CN109592984A (zh
Inventor
姚秀敏
陈健
杨勇
刘学建
黄政仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201710943996.3A priority Critical patent/CN109592984B/zh
Publication of CN109592984A publication Critical patent/CN109592984A/zh
Application granted granted Critical
Publication of CN109592984B publication Critical patent/CN109592984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法,以SiC粉体作为原料粉体,以氧化铝前驱体和氧化镱前驱体作为烧结助剂,通过热压烧结制备得到所述碳化硅陶瓷。本发明通过添加Al2O3的前驱体和Yb2O3的前驱体作为烧结助剂,通过前驱体的均匀分散实现烧结助剂在SiC粉体表面的均匀包裹,实现烧结助剂的少量添加,同时使生成的绝缘烧结助剂相隔离开SiC晶粒,从实现高热导、高电阻LPS SiC陶瓷的制备。

Description

一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法
技术领域
本发明涉及一种高热导液相烧结碳化硅(SiC)陶瓷及其制备方法,属于高热导陶瓷领域。
背景技术
高导热、电绝缘陶瓷在大规模集成电路、计算机技术、高温工业等领域具有广阔的应用前景,被大量研究并应用于电子、航空航天等领域。碳化硅(SiC)陶瓷具有高强度、高硬度、高导热、耐高温、耐腐蚀、耐磨损、性能稳定、不易老化等优良的性能,其高的热导性能,与Si相近的热膨胀系数,使其有望成为新一代半导体集成电路基板材料。
然而,碳化硅是一种强共价键化合物,为实现其致密化烧结,必须添加第二相材料即烧结助剂。碳化硅常压液相烧结(LPS SiC)常用的烧结助剂为Al2O3和Y2O3,其热导率通常仅为60-85W·m-1·K-1之间。同时,SiC是一种宽禁带半导体,针对大功率电路应用缺乏足够高的电阻率,上述常用的LPS SiC陶瓷电阻率通常在104-5Ω·cm,远远不能够半导体基板满足绝缘(ρ≥109Ω·cm)的电阻率使用要求。
发明内容
针对上述问题,本发明的目的在于提供一种高热导、高绝缘液相烧结碳化硅陶瓷及其制备方法。
一方面,本发明提供了一种液相烧结碳化硅陶瓷的制备方法,以SiC粉体作为原料粉体,以氧化铝前驱体和氧化镱前驱体作为烧结助剂,通过热压烧结制备得到所述碳化硅陶瓷。
本发明通过添加Al2O3的前驱体和Yb2O3的前驱体作为烧结助剂,通过前驱体的均匀分散实现烧结助剂在SiC粉体表面的均匀包裹,实现烧结助剂的少量添加,同时使生成的绝缘烧结助剂相隔离开SiC晶粒,从实现高热导、高电阻LPS SiC陶瓷的制备。具体来说,一是,通过Al2O3的前驱体和Yb2O3的前驱体的均匀包裹SiC粉体减少烧结助剂的添加量,减少晶界相,降低声子散射,从而实现高热导;二是通过前躯体的均匀包裹,在少量的同时,使生成的晶界绝缘相均匀分布在碳化硅颗粒表面,避免碳化硅颗粒相互接触,从而提高晶界电阻。
较佳地,所述氧化铝前驱体为异丙醇铝、硝酸铝和氢氧化铝中的至少一种。
较佳地,所述氧化镱前驱体为乙酸镱和硝酸镱中的至少一种。
较佳地,所述SiC粉体的粒径为0.1~1.0μm。
较佳地,以氧化铝前驱体和氧化镱前驱体裂解后的氧化铝、氧化镱和SiC粉体的质量计为粉体总质量100%,所述氧化铝前驱体和氧化镱前驱体裂解后的氧化铝和氧化镱的含量为粉体总质量的2~8wt%。烧结助剂含量过低,碳化硅陶瓷晶界相少,有利于热导率的提高,但碳化硅颗粒大量接触,导致电阻率大幅降低;烧节助剂含量过高,碳化硅陶瓷晶界相过多,晶界声子散射增强,导致热导率大幅降低,所以烧结助剂添加量有一定范围。
又,优选地所述氧化铝前驱体和氧化镱前驱体中Al和Yb的摩尔比为1:1~3:5。
较佳地,包括:将SiC粉体、烧结助剂和溶剂混合,得到浆料;将所得浆料经干燥、过筛后制成坯体;将所得坯体经热压烧结后得到所述碳化硅陶瓷。
较佳地,所述浆料中还包括分散剂,所述分散剂为四甲基氢氧化铵TMAH、聚丙烯酸PAA、聚丙烯酸铵PAA-NH4中的至少一种,优选地所述分散剂的质量为粉体总质量的0.5~1.0wt%。
较佳地,所述溶剂为无水乙醇或/水,所述浆料的固含量为45~50wt%
较佳地,所述热压烧结的温度为1800~2000℃,时间为30~60分钟,压力为20~60MPa。
另一方面,本发明还提供了一种根据上述方法制备的碳化硅陶瓷,所述碳化硅陶瓷包括碳化硅晶粒,以及用于隔离所述碳化硅晶粒的绝缘烧结助剂相(例如,Al和Yb的摩尔比为1:1时,生产YbAlO3相;Al和Yb的摩尔比为3:5时,生成Yb3Al5O12相),优选地所述碳化硅陶瓷的热导率在90W·m-1·K-1以上,电阻率大于108Ω·cm。较佳地,所述碳化硅晶粒的粒径为0.1~1.0μm。较佳地,所述碳化硅陶瓷中绝缘烧结助剂相的质量百分比为2~8wt%。
本发明通过添加氧化铝和氧化镱的前驱体作为烧结助剂,经高温热压烧结后获得液相烧结SiC陶瓷。本发明制备的陶瓷材料具有高的热导率、高的电阻率(热导率在90W·m-1·K-1以上,电阻率大于108Ω·cm)。
附图说明
图1为实施例1制备的3wt%Al2O3-Yb2O3含量的SiC陶瓷的微观结构;
图2为实施例1制备的3wt%Al2O3-Yb2O3含量的SiC陶瓷的交流阻抗图;
图3为实施例1制备的3wt%Al2O3-Yb2O3含量的SiC陶瓷的I-V曲线;
图4为实施例2制备的5wt%Al2O3-Yb2O3含量(Al:Ybmol比为1:1)的SiC陶瓷的微观结构;
图5为实施例3制备的5wt%Al2O3-Yb2O3含量(Al:Ybmol比为3:5)的SiC陶瓷的微观结构;
图6为实施例3制备5wt%Al2O3-Yb2O3含量的SiC陶瓷的交流阻抗图;
图7为实施例3制备5wt%Al2O3-Yb2O3含量的SiC陶瓷的I-V曲线;
图8为实施例4制备8wt%Al2O3-Yb2O3含量的SiC陶瓷的微观结构。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明以碳化硅粉体为原料粉体,以氧化铝前驱体、氧化镱前驱体为烧结助剂,经过热压烧结制备得到高热导、高电阻液相烧结碳化硅(SiC)陶瓷。本发明中,所述的陶瓷在具有细小晶粒结构的同时,具有大于90W·m-1·K-1的热导率。
以下示例性地说明本发明提供的高热导、高电阻液相烧结碳化硅(SiC)陶瓷及其制备方法。
以SiC粉体、氧化铝前驱体粉体、氧化镱前驱体粉体和溶剂为主要原料,然后将上述主要原料通过混合,配成浆料。其中,所述氧化铝前驱体可为异丙醇铝、硝酸铝等。所述氧化镱前驱体可为乙酸镱等。SiC粉体可为高纯SiC粉体(氧含量≤0.8wt%,Fe含量≤0.02wt%)。所述溶剂可为无水乙醇或/和水。所述SiC粉体的平均粒径为0.1~1.0μm。以氧化铝前驱体和氧化镱前驱体裂解后的氧化铝、氧化镱和SiC粉体的总质量计为粉体总质量100%,所述氧化铝前驱体和氧化镱前驱体裂解后的氧化物(氧化铝、氧化镱)的添加量占粉体总质量的2.0~8.0wt%。所述氧化铝前驱体和氧化镱前驱体中Al和Yb的摩尔比可为1:1~3:5。上述混合方法可以是球磨或搅拌的方法,SiC球作为研磨介质。所述浆料的固含量可为45~50wt%。所述浆料中还包括分散剂,所述分散剂可为四甲基氢氧化铵TMAH、聚丙烯酸PAA、聚丙烯酸铵PAA-NH4中的至少一种。所述分散剂的质量可为粉体总质量的0.5~1.0wt%。
作为一个浆料制备方法的示例,首先将分散剂加入水或无水乙醇中配成溶液,加入量分别为粉体总质量的0.5wt%~1.0wt%。然后加入原料粉体(SiC粉体和烧结助剂),用SiC球作为研磨球,球磨混合配成浆料。
将上述所得浆料经干燥、过筛后制成坯体。所述坯体的成型方式可为干压成型。具体来说,将球磨混合后浆料干燥、过筛以得到混合均匀的粉体,然后将获得的粉体进行干压成型后装入热压模具或直接装入热压模具预压成型。所述干压成型的压力可为10~20MPa。所述预压成型压力≤5MPa。所述干燥的温度可为50~70℃,时间可为6~24小时。所述过筛可为过100~200目的筛。
将所得坯体经热压烧结后得到所述碳化硅陶瓷。在将所得坯体进行烧结之前还可进行脱粘处理。所述脱粘处理可为在常压真空中、600~900℃下脱粘处理1~3小时。所述烧结的方式可为热压烧结等。上述热压烧结的温度可为1800~2000℃。上述热压烧结的时间可为30~60min。上述热压烧结的压力可为20~60MPa。所述热压烧结的氛围可为惰性气氛、例如氩气等。作为一个示例,将制成的样品(坯体)和模具一起在热压、氩气条件下烧结,烧结温度为1800~2000℃,保温时间30~60分钟,制备出高热导、高电阻液相烧结碳化硅(SiC)陶瓷。
作为一个高热导、高电阻液相烧结碳化硅(SiC)陶瓷制备方法的示例,包括以下步骤:1)以SiC粉体、氧化铝前驱体粉体、氧化镱前驱体粉体和分散剂等为原料;2)将所述原料通过球磨混合配成浆料;3)将球磨混合后的浆料干燥过筛,得到的粉体装入石墨模具中;4)将石墨模具在热压惰性气氛条件下烧结,烧结温度为1800~2000℃,保温时间为30~60min,压力20~60MPa,制备出陶瓷。
将本发明制备的高热导、高电阻液相烧结碳化硅(SiC)陶瓷经过加工后,测试其各项性能。
本发明采用激光热导仪测得所述高热导、高电阻液相烧结碳化硅(SiC)陶瓷的热导率λ在90W·m-1·K-1以上。本发明采用直流电阻仪测得所述高热导、高电阻液相烧结碳化硅(SiC)陶瓷的直流电阻率大于108Ω·cm。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
97wt%SiC(97g)、2.47wt%异丙醇铝、5.11wt%乙酸镱,1.0g TMAH为分散剂,以水溶剂,将粉体配成浆料,以200g SiC球为球磨介质,行星球磨机混合4h。然后干燥过筛,得到的粉体10MPa压力预压成型,装入热压石墨模具。在常压真空条件下1000℃脱粘,然后在Ar气氛下热压烧结,烧结温度为1900℃,保温时间1h,热压压力为30MPa。得到的SiC液相陶瓷密度为3.15g·cm-3,Hv5.0=15.29±0.11GPa,KIC=3.97±0.30MPa·m1/2。将获得的陶瓷制成Φ10mm厚度2.5mm的小圆片,测得其热导率λ为95.26±1.01w/(m·K),直流电阻率为1.01×108Ω·cm。其微观结构见图1,从图中可知,微观结构均匀,烧结助剂(白色相)均匀分布在SiC晶粒(黑色相)间,SiC晶粒大小约为0.3~2.0μm。交流阻抗谱见图2,从图中可知,随频率增加(图2的横坐标代表频率),阻抗的模值/Z/降低(图2左侧竖坐标表示阻抗的模值/Z/,右侧竖坐标代表相位角theta)。直流阻抗图(I-V曲线)见图3,从图中可知,其具有伏安特性。
实施例2
95wt%SiC(95g)、4.12wt%异丙醇铝、8.51wt%乙酸镱,以水溶剂,将粉体配成固含量为50wt%的浆料,以200g SiC球为球磨介质,行星球磨机混合4h。然后干燥过筛,得到的粉体直接装入热压石墨模具,并以5MPa的压力预压。然后在Ar气氛下热压烧结,烧结温度为1950℃,保温时间1h,热压压力为30MPa。得到的SiC液相陶瓷密度为3.23g·cm-3,Hv5.0=20.88±0.98GPa,KIC=4.10±0.04MPa·m1/2。将获得的陶瓷制成Φ10mm厚度2.5mm的小圆片,测得其热导率λ为117.25±0.29w/(m·K),直流电阻率为3.15×108Ω·cm,其微观结构见图4,从图中可知,微观结构均匀,烧结助剂(白色相)均匀分布在SiC晶粒(黑色相)间,SiC晶粒大小约为0.3~3.0μm。
实施例3
95wt%SiC(95g)、5.98wt%异丙醇铝、7.49wt%乙酸镱,以水溶剂,将粉体配成固含量为50wt%的浆料,以200g SiC球为球磨介质,行星球磨机混合4h。然后干燥过筛,得到的粉体直接装入热压石墨模具,并以5MPa的压力预压。然后在Ar气氛下热压烧结,烧结温度为1850℃,保温时间1h,热压压力为30MPa。得到的SiC液相陶瓷密度为3.24g·cm-3,Hv5.0=19.55±0.76GPa,KIC=3.94±0.16MPa·m1/2。将获得的陶瓷制成Φ10mm厚度2.5mm的小圆片,测得其热导率λ为90.38±0.32w/(m·K),直流电阻率为8.56×109Ω·cm,其微观结构见图5,从图中可知从图中可知,微观结构均匀,烧结助剂(白色相)均匀分布在SiC晶粒(黑色相)间,SiC晶粒大小约为0.3~2.0μm。交流阻抗谱见图6,从图中可知,随频率随频率增加(图6的横坐标代表频率),阻抗的模值/Z/降低(图6左侧竖坐标表示阻抗的模值/Z/,右侧竖坐标代表相位角theta)。直流阻抗图(I-V曲线)见图7,从图中可知,其具有伏安特性。
实施例4
92wt%SiC(92g)、6.59wt%异丙醇铝、13.62wt%乙酸镱,以水溶剂,将粉体配成固含量为50wt%的浆料,以200g SiC球为球磨介质,行星球磨机混合4h。然后干燥过筛,得到的粉体直接装入热压石墨模具,并以5MPa的压力预压。然后在Ar气氛下热压烧结,烧结温度为1850℃,保温时间0.5h,热压压力为60MPa。得到的SiC液相陶瓷密度为3.29g·cm-3。将获得的陶瓷制成Φ10mm厚度2.5mm的小圆片,测得其热导率λ为137.60±0.31w/(m·K),直流电阻率为4.03×109Ω·cm。其微观结构图见图8,从图中可知,微观结构均匀,烧结助剂(白色相)均匀分布在SiC晶粒(黑色相)间,SiC晶粒均小于2.0μm。
实施例5
92wt%SiC(92g)、9.57wt%异丙醇铝、11.98wt%乙酸镱,以水溶剂,将粉体配成固含量为50wt%的浆料,以200g SiC球为球磨介质,行星球磨机混合4h。然后干燥过筛,得到的粉体直接装入热压石墨模具,并以5MPa的压力预压。然后在Ar气氛下热压烧结,烧结温度为1850℃,保温时间1.5h,热压压力为60MPa。得到的SiC液相陶瓷密度为3.30g·cm-3,σf=474±81MPa。将获得的陶瓷制成Φ10mm厚度2.5mm的小圆片,测得其热导率λ为122.89±1.30w/(m·K),直流电阻率为7.32×109Ω·cm。
表1为本发明实施例1-5制备的碳化硅陶瓷的原料比例:
Figure BDA0001426645300000061
表2为本发明实施例1-5制备的碳化硅陶瓷的性能参数:
Figure BDA0001426645300000062
Figure BDA0001426645300000071

Claims (8)

1.一种液相烧结碳化硅陶瓷的制备方法,其特征在于,以SiC粉体作为原料粉体,以氧化铝前驱体和氧化镱前驱体作为烧结助剂,通过热压烧结制备得到所述碳化硅陶瓷;
所述氧化铝前驱体为异丙醇铝、硝酸铝和氢氧化铝中的至少一种,所述氧化镱前驱体为乙酸镱、硝酸镱中的至少一种;
以氧化铝前驱体和氧化镱前驱体裂解后的氧化铝、氧化镱和SiC粉体的质量计为粉体总质量100%,所述氧化铝前驱体和氧化镱前驱体裂解后的氧化铝和氧化镱的含量为粉体总质量的2~8wt%;
所述碳化硅陶瓷的热导率在90W·m-1·K-1以上,电阻率大于108Ω·cm。
2.根据权利要求1所述的制备方法,其特征在于,所述SiC粉体的粒径为0.1~1.0μm。
3.根据权利要求1所述的制备方法,其特征在于,所述氧化铝前驱体和氧化镱前驱体中Al和Yb的摩尔比为1:1~3:5。
4.根据权利要求1所述的制备方法,其特征在于,包括:
将SiC粉体、烧结助剂和溶剂混合,得到浆料;
将所得浆料经干燥、过筛后制成坯体;
将所得坯体经热压烧结后得到所述碳化硅陶瓷。
5.根据权利要求4所述的制备方法,其特征在于,所述浆料中还包括分散剂,所述分散剂为四甲基氢氧化铵TMAH、聚丙烯酸PAA、聚丙烯酸铵PAA-NH4中的至少一种,所述分散剂的质量为粉体总质量的0.5~1.0wt%。
6.根据权利要求4所述的制备方法,其特征在于,所述溶剂为无水乙醇和/或水,所述浆料的固含量为45~50wt%。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于,所述热压烧结的温度为1800~2000℃,时间为30~60分钟,压力为20~60MPa。
8.一种根据权利要求1-7中任一项所述方法制备的碳化硅陶瓷,其特征在于,所述碳化硅陶瓷包括碳化硅晶粒,以及用于隔离所述碳化硅晶粒的绝缘烧结助剂相,所述碳化硅陶瓷的热导率在90W·m-1·K-1以上,电阻率大于108Ω·cm。
CN201710943996.3A 2017-09-30 2017-09-30 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法 Active CN109592984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710943996.3A CN109592984B (zh) 2017-09-30 2017-09-30 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710943996.3A CN109592984B (zh) 2017-09-30 2017-09-30 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109592984A CN109592984A (zh) 2019-04-09
CN109592984B true CN109592984B (zh) 2021-06-15

Family

ID=65956263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710943996.3A Active CN109592984B (zh) 2017-09-30 2017-09-30 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN109592984B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848171A (zh) * 2019-04-25 2020-10-30 比亚迪股份有限公司 一种铝碳化硅材料及其制备方法
CN111892404A (zh) * 2020-08-03 2020-11-06 福赛特(唐山)新材料有限公司 一种耐腐蚀碳化硅扩散管及其制备方法
CN112028637A (zh) * 2020-08-24 2020-12-04 中材高新氮化物陶瓷有限公司 一种航空轴承用高可靠性长寿命氮化硅陶瓷球的制备方法
CN115745619B (zh) * 2022-11-23 2023-11-17 广东昊陶科技有限公司 一种碳化硅复合粉体及其制备方法
CN116023145A (zh) * 2022-12-29 2023-04-28 湖南福德电气有限公司 一种碳化硅系压敏电阻的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449649A (en) * 1989-01-17 1995-09-12 Li; Chien-Wei Monolithic silicon nitride having high fracture toughness
JP4312293B2 (ja) * 1999-03-16 2009-08-12 独立行政法人科学技術振興機構 炭化珪素系セラミック複合材料とその製造方法
CN102757237A (zh) * 2012-06-28 2012-10-31 航天材料及工艺研究所 一种陶瓷材料烧结助剂的加入方法
CN103539457A (zh) * 2013-09-29 2014-01-29 合肥工业大学 一种微电子封装用AlN陶瓷基板的制备方法
CN106673660A (zh) * 2016-12-09 2017-05-17 中国科学院上海硅酸盐研究所 一种液相烧结SiC非线性电阻陶瓷及其制备方法
CN106830944A (zh) * 2017-03-16 2017-06-13 北京中兴实强陶瓷轴承有限公司 一种陶瓷复合材料及其烧制方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100486930C (zh) * 2007-03-21 2009-05-13 中国人民解放军国防科学技术大学 一种含锆聚碳硅烷陶瓷先驱体的制备方法及装置
CN103275327B (zh) * 2013-06-15 2015-05-13 厦门大学 一种制备液态无氧型聚钛碳硅烷的方法
CN106045520B (zh) * 2016-05-30 2018-06-22 中国科学院上海硅酸盐研究所 一种具有低电阻率、线性电阻特性的碳化硅/石墨复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449649A (en) * 1989-01-17 1995-09-12 Li; Chien-Wei Monolithic silicon nitride having high fracture toughness
JP4312293B2 (ja) * 1999-03-16 2009-08-12 独立行政法人科学技術振興機構 炭化珪素系セラミック複合材料とその製造方法
CN102757237A (zh) * 2012-06-28 2012-10-31 航天材料及工艺研究所 一种陶瓷材料烧结助剂的加入方法
CN103539457A (zh) * 2013-09-29 2014-01-29 合肥工业大学 一种微电子封装用AlN陶瓷基板的制备方法
CN106673660A (zh) * 2016-12-09 2017-05-17 中国科学院上海硅酸盐研究所 一种液相烧结SiC非线性电阻陶瓷及其制备方法
CN106830944A (zh) * 2017-03-16 2017-06-13 北京中兴实强陶瓷轴承有限公司 一种陶瓷复合材料及其烧制方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
effect of heating rate on the shrinkage and microstructure of liquid phase sintered SiC ceramics;S.Ribeiro;《Ceramics International》;20161130;Experimental *

Also Published As

Publication number Publication date
CN109592984A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109592984B (zh) 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法
JP5666749B1 (ja) 冷却板、その製法及び半導体製造装置用部材
JP5121268B2 (ja) 窒化アルミニウム焼結体及び半導体製造装置用部材
JP4424659B2 (ja) 窒化アルミニウム質材料および半導体製造装置用部材
JP7062229B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
WO2019188148A1 (ja) 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
CN109627014B (zh) 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN109592983B (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
JP5406565B2 (ja) 酸化アルミニウム焼結体、その製法及び半導体製造装置部材
JPH0859367A (ja) 中空球形のポリマー性前駆体を用いる多孔質セラミックスまたは多孔質セラミックス積層体の製造方法
JP5189712B2 (ja) AlN基板およびその製造方法
CN109336609B (zh) 一种高热导、电绝缘液相烧结碳化硅陶瓷及其sps工艺制备方法
CN111484333A (zh) 一种兼具高热导率和高强度的氮化铝陶瓷及其制备方法
KR101402501B1 (ko) 이트리아 질산염을 소결조제로 사용한 질화알루미늄 소결체 및 그 제조방법
CN112750692B (zh) 复合烧结体及复合烧结体的制造方法
JP2642184B2 (ja) 窒化アルミニウム―六方晶窒化ほう素系焼結体の製造方法
JP2017135159A (ja) 炭化ホウ素セラミックスからなる熱電素子及びその製造方法
KR102536630B1 (ko) 중고온에서 높은 비저항을 갖는 정전척용 AlN-MgO계 소결체 및 이의 제조방법
JP2587854B2 (ja) 熱伝導度が向上された窒化アルミニウム焼結体の製造方法
CN108585871B (zh) 一种b4c陶瓷块体的快速制备方法
Chung et al. High thermal conductivity ceramics from combustion synthesized AlN powder through microwave sintering and reheating
TW200418123A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP4868641B2 (ja) 窒化アルミニウム基板の製造方法
CN117923925A (zh) 一种添加碳纤维的氮化硅导电陶瓷及其制备方法
CN117550610A (zh) 一种高熵二硅化物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant