CN109592979A - 一种高储能密度钛酸钡复合电介质材料的制备方法 - Google Patents

一种高储能密度钛酸钡复合电介质材料的制备方法 Download PDF

Info

Publication number
CN109592979A
CN109592979A CN201811525929.0A CN201811525929A CN109592979A CN 109592979 A CN109592979 A CN 109592979A CN 201811525929 A CN201811525929 A CN 201811525929A CN 109592979 A CN109592979 A CN 109592979A
Authority
CN
China
Prior art keywords
barium titanate
energy storage
preparation
storage density
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811525929.0A
Other languages
English (en)
Other versions
CN109592979B (zh
Inventor
张全平
孙囡
周元林
李银涛
杨文彬
李迎军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN201811525929.0A priority Critical patent/CN109592979B/zh
Publication of CN109592979A publication Critical patent/CN109592979A/zh
Application granted granted Critical
Publication of CN109592979B publication Critical patent/CN109592979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于新材料制备技术领域,公开了一种高储能密度钛酸钡复合电介质材料的制备方法,包括:利用甲苯分散巯基化碳材料、α烯烃磺酸盐和催化剂,氮气氛围下升温处理若干时间后离心处理;将离心物分散至蒸馏水体系中,高速搅拌条件下加入钡盐溶液,然后逐滴加入碳酸盐溶液并充分搅拌,经离心、干燥等步骤获得钛酸钡包覆碳材料的核壳结构;将获得的核壳结构和二氧化钛粒子混合,绝氧预烧结,冷却后研磨加入聚乙烯醇并压片,绝氧高温烧结成型。本发明同时发挥钛酸钡基体及导电逾渗体系电介质储能的功能,使制备的钛酸钡复合电介质材料具有超高储能密度、超快充放电速度及超大放电功率。

Description

一种高储能密度钛酸钡复合电介质材料的制备方法
技术领域
本发明属于新材料制备技术领域,具体涉及一种高储能密度钛酸钡复合电介质材料的制备方法。
背景技术
由于具有充放电速率快、放电功率高等特点,电介质储能材料已经广泛应用于现代电子及电能系统,如电动汽车、电力系统、激光武器等。线性电介质储能密度(Ue)可以根据关系式Ue=1/2ε0εrEb 2计算,其中ε0、εr和Eb分别为真空介电常数、相对介电常数和击穿电压。可以发现,相对介电常数和击穿电压是电介质储能材料的关键参数。陶瓷电介质材料在制备高储能密度电容器方面有一定优势,但其击穿场强可改进的空间有限。因此,提高陶瓷电介质的介电常数将是改善其储能密度的一种方式。
钛酸钡具有价格低、易制备、机械性能高及热稳定性好等优点,是目前较为理想的电介质材料。虽然钛酸钡具有相对较高的介电常数,但是低击穿强度导致储能密度难以满足当前的应用要求。添加少量的碳材料(如炭黑、碳纤维、碳纳米管、石墨烯纳米片等)至钛酸钡基体即可获得高介电常数的复合电介质材料,尤其是在碳材料填充量接近逾渗值时,介电常数将陡增。不过,研究工作表明,碳材料易团聚,尤其是纳米尺度的碳材料,较难在钛酸钡基体中均匀分散,极易形成导电网络结构,从而使介电损耗提高,击穿强度下降。
综上所述,现有技术存在的问题是:
(1)现有技术中,钛酸钡基复合材料界面难以良好相容,导致介电损耗偏高,击穿强度可提升空间有限;
(2)现有技术中,钛酸钡基复合材料的介电常数偏低,储能密度不高,难以应用推广。
解决上述技术问题的难度和意义:
如何实现钛酸钡基复合材料介电常数极大提升同时不损害其击穿强度是现有技术的难点。
解决此技术问题一方面能为制备高储能密度电介质材料奠定基础;另一方面有助于进一步实现电子器件轻量化、小型化,推广钛酸钡介电材料的应用领域。
发明内容
本发明的目的就在于为了解决上述问题,而提供一种高储能密度钛酸钡复合电介质材料的制备方法,为制备高储能密度电介质材料提供技术储备。
本发明自组装手段制备出一种以钛酸钡均匀包覆导电碳材料的新型陶瓷电介质材料。钛酸钡一方面发挥着高介电常数属性,更重要的是钛酸钡绝缘特性可以避免碳材料直接形成导电通路,为制备高储能密度电介质材料奠定基础。该制备方法操作简便、工艺稳定、成本低廉、材料结构可控,具有很好的应用价值。
本发明通过以下技术方案实现的,一种高储能密度钛酸钡复合电介质材料的制备方法,包括:
步骤1,600转/分钟转速的搅拌条件下将巯基化碳材料、α烯烃磺酸盐和催化剂分散至甲苯体系中,氮气氛围下升温处理若干时间后离心分离;
步骤2,将步骤1离心物分散至蒸馏水中,在高速搅拌下加入钡盐溶液,然后逐滴加入碳酸盐溶液并充分搅拌,经8000转/分钟离心、常温真空干燥等步骤获得钛酸钡包覆碳材料的核壳结构;
步骤3,将获得的核壳结构和二氧化钛粒子混合,绝氧预烧结,冷却后研磨加入聚乙烯醇并压片,绝氧高温烧结成型,即制得。
本发明的特征还在于,进一步的,所述步骤1中,碳材料为炭黑、碳纤维、碳纳米管与石墨烯中的任意一种。
进一步的,所述步骤1中,α烯烃磺酸盐为乙烯基磺酸钠、4-苯乙烯磺酸钠、烯丙基磺酸钠、甲基丙烯磺酸钠中的任意一种。
进一步的,所述步骤1中,催化剂为过氧化二苯甲酰、叔丁基过氧化氢、偶氮二异丁腈、偶氮二异庚腈中的任意一种。
进一步的,所述步骤2中,钡盐溶液则为氯化钡和硝酸钡溶液中的任意一种碳酸盐溶液为碳酸钠和碳酸钾溶液中的任意一种。
进一步的,所述步骤1中巯基化碳材料质量为0.2~2g;α烯烃磺酸盐质量为0.1~0.5g;催化剂质量为0.1~0.3g;甲苯体积为100~300ml;处理温度为60~90℃,处理时间为0.1~0.5小时。
进一步的,所述步骤2中,蒸馏水体积为50~150ml;1mol/L钡盐溶液的体积为50~100ml;1mol/L碳酸盐溶液的体积为55~110ml。
进一步的,所述步骤3中,二氧化钛质量为4~9g;预烧结温度为750~1200℃,处理时间为1~2小时;高温烧结温度为1200~1500℃,处理时间为12~48小时。
本发明的另一目的在于提供一种利用所述高储能密度钛酸钡复合电介质材料的制备方法制备的高储能密度钛酸钡复合电介质材料。
综上所述,本发明的优点及积极效果为:
本发明的有益效果是提供制备一种新型高储能密度钛酸钡复合电介质材料的制备方法,不仅可以发挥钛酸钡高介电常数属性,更重要的是,还可以利用钛酸钡绝缘特性避免碳材料直接接触形成导电通路,降低钛酸钡复合材料介电损耗,为高储能密度钛酸钡电介质材料应用奠定技术基础。采用本方法合成的钛酸钡复合电介质材料的介电常数高达11012,介电损耗为0.015(106Hz),击穿强度为21kV/mm-1;而采用相同方法制备的钛酸钡纯样的介电常数为1326,介电损耗为0.008(106Hz),击穿强度为25kV/mm-1。该制备方法操作简便、工艺稳定、成本低廉、材料结构可控,具有非常可观的应用前景。
本发明同时发挥钛酸钡基体及导电逾渗体系电介质储能的功能,使制备的钛酸钡复合电介质材料具有超高储能密度、超快充放电速度及超大放电功率,在电动汽车、电力系统、激光武器等领域具有较高的应用前景,并提供操作简便、工艺稳定、成本低廉、材料结构可控的制备新方法。
附图说明
图1是本发明实施例提供的高储能密度钛酸钡复合电介质材料的制备方法流程图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中,钛酸钡基复合材料界面难以良好相容,导致介电损耗偏高,击穿强度可提升空间有限;
现有技术中,钛酸钡基复合材料的介电常数偏低,储能密度不高,难以应用推广。
为解决上述问题,下面结合制备方法对本发明作详细描述。
如图1所示,本发明实施例提供的高储能密度钛酸钡复合电介质材料的制备方法,包括:
S101:600转/分钟转速的搅拌条件下将巯基化碳材料、α烯烃磺酸盐和催化剂分散至甲苯体系中,氮气氛围下升温处理若干时间后离心分离;
S102:将步骤S101离心物分散至蒸馏水中,在高速搅拌下加入钡盐溶液,然后逐滴加入碳酸盐溶液并充分搅拌,经8000转/分钟离心、常温真空干燥等步骤获得钛酸钡包覆碳材料的核壳结构;
S103:将获得的核壳结构和二氧化钛粒子混合,绝氧预烧结,冷却后研磨加入聚乙烯醇并压片,绝氧高温烧结成型,即制得。
在本发明实施例中,提供一种利用所述高储能密度钛酸钡复合电介质材料的制备方法制备的高储能密度钛酸钡复合电介质材料。
下面结合具体实施例对本发明的应用作进一步描述。
实施例1:
本发明实施例提供的高储能密度钛酸钡复合电介质材料的制备方法,包括以下步骤:
(1)高速搅拌条件下将2g巯基化碳黑、0.1g乙烯基磺酸钠和0.1过氧化二苯甲酰分散至100ml甲苯体系中,氮气氛围下升温至90℃处理0.1h后离心分离;
(2)将步骤1离心物分散至50ml蒸馏水中,在高速搅拌下加入50ml 1mol/L硝酸钡溶液(浓度为1mol/L),然后逐滴加入55ml碳酸钾溶液(浓度为1mol/L)并充分搅拌,经离心、干燥等步骤获得钛酸钡包覆碳材料的核壳结构;
(3)将获得的核壳结构和4g二氧化钛粒子混合,绝氧750℃预烧结2h,冷却后研磨加入聚乙烯醇并压片,绝氧1200℃高温烧结48h成型,即制得。
实施例2:
本发明实施例提供的高储能密度钛酸钡复合电介质材料的制备方法,包括以下步骤:
(1)高速搅拌条件下将0.8g巯基化碳纤维、0.2g 4-苯乙烯磺酸钠和0.2g叔丁基过氧化氢分散至200ml甲苯体系中,氮气氛围下升温至80℃处理0.3h后离心分离,
(2)将步骤1离心物分散至80ml蒸馏水中,在高速搅拌下加入80ml氯化钡溶液(浓度为1mol/L),然后逐滴加入85ml碳酸钠溶液(浓度为1mol/L)并充分搅拌,经离心、干燥等步骤获得钛酸钡包覆碳材料的核壳结构;
(3)将获得的核壳结构和6g二氧化钛粒子混合,绝氧850℃预烧结1.5h,冷却后研磨加入聚乙烯醇并压片,绝氧1350℃高温烧结36h成型,即制得。
实施例3:
本发明实施例提供的高储能密度钛酸钡复合电介质材料的制备方法,包括以下步骤:
(1)高速搅拌条件下将0.3g巯基化碳纳米管、0.4g烯丙基磺酸钠和0.2g偶氮二异丁腈分散至260ml甲苯体系中,氮气氛围下升温至60℃处理0.5h后离心分离;
(2)将步骤1离心物分散至120ml蒸馏水中,在高速搅拌下加入90ml硝酸钡溶液(浓度为1mol/L),然后逐滴加入95ml碳酸钠溶液(浓度为1mol/L)并充分搅拌,经离心、干燥等步骤获得钛酸钡包覆碳材料的核壳结构;
(3)将获得的核壳结构和8g二氧化钛粒子混合,绝氧1000℃预烧结1.5h,冷却后研磨加入聚乙烯醇并压片,绝氧1450℃高温烧结12h成型,即制得。
实施例4:
本发明实施例提供的高储能密度钛酸钡复合电介质材料的制备方法,包括以下步骤:
(1)高速搅拌条件下将0.2g巯基化石墨烯、0.5g甲基丙烯磺酸钠和0.3g偶氮二异庚腈分散至300ml甲苯体系中,氮气氛围下升温至70℃处理0.4h后离心分离;
(2)将步骤1离心物分散至150ml蒸馏水中,在高速搅拌下加入100ml氯化钡溶液(浓度为1mol/L),然后逐滴加入110ml碳酸钾溶液(浓度为1mol/L)并充分搅拌,经离心、干燥等步骤获得钛酸钡包覆碳材料的核壳结构;
(3)将获得的核壳结构和9g二氧化钛粒子混合,绝氧1200℃预烧结1h,冷却后研磨加入聚乙烯醇并压片,绝氧1500℃高温烧结12h成型,即制得。
本发明实施例提供一种利用所述高储能密度钛酸钡复合电介质材料的制备方法制备的高储能密度钛酸钡复合电介质材料。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

1.一种高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述高储能密度钛酸钡复合电介质材料的制备方法包括:
步骤一,600转/分钟转速的搅拌条件下将巯基化碳材料、α烯烃磺酸盐和催化剂分散至甲苯体系中,氮气氛围下升温处理后离心分离;
步骤二,将步骤一离心物分散至蒸馏水中,在高速搅拌下加入钡盐溶液,然后逐滴加入碳酸盐溶液并充分搅拌,经8000转/分钟离心、常温真空干燥获得钛酸钡包覆碳材料的核壳结构;
步骤三,将获得的核壳结构和二氧化钛粒子混合,绝氧预烧结,冷却后研磨加入聚乙烯醇并压片,绝氧高温烧结成型,制得高储能密度钛酸钡复合电介质材料。
2.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤一中的碳材料为炭黑、碳纤维、碳纳米管与石墨烯中的任意一种。
3.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤一中的α烯烃磺酸盐为乙烯基磺酸钠、4-苯乙烯磺酸钠、烯丙基磺酸钠、甲基丙烯磺酸钠中的任意一种。
4.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤一中的催化剂为过氧化二苯甲酰、叔丁基过氧化氢、偶氮二异丁腈、偶氮二异庚腈中的任意一种。
5.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤一中巯基化碳材料质量为0.2~2g;α烯烃磺酸盐质量为0.1~0.5g;催化剂质量为0.1~0.3g;甲苯体积为100~300ml;处理温度为60~90℃,处理时间为0.1~0.5小时。
6.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤二中,钡盐溶液则为氯化钡和硝酸钡溶液中的任意一种碳酸盐溶液为碳酸钠和碳酸钾溶液中的任意一种。
7.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤二中,蒸馏水体积为50~150ml;1mol/L氯化钡溶液的体积为50~100ml;1mol/L碳酸钠溶液的体积为55~110ml。
8.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤二中,蒸馏水体积为50~150ml;1mol/L氯化钡溶液的体积为50~100ml;1mol/L碳酸钠溶液的体积为55~110ml。
9.如权利要求1所述的高储能密度钛酸钡复合电介质材料的制备方法,其特征在于,所述步骤三中,二氧化钛质量为4~9g;预烧结温度为750~1200℃,处理时间为1~2小时;高温烧结温度为1200~1500℃,处理时间为12~48小时。
10.一种利用权利要求1所述高储能密度钛酸钡复合电介质材料的制备方法制备的高储能密度钛酸钡复合电介质材料。
CN201811525929.0A 2018-12-13 2018-12-13 一种高储能密度钛酸钡复合电介质材料的制备方法 Active CN109592979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811525929.0A CN109592979B (zh) 2018-12-13 2018-12-13 一种高储能密度钛酸钡复合电介质材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811525929.0A CN109592979B (zh) 2018-12-13 2018-12-13 一种高储能密度钛酸钡复合电介质材料的制备方法

Publications (2)

Publication Number Publication Date
CN109592979A true CN109592979A (zh) 2019-04-09
CN109592979B CN109592979B (zh) 2021-05-11

Family

ID=65961825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811525929.0A Active CN109592979B (zh) 2018-12-13 2018-12-13 一种高储能密度钛酸钡复合电介质材料的制备方法

Country Status (1)

Country Link
CN (1) CN109592979B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608163A (zh) * 2020-12-17 2021-04-06 中南大学 一种钛酸钡掺杂改性碳基复合材料及其制备方法
CN115141412A (zh) * 2021-08-02 2022-10-04 西安航天三沃化学有限公司 一种复合材料核壳结构的制备方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475161A (zh) * 2009-01-13 2009-07-08 东华大学 一种钛酸钡(BaTiO3)/多壁碳纳米管(MWCNTs)纳米复合材料的制备方法
CN101817680A (zh) * 2010-04-06 2010-09-01 武汉科技大学 一种纳米晶钛酸钡-碳复合粉体及其制备方法
CN102115317A (zh) * 2009-12-31 2011-07-06 财团法人工业技术研究院 高介电材料
WO2012006416A2 (en) * 2010-07-08 2012-01-12 Rensselaer Polytechnic Institute High dielectric constant ceramic filler particles, composites and methods for making same
CN104359958A (zh) * 2014-11-22 2015-02-18 湖南科技大学 一种巯基功能化碳纳米管及其制备方法和应用
CN104449559A (zh) * 2014-11-12 2015-03-25 浙江理工大学 一种碳纳米管钛酸钡异质结构复合材料的制备方法
CN104609465A (zh) * 2014-11-23 2015-05-13 北京化工大学 一种钛酸钡掺杂多壁碳纳米管制备核壳型高介电填料的方法
CN108178649A (zh) * 2018-01-16 2018-06-19 昌吉学院 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用
CN108484980A (zh) * 2018-06-26 2018-09-04 兰州理工大学 一种新型核壳结构复合材料制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475161A (zh) * 2009-01-13 2009-07-08 东华大学 一种钛酸钡(BaTiO3)/多壁碳纳米管(MWCNTs)纳米复合材料的制备方法
CN102115317A (zh) * 2009-12-31 2011-07-06 财团法人工业技术研究院 高介电材料
CN101817680A (zh) * 2010-04-06 2010-09-01 武汉科技大学 一种纳米晶钛酸钡-碳复合粉体及其制备方法
WO2012006416A2 (en) * 2010-07-08 2012-01-12 Rensselaer Polytechnic Institute High dielectric constant ceramic filler particles, composites and methods for making same
CN104449559A (zh) * 2014-11-12 2015-03-25 浙江理工大学 一种碳纳米管钛酸钡异质结构复合材料的制备方法
CN104359958A (zh) * 2014-11-22 2015-02-18 湖南科技大学 一种巯基功能化碳纳米管及其制备方法和应用
CN104609465A (zh) * 2014-11-23 2015-05-13 北京化工大学 一种钛酸钡掺杂多壁碳纳米管制备核壳型高介电填料的方法
CN108178649A (zh) * 2018-01-16 2018-06-19 昌吉学院 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用
CN108484980A (zh) * 2018-06-26 2018-09-04 兰州理工大学 一种新型核壳结构复合材料制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FENG Y. ET AL.: "Core-shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
LI YUNMING ET AL.: "Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core-shell structured BaTiO3@graphene oxide hybrids", 《JOURNAL OF MATERIALS SCIENCE:MATERIALS IN ELECTRONICS》 *
VISHWAS BEDEKAR ET AL.: "Controlled synthesis of BaTiO3-coated multiwall carbon nanotubes", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
张晓娟 等: "多步法制备纳米钛酸钡", 《无机化学学报》 *
沈逸飞: "高介电常数低介电损耗新型陶瓷杂化碳纳米管及其环氧树脂基复合材料的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608163A (zh) * 2020-12-17 2021-04-06 中南大学 一种钛酸钡掺杂改性碳基复合材料及其制备方法
CN115141412A (zh) * 2021-08-02 2022-10-04 西安航天三沃化学有限公司 一种复合材料核壳结构的制备方法及其应用
CN115141412B (zh) * 2021-08-02 2023-12-01 西安航天三沃化学有限公司 一种复合材料核壳结构的制备方法及其应用

Also Published As

Publication number Publication date
CN109592979B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN105633379B (zh) 一种核壳结构碳/硫复合正极材料、制备方法及其应用
CN106654278B (zh) 一种新型碳球及其制备方法与应用
CN110085842A (zh) 一种硅碳复合负极材料及其制备方法
CN104953122A (zh) 纳米硅碳复合负极材料和制备方法及其锂离子电池
CN110098391B (zh) 一种MXene衍生的二氧化钛/碳包覆纳米硅三元复合材料及其制备方法
CN102683710A (zh) 碳纳米纤维负载二氧化钛薄膜负极材料及其制备方法
CN108232175A (zh) 一种锂离子电池用石墨/钛酸锂复合负极材料及制备方法
CN102637875B (zh) 一种用于锂离子电池负极材料及其制备方法
CN102074683A (zh) 一种锂离子电池用多孔碳纳米纤维负极材料及制备方法
CN108878154A (zh) 钛酸钠纳米纤维材料的制备方法及以该材料为负极的钠离子混合电容器
CN108642606A (zh) 四氧化三钴/碳纳米纤维复合材料及其制备方法和应用
CN109592979A (zh) 一种高储能密度钛酸钡复合电介质材料的制备方法
CN107742716A (zh) 一种锂离子电池的电极材料及其制备方法
CN108461734A (zh) 一种磷酸钛钠/碳复合材料的制备方法及应用
CN110079895A (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN103456934A (zh) 一种锂离子电池负极用纳米TiO2(B)/碳复合纤维的制备方法和应用
CN109103438A (zh) 一种锂离子电池用核壳结构负极材料及其制备方法
CN106058190A (zh) 一种锂离子电池用高容量负极材料的制备方法
CN108821256A (zh) 一种纳米纤维状锂离子电池正极材料LiVPO4F的制备方法
CN111235700A (zh) 一种红磷掺杂TiO2/C纳米纤维负极材料的制备方法
CN108538612A (zh) 一种多孔互通网络的氮掺杂碳/二氧化锰复合电极材料的制备方法
CN102637898B (zh) 一种锂离子电池及其制备方法
CN107204453B (zh) 一种KNb3O8纳米棒的制备方法
CN108807956A (zh) 一种锂离子电池用核壳结构负极材料及其制备方法
CN108878842A (zh) 一种石墨烯锂电池复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant