CN108178649A - 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用 - Google Patents

碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN108178649A
CN108178649A CN201810039577.1A CN201810039577A CN108178649A CN 108178649 A CN108178649 A CN 108178649A CN 201810039577 A CN201810039577 A CN 201810039577A CN 108178649 A CN108178649 A CN 108178649A
Authority
CN
China
Prior art keywords
carbon nanotube
strontium titanate
titanate lanthanum
compound thermoelectric
thermoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810039577.1A
Other languages
English (en)
Other versions
CN108178649B (zh
Inventor
孙毅
李洋洋
黄旭初
刁世林
袁鹏
瞿江林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changji Institute
Original Assignee
Changji Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changji Institute filed Critical Changji Institute
Priority to CN201810039577.1A priority Critical patent/CN108178649B/zh
Publication of CN108178649A publication Critical patent/CN108178649A/zh
Application granted granted Critical
Publication of CN108178649B publication Critical patent/CN108178649B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用,这种碳纳米管/钛酸锶镧复合热电陶瓷成瓷性好,断裂韧性大,具有较高的电导率,较低的热导率。其制备包括以下步骤:S1、将碳纳米管和十六烷基三甲基溴化铵均溶解在去离子水中,并超声分散,待用;S2、加入钛酸锶镧粉体,使用球磨机球磨混合,得到混合浆料,干燥后待用;S3、将混合浆料真空煅烧,煅烧完成后随炉冷却,得到混合粉料;S4、将混合粉料使用放电等离子烧结炉在真空状态下烧结,烧结后卸压并随炉冷却。与现有技术相比,本发明的有益效果是过程简单;升温速率块,烧结时间短。

Description

碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用
技术领域
本发明属于热电材料技术领域,特别涉及一种碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用。
背景技术
陶瓷材料包含共价键和离子键,以及复杂的晶体结构,具备耐高温、耐磨损、重量轻等优异的性能,在各行各业具有广泛的应用。但脆性是陶瓷材料最大的缺点,常通过在陶瓷材料制备过程中加入一定量的碳纳米管(CNTs),利用CNTs独特的力学性能,可使陶瓷材料的断裂韧性有很大的提升。除此之外,CNTs的引入对陶瓷基底的电学、热学性能也有一定的影响。如碳纳米管具有极高的电导率,用于陶瓷复合材料可有效增强材料的电导率;而且碳纳米管在陶瓷复合材料中作为声子散射源,可有效增强声子的散射,降低热导率。有研究表明,采用碳纳米管复合陶瓷材料,可以实现材料电导率和热导率等参数的分别独立调控。理论计算结果也表明,掺入分散的纳米颗粒可以在不影响电导率的情况下,热导率可得到大幅下降。
发明内容
本发明的目的在于,提供一种碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用。
为了实现上述目的,本申请采用的技术方案为:
碳纳米管/钛酸锶镧复合热电陶瓷,所述碳纳米管/钛酸锶镧复合热电陶瓷由钛酸锶镧和碳纳米管真空热压制成,所述碳纳米管的质量为碳纳米管/钛酸锶镧复合热电陶瓷总质量的0.5%,所述碳纳米管的直径为20nm~40nm,长度为10μm~30μm。
进一步的,所述钛酸锶镧的分子式为La0.1Sr0.9TiO3
碳纳米管/钛酸锶镧复合热电陶瓷的制备方法,包括如下步骤:
S1、称量碳纳米管和十六烷基三甲基溴化铵,并将碳纳米管和十六烷基三甲基溴化铵均溶解在去离子水中,得到混合水溶液,超声分散,待用;所述混合水溶液中碳纳米管的浓度为0.01g/L~0.1g/L,所述混合水溶液中十六烷基三甲基溴化铵的浓度为9×10- 4moL/L;
S2、向超声分散后的混合水溶液中溶入钛酸锶镧粉体,然后使用球磨机球磨混合,所述球磨机转速250r/min~350r/min,球磨时间5h~7h,得到混合浆料,干燥后待用;
S3、充分干燥后的混合浆料采用真空管式热压炉煅烧,其中煅烧温度是450℃~600℃,煅烧时间是1h~2h,煅烧完成后随炉冷却,得到混合粉料;
S4、混合粉料采用放电等离子烧结炉在真空状态下烧结,其中烧结温度为1070℃~1130℃,升温速率为50℃/min~100℃/min,烧结压力为30MPa~50MPa,烧结完成后保温5min~10min,卸压并随炉冷却,得到碳纳米管/钛酸锶镧复合热电陶瓷。
进一步的,所述S2中的钛酸锶镧粉体为钛酸锶镧普通粉体或钛酸锶镧纳米粉体。
进一步的,所述S4中烧结温度1100℃,烧结压力为40MPa。
碳纳米管/钛酸锶镧复合热电陶瓷作为半导体材料或热电材料的应用。
与现有技术相比,本发明的有益效果是:
(1)碳纳米管/钛酸锶镧复合热电陶瓷成瓷性好,断裂韧性大,具有较高的电导率,较低的热导率;
(2)本发明的一种碳纳米管/钛酸锶镧复合热电陶瓷的制备方法,集等离子活化、热压、电阻加热为一体,升温速率块,烧结时间短;能够控制材料的细微结构,制备出晶粒均匀、性能良好、致密度高的复合热电陶瓷材料。
附图说明
图1本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的XRD图谱;
图2本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的SEM图像;
图3本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的EDS图谱;
图4本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的Raman图谱;
图5本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的电导率随温度变化曲线图;
图6本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的塞贝克系数随温度变化曲线图;
图7本发明实施例3制备的碳纳米管/钛酸锶镧复合热电陶瓷的功率因子随温度变化曲线图。
图8改变实施例3中放电等离子烧结的烧结温度,制备得到的碳纳米管/钛酸锶镧复合热电陶瓷的XRD图谱。
具体实施方式
为了使本发明的技术手段、创作特征、达到目的与功效易于明白了解,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。
实施例1
碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷,其中碳纳米管的质量为碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷总质量的0.5%,碳纳米管的直径为20nm~40nm,长度为10μm~30μm。
这种碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的制备方法,包括如下步骤:
S1、称量1mg直径为20nm~40nm,长度为10μm~30μm的碳纳米管和32.8mg十六烷基三甲基溴化铵,并将碳纳米管和十六烷基三甲基溴化铵均溶解在100mL的去离子水中,得到碳纳米管和十六烷基三甲基溴化铵的混合水溶液,其中混合水溶液中碳纳米管的浓度为0.01g/L,混合水溶液中十六烷基三甲基溴化铵的浓度为9×10-4moL/L;将混合水溶液超声分散,待用;
S2、向超声分散后的混合水溶液中溶入199mg的La0.1Sr0.9TiO3普通粉体,然后使用球磨机球磨混合,所述球磨机转速250r/min,球磨时间5h,得到混合浆料,干燥后待用;
S3、将充分干燥后的混合浆料盛入容器中并将容器置于石墨磨具上,使用真空管式热压炉煅烧,煅烧温度为45℃,煅烧时间是1h,煅烧完成后随炉冷却,得到混合粉料;
S4、将混合粉料盛入容器中并将容器置于石墨磨具上,使用放电等离子烧结炉在真空状态下烧结,设置放电等离子烧结炉的烧结温度1070℃,升温速率为50℃/min,烧结压力为30MPa,烧结完成后保温5min,卸压并随炉冷却,得到碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷。
实施例2
碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷,其中碳纳米管的质量为碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷总质量的0.5%,碳纳米管的直径为20nm~40nm,长度为10μm~30μm。
这种碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的制备方法,包括如下步骤:
S1、称量12.5mg直径为20nm~40nm,长度为10μm~30μm的碳纳米管和82mg的十六烷基三甲基溴化铵,并将碳纳米管和十六烷基三甲基溴化铵均溶解在250mL的去离子水中,得到碳纳米管和十六烷基三甲基溴化铵的混合水溶液,混合水溶液中碳纳米管的浓度为0.05g/L,混合水溶液中十六烷基三甲基溴化铵的浓度为9×10-4moL/L;将混合水溶液超声分散,待用;
S2、向超声分散后的混合水溶液中溶入2487.5mg的La0.1Sr0.9TiO3普通粉体,然后使用球磨机球磨混合,所述球磨机转速350r/min,球磨时间7h,得到混合浆料,干燥后待用;
S3、将充分干燥后的混合浆料盛入容器中并将容器置于石墨磨具上,使用真空管式热压炉煅烧,煅烧温度为600℃,煅烧时间是1.5h,煅烧完成后随炉冷却,得到混合粉料;
S4、将混合粉料盛入容器中并将容器置于石墨磨具上,使用放电等离子烧结炉在真空状态下烧结,设置放电等离子烧结炉的烧结温度1130℃,升温速率为80℃/min,烧结压力为50MPa,烧结完成后保温10min,卸压并随炉冷却,得到碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷。
实施例3
碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷,其中碳纳米管的质量为碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷总质量的0.5%,碳纳米管的直径为20nm~40nm,长度为10μm~30μm。
这种碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的制备方法,包括如下步骤:
S1、称量50mg直径为20nm~40nm,长度为10μm~30μm的碳纳米管和164mg十六烷基三甲基溴化铵,并将碳纳米管和十六烷基三甲基溴化铵均溶解在500mL去离子水中,得到碳纳米管和十六烷基三甲基溴化铵的混合水溶液,混合水溶液中碳纳米管的浓度为0.1g/L,混合水溶液中十六烷基三甲基溴化铵的浓度为9×10-4moL/L;将混合水溶液超声分散,待用;
S2、向超声分散后的混合水溶液中溶入9950mg的La0.1Sr0.9TiO3纳米粉体,然后使用球磨机球磨混合,所述球磨机转速300r/min,球磨时间6h,得到混合浆料,干燥后待用;
S3、将充分干燥后的混合浆料盛入容器中并将容器置于石墨磨具上,使用真空管式热压炉煅烧,煅烧温度为500℃,煅烧时间是2h,煅烧完成后随炉冷却,得到混合粉料;
S4、将混合粉料盛入容器中并将容器置于石墨磨具上,使用放电等离子烧结炉在真空状态下烧结,设置放电等离子烧结炉的烧结温度1100℃,升温速率为100℃/min,烧结压力为40MPa,烧结完成后保温8min,卸压并随炉冷却,得到碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷。
为了进一步检测本发明实施例1~3所制备的碳纳米管/钛酸锶镧复合热电陶瓷的性能,我们以实施例3制备得到材料为例,进行性能测试和分析,具体内容如下:
通过图1可知制备得到的碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的XRD的特征峰与钙钛矿结构的SrTiO3的标准特征峰相比较,碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的XRD在2θ约为28°时,出现了一个特征峰,经分析知,该特征峰对应的物质是碳,说明制备得到的碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷除了包括主要成分La0.1Sr0.9TiO3外,还含有碳元素。通过图2能够知道制备得到碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷材料为的尺寸约为2μm。通过图3-图4进一步确定碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷材料中碳元素是以碳纳米管的形式存在的。
同时对实施例3中制备的碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷材料进行热电性能测试,测试结果如图5-图7所示。图5显示随着温度的升高,电导率σ呈现先增加后减小的趋势;图6显示Seebeck系数为负数,说明碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷为n型半导体,说明这种碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷能够用作半导体材料。通过图6可知随着温度的升高,Seebeck系数的绝对值呈现逐渐增加的趋势;图7显示随着温度的增加,施例3中制备的碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的功率因子是呈现先增大,后减小的趋势,同时在T=770k处出现峰值。因为功率因子PF=S2σ,其中S为Seebeck系数,σ为电导率,通过图5-图7可知这种碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷具有较高的电导率和较低的热导率,这种碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷能够作为热电材料应用。
通过图8可知,只有在放电等离子烧结的烧结温度为1000℃和1100℃时,碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷中才出现碳的衍射峰;放电等离子烧结的烧结温度为1200℃和1300℃时,样品中没有碳的衍射峰,说明在这两个烧结温度下,样品中已经不存在碳纳米管。我们又对放电等离子烧结温度为1000℃下烧结得到的样品进行电性能测试,发现这种温度下制备的到的碳纳米管/La0.1Sr0.9TiO3复合热电陶瓷的热电性能很差,无法进行测试。
综上所述,本发明的有益效果是:
(1)碳纳米管/钛酸锶镧复合热电陶瓷成瓷性好,断裂韧性大,具有负的Seebeck系数,具有较高的电导率,较低的热导率,所以本发明的碳纳米管/钛酸锶镧复合热电陶瓷能够作为半导体材料和热电材料应用;
(2)本发明的一种碳纳米管/钛酸锶镧复合热电陶瓷的制备方法集等离子活化、热压、电阻加热为一体,升温速率块,烧结时间短;能够控制材料的细微结构,制备出晶粒均匀、性能良好、致密度高的复合热电陶瓷材料。
以上公开的仅为本发明的较佳实施例,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (6)

1.碳纳米管/钛酸锶镧复合热电陶瓷,其特征在于,所述碳纳米管/钛酸锶镧复合热电陶瓷由钛酸锶镧和碳纳米管真空热压等离子烧结制成,所述碳纳米管的质量为碳纳米管/钛酸锶镧复合热电陶瓷总质量的0.5%,所述碳纳米管的直径为20nm~40nm,长度为10μm~30μm。
2.如权利要求1所述的碳纳米管/钛酸锶镧复合热电陶瓷,其特征在于,所述钛酸锶镧的分子式为La0.1Sr0.9TiO3
3.如权利要求1或2所述的碳纳米管/钛酸锶镧复合热电陶瓷的制备方法,其特征在于,包括如下步骤:
S1、称量碳纳米管和十六烷基三甲基溴化铵,并将碳纳米管和十六烷基三甲基溴化铵均溶解在去离子水中,得到混合水溶液,超声分散,待用;所述混合水溶液中碳纳米管的浓度为0.01g/L~0.1g/L,所述混合水溶液中十六烷基三甲基溴化铵的浓度为9×10-4moL/L;
S2、向超声分散后的混合水溶液中溶入钛酸锶镧粉体,然后使用球磨机球磨混合,所述球磨机转速250r/min~350r/min,球磨时间5h~7h,得到混合浆料,干燥后待用;
S3、充分干燥后的混合浆料采用真空管式热压炉煅烧,其中煅烧温度是450℃~600℃,煅烧时间是1h~2h,煅烧完成后随炉冷却,得到混合粉料;
S4、混合粉料采用放电等离子烧结炉在真空状态下烧结,其中烧结温度为1070℃~1130℃,升温速率为50℃/min~100℃/min,烧结压力为30MPa~50MPa,烧结完成后保温5min~10min,卸压并随炉冷却,得到碳纳米管/钛酸锶镧复合热电陶瓷。
4.如权利要求3所述的碳纳米管/钛酸锶镧复合热电陶瓷的制备方法,其特征在于,所述S2中的钛酸锶镧粉体为钛酸锶镧普通粉体或钛酸锶镧纳米粉体。
5.如权利要求3所述的碳纳米管/钛酸锶镧复合热电陶瓷的制备方法,其特征在于,所述S4中烧结温度1100℃,烧结压力为40MPa。
6.如权利要求1-2任一所述的碳纳米管/钛酸锶镧复合热电陶瓷作为半导体材料或热电材料的应用。
CN201810039577.1A 2018-01-16 2018-01-16 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用 Expired - Fee Related CN108178649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810039577.1A CN108178649B (zh) 2018-01-16 2018-01-16 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810039577.1A CN108178649B (zh) 2018-01-16 2018-01-16 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108178649A true CN108178649A (zh) 2018-06-19
CN108178649B CN108178649B (zh) 2021-01-19

Family

ID=62550607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810039577.1A Expired - Fee Related CN108178649B (zh) 2018-01-16 2018-01-16 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108178649B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109592979A (zh) * 2018-12-13 2019-04-09 西南科技大学 一种高储能密度钛酸钡复合电介质材料的制备方法
CN113773074A (zh) * 2021-09-23 2021-12-10 中国空气动力研究与发展中心低速空气动力研究所 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件
CN115353145A (zh) * 2022-08-26 2022-11-18 中国矿业大学 一种利用真空等离子场辅助溶胶-凝胶技术制备Sn:(Ba,Ca)TiO3粉体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423243A (zh) * 2008-11-25 2009-05-06 北京科技大学 一种La掺杂SrTiO3基氧化物热电材料与制备方法
CN101475161A (zh) * 2009-01-13 2009-07-08 东华大学 一种钛酸钡(BaTiO3)/多壁碳纳米管(MWCNTs)纳米复合材料的制备方法
US20090175757A1 (en) * 2007-05-14 2009-07-09 Northwestern University Titanium dioxide, single-walled carbon nanotube composites
CN105859274A (zh) * 2016-03-31 2016-08-17 山东大学 一种可控温氧化物热电材料、制备方法及应用
CN106986624A (zh) * 2017-03-31 2017-07-28 武汉工程大学 一种碳纳米管‑铝酸镁复合材料的制备方法及制得的材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175757A1 (en) * 2007-05-14 2009-07-09 Northwestern University Titanium dioxide, single-walled carbon nanotube composites
CN101423243A (zh) * 2008-11-25 2009-05-06 北京科技大学 一种La掺杂SrTiO3基氧化物热电材料与制备方法
CN101475161A (zh) * 2009-01-13 2009-07-08 东华大学 一种钛酸钡(BaTiO3)/多壁碳纳米管(MWCNTs)纳米复合材料的制备方法
CN105859274A (zh) * 2016-03-31 2016-08-17 山东大学 一种可控温氧化物热电材料、制备方法及应用
CN106986624A (zh) * 2017-03-31 2017-07-28 武汉工程大学 一种碳纳米管‑铝酸镁复合材料的制备方法及制得的材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PRAPAWAN THONGSRI ET AL: "Decreased Thermal Conductivity of CaMnO3 by Added-CNTs", 《ADVANCED MATERIALS RESEARCH》 *
仝兴存: "《电子封装热管理先进材料》", 30 April 2016, 国防工业出版社 *
四川省纳米技术协会: "《纳米材料技术研发与应用》", 29 February 2012, 电子科技大学出版社 *
杜永 等: "《导电聚合物-无机纳米结构复合热电材料的制备及其性能研究》", 31 August 2017, 同济大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109592979A (zh) * 2018-12-13 2019-04-09 西南科技大学 一种高储能密度钛酸钡复合电介质材料的制备方法
CN113773074A (zh) * 2021-09-23 2021-12-10 中国空气动力研究与发展中心低速空气动力研究所 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件
CN115353145A (zh) * 2022-08-26 2022-11-18 中国矿业大学 一种利用真空等离子场辅助溶胶-凝胶技术制备Sn:(Ba,Ca)TiO3粉体的方法
CN115353145B (zh) * 2022-08-26 2023-11-24 中国矿业大学 一种利用真空等离子场辅助溶胶-凝胶技术制备Sn:(Ba,Ca)TiO3粉体的方法

Also Published As

Publication number Publication date
CN108178649B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
Inam et al. Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering
Yin et al. Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol− gel based electrospinning and spark plasma sintering
CN109678511A (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
Xie et al. Synthesis of nanosized zirconium carbide powders by a combinational method of sol–gel and pulse current heating
CN108178649A (zh) 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用
An et al. Highly transparent lutetium titanium oxide produced by spark plasma sintering
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
Liu et al. Fabrication and characterization of Pr6O11-HfO2 ultra-high temperature infrared radiation coating
CN108821777A (zh) 石墨烯/碳化硅复合陶瓷及其制备方法
CN101928145A (zh) 一种超细、高纯γ-AlON透明陶瓷粉末的制备方法
Takeuchi et al. Improvement of mechanical strength of 8 mol% yttria-stabilized zirconia ceramics by spark-plasma sintering
CN106735249B (zh) 一种铌基复合材料及制备方法
Zhang et al. Pressureless-sintering behavior of nanocrystalline ZrO2–Y2O3–Al2O3 system
Ramana et al. Synthesis of lead free sodium bismuth titanate (NBT) ceramic by conventional and microwave sintering methods
Yao et al. New approach to develop dense lanthanum silicate oxyapatite sintered ceramics with high conductivity
CN108950280A (zh) 一种石墨烯/碳化硅增强铝基复合材料及其制备方法
Su et al. Effect of Ca2+ and Mn2+ ions on the radiation properties of LaAlO3
Mane et al. Hybrid microwave sintering and shifting of Tc in lead-free ferroelectric composition x (Ba0. 7Ca0. 3TiO3)-(1-x)(BaZr0. 2Ti0. 8O3)
Iyer et al. A Sucrose‐Mediated Sol–Gel Technique for the Synthesis of MgO–Y 2 O 3 Nanocomposites
Fele et al. Flash sintering of yttria-stabilized zirconia/graphene nano-platelets composite
Yi et al. A novel processing route to develop alumina matrix nanocompositesreinforced with multi-walled carbon nanotubes
He et al. Dispersion of nano-sized yttria powder using triammonium citrate dispersant for the fabrication of transparent ceramics
Lu et al. Synthesis of ultra-fine hafnium carbide powders combining the methods of liquid precursor conversion and plasma activated sintering
CN107840655A (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
Erdal et al. The effect of synthesis technique on thermoelectric properties of nanocrystalline NaCo 2 O 4 ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210119

Termination date: 20220116