CN109576661B - Zr,Ti,Al多元改性硅化物渗层的两步法制备方法 - Google Patents

Zr,Ti,Al多元改性硅化物渗层的两步法制备方法 Download PDF

Info

Publication number
CN109576661B
CN109576661B CN201910070452.XA CN201910070452A CN109576661B CN 109576661 B CN109576661 B CN 109576661B CN 201910070452 A CN201910070452 A CN 201910070452A CN 109576661 B CN109576661 B CN 109576661B
Authority
CN
China
Prior art keywords
alloy
preparing
powder
adopting
infiltrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910070452.XA
Other languages
English (en)
Other versions
CN109576661A (zh
Inventor
郭喜平
何佳华
乔彦强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910070452.XA priority Critical patent/CN109576661B/zh
Publication of CN109576661A publication Critical patent/CN109576661A/zh
Application granted granted Critical
Publication of CN109576661B publication Critical patent/CN109576661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Abstract

本发明涉及一种Zr,Ti,Al多元改性硅化物渗层的两步法制备方法,首先通过合金靶的成分控制优化改性元素的种类及含量,其次通过控制磁控溅射Ti‑Al‑Nb‑Zr合金膜的沉积厚度及扩散渗工艺参数,实现在Nb基超高温合金表面制备出Zr,Ti,Al改性元素含量可控、合金膜厚度可控、涂层厚度可控、组织致密的多元改性硅化物渗层。该技术具有工艺简单、操作方便、成本低廉、便于实现渗层优化等优势,适于推广和应用。

Description

Zr,Ti,Al多元改性硅化物渗层的两步法制备方法
技术领域
本发明属于高温合金热防护技术领域,涉及一种采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法。
背景技术
Nb基超高温合金因其熔点高、密度适中、高温性能优异,被认为是最重要的新型高温结构材料之一用于航空航天领域。然而,该合金较差的高温抗氧化性能限制了其实际使用,尽管合金化元素的添加能有效提高高温抗氧化性能,但仍不足以满足实际需要。因此,在Nb基超高温合金表面制备防护涂层是非常有必要的。
硅化物涂层的熔点高,密度低,热稳定性好,且具有良好的自愈能力,适合用于Nb基超高温合金的高温防护。然而,单一的硅化物涂层抗氧化性能有限,需添加其他元素进行改性。Ti与氧具有较强的亲和力,能显著降低氧的扩散速率;Al被选择性氧化后可生成的Al2O3,与SiO2结合生成的SiO2-Al2O3能提高SiO2的粘性,有效弥合裂纹;Zr和Y等活性元素不仅能细化涂层晶粒,降低氧化速率,而且氧化产生的ZrO2“pegs”可以有效提高氧化膜与涂层的结合力。但由于Zr原子半径较大,熔点较高,难以通过扩散渗法渗入。因此,采用在Nb基超高温合金表面先磁控溅射Ti-Al-Nb-Zr合金膜,然后Si-Y共渗的方法制备出Zr,Ti,Al多元改性的硅化物渗层,该渗层组织致密、Zr,Ti,Al含量可控、界面结合紧密、有优异的抗氧化性能。迄今为止,采用复合工艺在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的技术还未见报道。因此,研发Nb基超高温合金表面Zr,Ti,Al多元改性硅化物渗层的制备技术,将促进该合金在航天航空领域的实际工程应用。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法
技术方案
一种采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于步骤如下:
步骤1:采用水冷铜坩埚高频感应熔炼法制备Ti-Al-Nb-Zr合金,然后用线切割方法制备出适用于磁控溅射的靶材;
步骤2:采用磁控溅射法在Nb基超高温合金表面沉积Ti-Al-Nb-Zr合金膜,为待渗材料;所述膜厚度为1~30μm;
步骤3:按质量百分比将5~30%的Si粉、0.5~5%的Y2O3粉、3~10%的NaF粉和余量为填充剂的Al2O3粉配置渗剂,并将渗剂和磨球混合,在球磨机中混合均匀;所述各组分的质量百分比之和为100%;
所述球磨机转速为400r/min,球磨时间为4h;
步骤4:将步骤2的待渗材料埋入装有渗剂的Al2O3坩埚中并压实,待渗材料表面所覆盖的渗剂厚度不少于10mm;将坩埚加盖并采用硅溶胶和Al2O3粉调配成的料浆进行密封,然后置于高温高真空可控气氛扩散渗炉中,在900~1400℃、Ar保护气氛下、热处理0.5~10h,得到Zr,Ti,Al多元改性硅化物渗层。
所述Ti-Al-Nb-Zr合金成分为:10~80at.%的Ti、1~10at.%的Al、5~60at.%的Nb和1~10at.%的Zr,且上述各元素的原子百分含量之和为100%。
所述步骤1中适用于磁控溅射的靶材的尺寸为Φ60mm×3mm。
所述步骤3中Si粉的粒度≤200目。
所述步骤3中Y2O3粉的粒度≤200目。
所述步骤3中Al2O3粉的粒度≤200目。
所述步骤3中NaF粉的粒度级别为分析纯。
有益效果
本发明提出的一种采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,首先通过合金靶的成分控制优化改性元素的种类及含量,其次通过控制磁控溅射Ti-Al-Nb-Zr合金膜的沉积厚度及扩散渗工艺参数,实现在Nb基超高温合金表面制备出Zr,Ti,Al改性元素含量可控、合金膜厚度可控、涂层厚度可控、组织致密的多元改性硅化物渗层。该技术具有工艺简单、操作方便、成本低廉、便于实现渗层优化等优势,适于推广和应用。
本发明制备方法所制备的渗层组织具有多层结构,由外向内依次为:TiSi2或NbSi-2外层,(Nb,X)Si2内层(X代表Ti,Cr,Al,Hf和Zr)和(Ti,Nb)5Si4互扩散层;制备工艺为在基体合金表面先磁控溅射Ti-Al-Nb-Zr膜再进行Si-Y扩散渗。具体为:首先采用水冷铜坩埚高频感应熔炼制备Ti-Al-Nb-Zr合金靶材,然后采用磁控溅射法在Nb基超高温合金表面沉积1~30μm厚的Ti-Al-Nb-Zr合金膜,紧接着将沉积Ti-Al-Nb-Zr合金膜的试样埋入渗剂中,最后将坩埚加盖密封后放入高温高真空可控气氛扩散渗炉中,加热到900~1400℃后在Ar气氛下保温0.5~10h;得到Zr,Ti,Al多元改性硅化物渗层。
本发明方法优点在于,首先通过合金靶的制备可优化改性元素的种类及含量,其次通过控制磁控溅射Ti-Al-Nb-Zr合金膜的沉积厚度及扩散渗工艺参数(保温温度、升温速度、保温时间及渗剂组成等),实现在Nb基超高温合金表面制备出Zr,Ti,Al改性元素含量可控、合金膜厚度可控、组织致密的多元改性硅化物渗层。采用上述方法制备的Zr,Ti,Al多元改性硅化物渗层具有优异的高温抗氧化性能,经1250℃氧化100h,试样致密完整,单位面积氧化增重为1.5~3mg/cm2
附图说明
图1为本发明的技术路线图;
图2为Nb基超高温合金表面Zr,Ti,Al改性硅化物渗层的表面形貌,是实施案例1后制备的,具体条件为:采用水冷铜坩埚高频感应熔炼炉中熔炼的成分为70Ti-10Al-15Nb-5Zr(at.%)的合金作为靶材,采用直流磁控溅射1.5h,溅射功率为130W,沉积出5μm厚的合金膜,然后将溅射后的试样埋入有渗剂的Al2O3坩埚中,在高温高真空可控气氛扩散渗炉中氩气气氛下1250℃保温5h。
图3是Nb基超高温合金表面Zr,Ti,Al改性硅化物渗层的截面形貌,制备条件和图2一致。渗层分为三层,TiSi2外层、(Nb,X)Si2内层和过渡层。
图4是实施案例2后Nb基超高温合金表面Zr,Ti,Al改性硅化物渗层的截面形貌,渗层由NbSi2外层、(Nb,X)Si2内层和过渡层构成。具体制备条件为:采用水冷铜坩埚高频感应熔炼炉中熔炼的成分为25Ti-8Al-57Nb-10Zr(at.%)的合金作为靶材,采用直流磁控溅射2h,溅射功率为130W,沉积出7μm厚的合金膜,然后将溅射后的试样埋入有渗剂的Al2O3坩埚中,在高温高真空可控气氛扩散渗炉中氩气气氛下1050℃保温4h。
图5是实施案例3后制备的Zr,Ti,Al改性硅化物渗层试样经1250℃氧化100h后的宏观形貌。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
具体实施方法为:
(1)准备靶材:在水冷铜坩埚高频感应熔炼炉中熔炼Ti-Al-Nb-Zr合金锭,然后采用电火花线切割将合金锭切成Φ60mm×3mm的圆片,并用240~2000#SiC砂纸将靶材表面依次打磨至光滑,在无水乙醇中超声波清洗后吹干备用;
(2)准备试样:采用电火花线切割将Nb基超高温合金锭切成7mm×7mm×7mm的块体试样,并用240~1000#SiC砂纸将试样表面依次打磨至光滑,在无水乙醇中超声波清洗后吹干备用;
(3)配制渗剂:按质量百分比准确称量渗剂;
(4)球磨渗剂:将含有渗剂和磨球的球磨罐安装在球磨机中进行球磨,球磨机转速为400r/min,球磨时间为4h;
(5)磁控溅射合金膜:将清洗后的基体合金试样置于放有Ti-Al-Nb-Zr合金靶的磁控溅射室内,抽真空至8.0×10-4Pa,调节Ar流量,然后进行直流磁控溅射,沉积膜的厚度为1~30μm;
(6)装料:将沉积有Ti-Al-Nb-Zr合金膜的试样埋入装有Si-Y渗剂的Al2O3坩埚中,压实,试样表面所覆盖的渗剂厚度不少于10mm;
(7)密封坩埚:将坩埚加盖并采用硅溶胶和Al2O3粉调配成的料浆进行密封,然后置于高温高真空可控气氛扩散渗炉中;
(8)扩散渗:将扩散渗炉抽至3.0×10-2Pa后开始以10℃/min的升温速率进行加热,在加热到300℃时充入氩气保护,温度升至900~1400℃时保温0.5~10h,然后关闭加热系统,试样随炉冷却;
(9)清洗烘干:将制备的渗层试样在无水乙醇中超声波清洗,然后吹风机烘干待用。
具体实施例:
实施例1:
(1)准备靶材:在水冷铜坩埚高频感应熔炼炉中熔炼名义成分为70Ti-10Al-15Nb-5Zr(at.%)的合金锭,然后采用电火花线切割法将合金锭切成Φ60mm×3mm的圆片,并用240~2000#SiC砂纸将靶材表面依次打磨至光滑,在无水乙醇中超声波清洗后冷风吹干备用;(2)准备试样:采用电火花线切割切出7mm×7mm×7mm的Nb基超高温合金块体试样,将其表面用水砂纸打磨至1000#,在无水乙醇中超声波清洗后冷风吹干备用;(3)配制渗剂:按质量百分比准确称取Si粉(10wt.%)、Y2O3粉(3wt.%)、NaF粉(5wt.%)和Al2O3粉(82wt.%作为填充剂);(4)球磨渗剂:将含有渗剂和磨球的球磨罐安装在球磨机中进行球磨,球磨机转速为400r/min,球磨时间为4h;(5)磁控溅射合金膜:将清洗后的基体合金试样置于靶材为70Ti-10Al-15Nb-5Zr(at.%)合金的磁控溅射室内,抽真空至8.0×10-4Pa,调节Ar流量,然后进行直流磁控溅射,沉积膜的厚度为5μm;(6)装料:将沉积有70Ti-10Al-15Nb-5Zr合金膜的试样埋入装有渗剂的Al2O3坩埚中,压实,试样表面所覆盖的渗剂厚度不少于10mm;(7)密封坩埚:将坩埚加盖并采用硅溶胶和Al2O3粉调配成的料浆进行密封,然后置于高温高真空可控气氛扩散渗炉中;(8)扩散渗:将扩散渗炉抽至3.0×10-2Pa后开始以10℃/min的升温速率进行加热,在加热到300℃时充入氩气保护,温度升至1250℃时保温5h,然后关闭加热系统,试样随炉冷却;(9)清洗烘干:将所制备的渗层试样在无水乙醇中超声波清洗,然后吹风机烘干待用。
所得渗层的表面形貌如图2所示,表面黑色相为残余的Al2O3。所得渗层的横截面形貌如图3所示,渗层由TiSi2外层、(Nb,X)Si2内层和过渡层构成。
实施例2:
(1)准备靶材:在水冷铜坩埚高频感应熔炼炉中熔炼名义成分为25Ti-8Al-57Nb-10Zr(at.%)的合金锭,然后采用电火花线切割法将合金锭切成Φ60mm×3mm的圆片,并用240~2000#SiC砂纸将靶材表面依次打磨至光滑,在无水乙醇中超声波清洗后冷风吹干备用;(2)准备试样:采用电火花线切割切出7mm×7mm×7mm的Nb基超高温合金块体试样,将其表面用水砂纸打磨至1000#,在无水乙醇中超声波清洗后冷风吹干备用;(3)配制渗剂:按质量百分比准确称取Si粉(12wt.%)、Y2O3粉(5wt.%)、NaF粉(5wt.%)和Al2O3粉(78wt.%作为填充剂);(4)球磨渗剂:将装有渗剂和磨球的球磨罐安装在球磨机中进行球磨,球磨机转速为400r/min,球磨时间为4h;(5)磁控溅射合金膜:将清洗后的基体合金试样置于靶材为25Ti-8Al-57Nb-10Zr(at.%)合金的磁控溅射室内,抽真空至8.0×10-4Pa,调节Ar流量,然后进行直流磁控溅射,沉积膜的厚度为5μm;(6)装料:将沉积有25Ti-8Al-57Nb-10Zr合金膜的试样埋入装有渗剂的Al2O3坩埚中,压实,试样表面所覆盖的渗剂厚度不少于10mm;(7)密封坩埚:将坩埚加盖并采用硅溶胶和Al2O3粉调配成的料浆进行密封,然后置于高温高真空可控气氛扩散渗炉中;(8)扩散渗:将扩散渗炉抽真空至3.0×10-2Pa后开始以10℃/min的升温速率进行加热,在加热到300℃时充入氩气保护,温度升至1050℃时保温4h,然后关闭加热系统,试样随炉冷却;(9)清洗烘干:将所制备的渗层试样在无水乙醇中超声波清洗,然后吹风机烘干待用。
所得渗层的横截面形貌如图4所示,渗层由NbSi2外层、(Nb,X)Si2内层和过渡层构成。
实施例3:
(1)准备靶材:在水冷铜坩埚高频感应熔炼炉中熔炼名义成分为25Ti-5Al-69Nb-1Zr(at.%)的合金锭,然后采用电火花线切割法将合金锭切成Φ60mm×3mm的圆片,并用240~2000#SiC砂纸将靶材表面依次打磨至光滑,在无水乙醇中超声波清洗后冷风吹干备用;(2)准备试样:采用电火花线切割切出7mm×7mm×7mm的Nb基超高温合金块体试样,将其表面用水砂纸打磨至1000#,在无水乙醇中超声波清洗后冷风吹干备用;(3)配制渗剂:按质量百分比准确称取Si粉(10wt.%)、Y2O3粉(2wt.%)、NaF粉(5wt.%)和Al2O3粉(87wt.%作为填充剂);(4)球磨渗剂:将含有渗剂和磨球的球磨罐安装在球磨机中进行球磨,球磨机转速为400r/min,球磨时间为4h;(5)磁控溅射合金膜:将清洗后的基体合金试样置于靶材为25Ti-5Al-69Nb-1Zr(at.%)合金的磁控溅射室内,抽真空至8.0×10-4Pa,调节Ar流量,然后进行直流磁控溅射,沉积膜的厚度为10μm;(6)装料:将沉积有25Ti-5Al-69Nb-1Zr合金膜的试样埋入装有渗剂的Al2O3坩埚中,压实,试样表面所覆盖的渗剂厚度不少于10mm;(7)密封坩埚:将坩埚加盖并采用硅溶胶和Al2O3粉调配成的料浆进行密封,然后置于高温高真空可控气氛扩散渗炉中;(8)扩散渗:将扩散渗炉抽真空至3.0×10-2Pa后开始以10℃/min的升温速率进行加热,在加热到300℃时充入氩气保护,温度升至1250℃时保温8h,然后关闭加热系统,随炉冷却;(9)清洗烘干:将所制备的渗层试样在无水乙醇中超声波清洗,然后吹风机烘干待用。
所得渗层经1250℃氧化100h的宏观形貌如图5所示,试样致密完整,无明显剥落。

Claims (6)

1.一种采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于步骤如下:
步骤1:采用水冷铜坩埚高频感应熔炼法制备Ti-Al-Nb-Zr合金,然后用线切割方法制备出适用于磁控溅射的靶材;
步骤2:采用磁控溅射法在Nb基超高温合金表面沉积Ti-Al-Nb-Zr合金膜,为待渗材料;所述膜厚度为1~30μm;
步骤3:按质量百分比将5~30%的Si粉、0.5~5%的Y2O3粉、3~10%的NaF粉和余量为填充剂的Al2O3粉配置渗剂,并将渗剂和磨球混合,在球磨机中混合均匀;所述各组分的质量百分比之和为100%;
所述球磨机转速为400r/min,球磨时间为4h;
步骤4:将步骤2的待渗材料埋入装有渗剂的Al2O3坩埚中并压实,待渗材料表面所覆盖的渗剂厚度不少于10mm;将坩埚加盖并采用硅溶胶和Al2O3粉调配成的料浆进行密封,然后置于高温高真空可控气氛扩散渗炉中,在900~1400℃、Ar保护气氛下、热处理0.5~10h,得到Zr,Ti,Al多元改性硅化物渗层;
所述Ti-Al-Nb-Zr合金成分为:10~80at.%的Ti、1~10at.%的Al、5~60at.%的Nb和1~10at.%的Zr,且上述各元素的原子百分含量之和为100%。
2.根据权利要求1所述采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于:所述步骤1中适用于磁控溅射的靶材的尺寸为Φ60mm×3mm。
3.根据权利要求1所述采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于:所述步骤3中Si粉的粒度≤200目。
4.根据权利要求1所述采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于:所述步骤3中Y2O3粉的粒度≤200目。
5.根据权利要求1所述采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于:所述步骤3中Al2O3粉的粒度≤200目。
6.根据权利要求1所述采用两步法在Nb基超高温合金表面制备Zr,Ti,Al多元改性硅化物渗层的方法,其特征在于:所述步骤3中NaF粉的粒度级别为分析纯。
CN201910070452.XA 2019-01-25 2019-01-25 Zr,Ti,Al多元改性硅化物渗层的两步法制备方法 Active CN109576661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910070452.XA CN109576661B (zh) 2019-01-25 2019-01-25 Zr,Ti,Al多元改性硅化物渗层的两步法制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910070452.XA CN109576661B (zh) 2019-01-25 2019-01-25 Zr,Ti,Al多元改性硅化物渗层的两步法制备方法

Publications (2)

Publication Number Publication Date
CN109576661A CN109576661A (zh) 2019-04-05
CN109576661B true CN109576661B (zh) 2021-02-02

Family

ID=65917435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910070452.XA Active CN109576661B (zh) 2019-01-25 2019-01-25 Zr,Ti,Al多元改性硅化物渗层的两步法制备方法

Country Status (1)

Country Link
CN (1) CN109576661B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302774A (zh) * 2020-03-27 2020-06-19 宁波南海泰格尔陶瓷有限公司 一种低脆性多晶半透明氧化铝陶瓷的制备方法
CN111647845B (zh) * 2020-06-15 2021-04-06 燕山大学 一种锆钛基合金包埋渗铝层的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247085B2 (en) * 2008-11-21 2012-08-21 General Electric Company Oxide-forming protective coatings for niobium-based materials
CN103993259A (zh) * 2014-04-25 2014-08-20 西北工业大学 Nb-Si基合金表面两步法制备Y和Al改性硅化物渗层的制备方法
CN104313541B (zh) * 2014-09-25 2016-08-24 西北工业大学 采用两步法在Nb基超高温合金表面制备抗氧化Zr-Y改性硅化物渗层的制备方法
RU2612334C2 (ru) * 2015-08-05 2017-03-07 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ нанесения покрытия для защиты деталей из сплавов на основе ниобия от высоких температур
CN106435460B (zh) * 2016-10-18 2018-10-12 中国矿业大学 一种铌合金表面高温耐磨涂层及其制备方法
CN107164722B (zh) * 2017-06-23 2018-12-25 江苏双勤新能源科技有限公司 一种合金表面涂层及其制备方法

Also Published As

Publication number Publication date
CN109576661A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN108530109B (zh) 一种碳/碳复合材料表面1500~1700℃抗氧化涂层及制备方法
CN109576661B (zh) Zr,Ti,Al多元改性硅化物渗层的两步法制备方法
CN109913796B (zh) 一种钛合金表面的TiAlN复合涂层及其制备方法
CN106521384B (zh) 一种利用电子束重熔技术提高Nb‑Si基合金抗氧化性的方法
CN109400164B (zh) 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用
CN108911791B (zh) 环境障涂层及其制备方法
CN103567444A (zh) 钨靶材的制作方法
CN102912290B (zh) 一种Nb-Ti-Si基合金表面抗氧化Si-Zr-Y渗层的制备方法
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN109759596A (zh) 一种异质梯度复合材料及其制备方法
CN102765969B (zh) 六硼化镧-二硅化钼-碳化硅抗热震涂层的制备方法
CN113526983A (zh) 一种核反应堆用石墨材料的复合高温抗氧化涂层及其制备方法
CN115286390A (zh) C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法
CN109536883B (zh) 一种提高Ti-45Al-8.5Nb合金高温抗氧化性的方法
CN114538964A (zh) SiC-Si包覆碳/碳复合材料表面富含MoSi2高温抗氧化涂层及制备方法
CN112225567B (zh) 一种通过料浆烧结制备硅化钼涂层的方法
CN104911537B (zh) Nb‑Ti‑Si基合金表面B‑Y改性硅化物涂层及制备方法
CN112941459A (zh) 一种难熔高熵合金表面抗氧化涂层及其制备方法
CN112962012B (zh) 一种集抗氧化和阻界面扩散于一体的复合防护涂层及其制备方法
CN108642439B (zh) 一种在金属钨表面渗铝制备高强度涂层的方法
CN107759249B (zh) 一种含铬的氧化物-碳化物复合涂层及其制备方法
CN115784776B (zh) 碳/碳复合材料表面大范围均匀分布富MoSi2-ZrB2抗氧化涂层及制备方法
CN112063966B (zh) 一种提高钼合金表面抗高温烧蚀性能的方法
CN113481544B (zh) 一种实现稀土熔盐电极钨、钼阴极延寿的熔盐非电解渗局部处理方法
CN113046690A (zh) 一种Mo-Si-B/TiN复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant