CN115286390A - C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法 - Google Patents

C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法 Download PDF

Info

Publication number
CN115286390A
CN115286390A CN202210853569.7A CN202210853569A CN115286390A CN 115286390 A CN115286390 A CN 115286390A CN 202210853569 A CN202210853569 A CN 202210853569A CN 115286390 A CN115286390 A CN 115286390A
Authority
CN
China
Prior art keywords
sic
composite material
coating
zrc
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210853569.7A
Other languages
English (en)
Other versions
CN115286390B (zh
Inventor
张佳平
寇诗雨
付前刚
侯佳琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210853569.7A priority Critical patent/CN115286390B/zh
Publication of CN115286390A publication Critical patent/CN115286390A/zh
Application granted granted Critical
Publication of CN115286390B publication Critical patent/CN115286390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种C/C复合材料表面ZrC‑SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法,首先采用料浆涂刷结合高温碳化工艺在C/C复合材料表面制备SiC‑树脂碳多孔预涂层,通过控制涂刷次数以及每次涂刷的SiC‑树脂的相对含量,实现SiC‑树脂碳多孔预涂层厚度与孔隙结构的有效控制。在此基础上,结合SiC‑树脂碳多孔预涂层的结构特征以及Zr‑Si合金的渗入与反应过程,通过调控反应渗Zr‑Si合金的温度、试样与粉体的距离、升降温速率和保温时间等参数,实现了涂层内各组元的均匀分布。该方法工艺简单,制备的涂层厚度可设计,且与C/C基体结合良好。

Description

C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应 复合制备方法
技术领域
本发明属于C/C复合材料表面涂层及制备方法,涉及一种C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法。
背景技术
碳/碳(C/C)复合材料具有密度低、比强度和模量高、抗热震等优异性能,被认为是航空航天高温热结构件的最佳材料之一。然而C/C复合材料在静态空气条件下370℃开始氧化,超过400℃后氧化速度会迅速增加,最终使材料失效。此外,航空航天高温服役环境下,C/C复合材料除了经受氧化外,还要承受高速气流和高速粒子的冲刷和撞击,进一步制约了该材料在高温含氧环境下的可靠应用。
抗烧蚀涂层技术是在C/C复合材料表面制备一层保护涂层,隔绝其与外界环境的直接接触,是目前实现C/C复合材料高温长时抗烧蚀的有效方法之一。ZrC具有高熔点(3540℃)、高强度、高硬度,且其氧化后形成的ZrO2不但熔点高(2700℃)而且具有低的蒸气压和热导率,有优异的髙温抗氧化烧蚀能力;而SiC具有高比强度和比模量,并且与C/C复合材料有良好的物理化学相容性。此外,SiC-ZrC复相陶瓷高温烧蚀下会形成熔融态的ZrO2-SiO2二元相化合物氧化膜,可以有效抵御燃气冲刷和减少氧气扩散。因此,ZrC-SiC可以作为C/C复合材料的抗烧蚀涂层的理想体系。
目前,已报道的ZrC-SiC涂层制备方法主要有化学气相沉积(CVD)、等离子喷涂法、涂刷法、固相浸渗等。文献一“Q.M.Liu,J.Liu,X.G.Luan.Preparation of ZrC-SiCcomposite coatings by chemical vapor deposition and study of co-depositionmechanism[J].Journal of Materials Science&Technology.2019,35(12):2942-2949”采用三氯甲基硅烷(MTS)-ZrCl4-CH4-H2体系通过CVD共沉积制备了ZrC-SiC复合涂层,该涂层致密且成分厚度均匀。但CVD法沉积过程易产生含氯有害气体,且成本较高。文献二“H.Wu,H.J.Li,Q.G.Fu,D.J.Yao,Y.J.Wang,C.Ma,J.F.Wei,Z.H.Han.Microstructures andablation resistance of ZrC coating for SiC-coated carbon/carbon compositesprepared by supersonic plasma spraying[J].Journal of Thermal SprayTechnology.2011,20(6):1286-1291”采用包埋法制备SiC内涂层和等离子喷涂制备ZrC外涂层相结合的方法,在C/C复合材料表面制备了SiC-ZrC涂层,该涂层在氧乙炔焰烧蚀30s后,线烧蚀率为0.9×10-3mm/s,质量烧蚀率为2.0×10-3g/s。但包埋法制备的SiC内涂层的厚度和均匀性较难控制;等离子喷涂法制备的ZrC外涂层孔隙率较高,与SiC内涂层的结合力有待进一步提升。文献三“Z.Q.Li,H.J.Li,W.Li,J.Wang,S.Y.Zhang,J.Guo,Preparationand ablation properties of ZrC-SiC coating for carbon/carbon composites bysolid phase infiltration[J],Applied Surfure Science.2011,258(1):565-571”采用固相浸渍的方法:首先将Zr,ZrO2,Si粉体和碳粉以2:0.1:5:2摩尔比混合均匀后得到混合涂层粉体,再将C/C复合材料埋入粉料中,在2300℃热处理2h后得到ZrC-SiC复合涂层。该涂层在氧乙炔焰烧蚀20s后质量烧蚀率为2.36×10-3g/s,与未处理的C/C复合材料相比降低了37.1%,但该方法制备的ZrC-SiC涂层的厚度和均匀性较难控制。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法,该方法工艺简单,制备的涂层厚度可设计,且与C/C基体结合良好。其制备方法特征在于:首先采用料浆涂刷结合高温碳化工艺在C/C复合材料表面制备SiC-树脂碳多孔预涂层,通过控制涂刷次数以及每次涂刷的SiC-树脂的相对含量,实现SiC-树脂碳多孔预涂层厚度与孔隙结构的有效控制。在此基础上,结合SiC-树脂碳多孔预涂层的结构特征以及Zr-Si合金的渗入与反应过程,通过调控反应渗Zr-Si合金的温度、试样与粉体的距离、升降温速率和保温时间等参数,实现了涂层内各组元的均匀分布。
技术方案
一种C/C复合材料表面ZrC-SiC抗烧蚀涂层,其特征在于涂层结构为:SiC-树脂碳多孔预涂层和预涂层中渗入的Zr-Si合金,孔隙内填充ZrC,形成均匀分布的ZrC物相和SiC物相。
所述SiC-树脂预涂层厚度为100-200μm。
一种采用涂刷法结合气相反应复合所述C/C复合材料表面ZrC-SiC抗烧蚀涂层的方法,其特征在于步骤如下:
步骤1、C/C复合材料表面SiC-树脂预涂层制备:将SiC粉末,酚醛树脂,无水乙醇混合,配制的含有SiC和树脂的混合料浆涂刷在C/C复合材料表面,70-90℃烘干,重复涂刷和烘干多次,在C/C复合材料表面获得厚度为100-200μm的SiC-树脂预涂层;
步骤2、SiC-树脂预涂层的碳化:将带有SiC-树脂预涂层的C/C复合材料放入热处理炉,在Ar环境下以4-8℃/min速率升温到800-1000℃保温1-2h后,冷却到室温取出,得到带有SiC-树脂碳预涂层的C/C复合材料;
步骤3、气相反应制备ZrC-SiC涂层:将ZrSi2粉体与C粉混合均匀后置于石墨坩埚中,将步骤2得到的带SiC-树脂碳预涂层的C/C复合材料放于石墨支架上,一并置于高温炉中,通入氩气以4-8℃/min的升温速率升温到2000-2200℃,保温2-5h,冷却到室温后取出,得到带ZrC-SiC涂层的C/C复合材料;
所述步骤2中SiC-树脂预涂层中SiC粉末与酚醛树脂的质量比为3﹕1~6﹕1。
所述步骤3中ZrSi2粉体与C粉的质量比为8﹕1~10﹕1。
所述ZrSi2合金由βZrSi相和Zr-Si共熔体组成。
有益效果
本发明提出的一种C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法,基于料浆涂刷和气相反应的复合工艺,本发明提出一种在C/C复合材料表面制备ZrC-SiC抗烧蚀涂层的方法,通过改变涂刷次数以及每次涂刷的SiC-树脂的相对含量来控制预涂层的厚度与孔隙结构。图2(a-b)为步骤2所得典型的SiC-树脂碳预涂层表面及截面形貌,可以看出预涂层表面没有明显裂纹缺陷,且与基体结合良好。由于采用料浆涂刷和气相反应结合这一新的工艺组合,ZrC-SiC涂层的形成过程如下:1.由于涂刷法制备的预涂层具有多孔结构,ZrSi2的起始熔点为1620℃,在这一温度下,ZrSi2合金主要由βZrSi相和Zr-Si共熔体组成。随着温度升高,ZrSi2中的Zr-Si共熔体占主体,Zr-Si共熔体将通过毛细管力渗透到涂层内部进行反应:2.随着Zr-Si共熔体不断渗入,由于Zr的活性高于Si,因此此时涂层中主要反应生成ZrC,ZrC的生成导致孔隙直径不断减少:随着合金的不断渗入和反应的不断进行,ZrC逐渐饱和,残余的Si与C发生反应生成SiC,最终形成较为致密的ZrC-SiC涂层。本发明结合Zr-Si合金渗入与原位反应生成涂层的过程特点,通过控制涂刷次数以及每次涂刷的SiC-树脂相对含量,可为上述反应过程提供孔隙与厚度可控的预涂层,从而实现物相的分布控制,如图3所示,结合其能谱分析和XRD可知,涂层表面白色相为ZrC,灰色相为SiC,物相分布较为均匀。
氧乙炔烧蚀环境下,通过ZrC-SiC氧化烧蚀产物(ZrO2、SiO2)的协同抗氧化,可以有效抵御燃气冲刷和减少氧气扩散,进而保护C/C复合材料基体。相比于无SiC-树脂碳预涂层仅步骤3所得试样,SiC-树脂预涂层优化设计后所得的ZrC-SiC复合涂层可以实现C/C复合材料的有效烧蚀防护,氧乙炔烧蚀30s后,复合材料的质量烧蚀率降低了90%,线烧蚀率降低了40%。
附图说明
图1是本发明工艺流程图
图2是本发明所制备SiC-树脂碳预涂层表面及截面形貌照片
图3是本发明所制备ZrC-SiC涂层表面及截面微观照片、能谱及XRD。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1
步骤一涂刷法制备SiC-树脂碳预涂层:
1)将C/C复合材料用砂纸打磨抛光,无水乙醇超声清洗30min,然后放在烘箱中120℃下干燥1h;
2)将SiC粉末(6-10g),酚醛树脂(1-3g),无水乙醇(12-20ml)配制不同SiC、树脂含量的混合料浆,涂刷在C/C复合材料表面,70-90℃烘干,重复多次,在C/C复合材料表面获得厚度为150μm的SiC-树脂预涂层;
3)将得到的带有SiC-树脂预涂层的C/C试样放入热处理炉,在Ar环境下以4-8℃/min速率升温到800-1000℃保温1-2h后,冷却到室温取出,得到带有SiC-树脂碳预涂层的C/C复合材料。
步骤二气相反应:
将30-50g ZrSi2粉,3-6g C粉混合放置于树脂球磨罐中,混合3-5h得到均匀粉料,再将步骤一得到的带SiC-树脂碳预涂层C/C试样放于石墨支架上,一并置于高温炉中,通入氩气以4-8℃/min的升温速率将高温炉升温到2000-2200℃,保温2-5h,冷却到室温后取出,得到带ZrC-SiC涂层的C/C复合材料。
本实施例制备的ZrC-SiC复合陶瓷涂层厚度约为170μm,对其高温抗烧蚀进行了测试,氧乙炔烧蚀90s后质量烧蚀率为-0.35mg/s,线烧蚀率为0.94μm/s。所引文献二中包埋法结合喷涂法制备的ZrC-SiC涂层,在氧乙炔烧蚀30s后线烧蚀率达到0.9×10-3mm/s,相比之下本实验制备的涂层稳定性更好。
实施例2
步骤一涂刷法制备SiC-树脂碳预涂层:
1)将C/C复合材料用砂纸打磨抛光,无水乙醇超声清洗30min,然后放在烘箱中120℃下干燥1h;
2)将SiC粉末(6-10g),酚醛树脂(1-5g),无水乙醇(12-20ml)配制不同SiC、树脂含量的混合料浆,涂刷在C/C复合材料表面,70-90℃烘干,重复多次,在C/C复合材料表面获得厚度为200μm的SiC-树脂预涂层;
3)将得到的带有SiC-树脂预涂层的C/C试样放入热处理炉,在Ar环境下以4-8℃/min速率升温到800-1000℃保温1-2h后,冷却到室温取出,得到带有SiC-树脂碳预涂层的C/C复合材料。
步骤二气相反应:
将30-50g ZrSi2粉,3-5g C粉混合放置于树脂球磨罐中,混合3-6h得到均匀粉料,再将步骤一得到的带SiC-树脂碳预涂层C/C试样放于石墨支架上,一并置于高温炉中,通入氩气以4-8℃/min的升温速率将高温炉升温到2000-2200℃,保温2-5h,冷却到室温后取出,得到带ZrC-SiC涂层的C/C复合材料。
本实施例制备的ZrC-SiC复合陶瓷涂层厚度约为220μm,对其高温抗烧蚀进行了测试,氧乙炔烧蚀90s后质量烧蚀率为2.83mg/s,线烧蚀率为-2.28μm/s。

Claims (6)

1.一种C/C复合材料表面ZrC-SiC抗烧蚀涂层,其特征在于涂层结构为:SiC-树脂碳多孔预涂层和预涂层中渗入的Zr-Si合金,孔隙内填充ZrC,形成均匀分布的ZrC物相和SiC物相。
2.根据权利要求1所述C/C复合材料表面ZrC-SiC抗烧蚀涂层,其特征在于:所述SiC-树脂预涂层厚度为100-200μm。
3.一种采用涂刷法结合气相反应复合制备权利要求1或2所述C/C复合材料表面ZrC-SiC抗烧蚀涂层的方法,其特征在于步骤如下:
步骤1、C/C复合材料表面SiC-树脂预涂层制备:将SiC粉末,酚醛树脂,无水乙醇混合,配制的含有SiC和树脂的混合料浆涂刷在C/C复合材料表面,70-90℃烘干,重复涂刷和烘干多次,在C/C复合材料表面获得厚度为100-200μm的SiC-树脂预涂层;
步骤2、SiC-树脂预涂层的碳化:将带有SiC-树脂预涂层的C/C复合材料放入热处理炉,在Ar环境下以4-8℃/min速率升温到800-1000℃保温1-2h后,冷却到室温取出,得到带有SiC-树脂碳预涂层的C/C复合材料;
步骤3、气相反应制备ZrC-SiC涂层:将ZrSi2粉体与C粉混合均匀后置于石墨坩埚中,将步骤2得到的带SiC-树脂碳预涂层的C/C复合材料放于石墨支架上,一并置于高温炉中,通入氩气以4-8℃/min的升温速率升温到2000-2200℃,保温2-5h,冷却到室温后取出,得到带ZrC-SiC涂层的C/C复合材料。
4.根据权利要求3所述的方法,其特征在于:所述步骤2中SiC-树脂预涂层中SiC粉末与酚醛树脂的质量比为3﹕1~6﹕1。
5.根据权利要求3所述的方法,其特征在于:所述步骤3中ZrSi2粉体与C粉的质量比为8﹕1~10﹕1。
6.根据权利要求3所述的方法,其特征在于:所述ZrSi2合金由βZrSi相和Zr-Si共熔体组成。
CN202210853569.7A 2022-07-11 2022-07-11 C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法 Active CN115286390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210853569.7A CN115286390B (zh) 2022-07-11 2022-07-11 C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210853569.7A CN115286390B (zh) 2022-07-11 2022-07-11 C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法

Publications (2)

Publication Number Publication Date
CN115286390A true CN115286390A (zh) 2022-11-04
CN115286390B CN115286390B (zh) 2023-08-08

Family

ID=83823455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210853569.7A Active CN115286390B (zh) 2022-07-11 2022-07-11 C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法

Country Status (1)

Country Link
CN (1) CN115286390B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116573953A (zh) * 2023-04-29 2023-08-11 西北工业大学 一种碳/碳复合材料表面网格结构增强抗烧蚀涂层及制备方法和应用
CN116639980A (zh) * 2023-05-22 2023-08-25 中南大学 一种多元碳化物陶瓷涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218156A (zh) * 2015-10-11 2016-01-06 中南大学 C/C复合材料表面ZrC-SiC涂层制备方法
CN106977235A (zh) * 2017-04-07 2017-07-25 东北大学 一种在碳材料表面制备Si‑SiC抗氧化涂层的方法
CN113321533A (zh) * 2021-07-01 2021-08-31 西北工业大学 一种成分及微结构可控高熵陶瓷改性涂层及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218156A (zh) * 2015-10-11 2016-01-06 中南大学 C/C复合材料表面ZrC-SiC涂层制备方法
CN106977235A (zh) * 2017-04-07 2017-07-25 东北大学 一种在碳材料表面制备Si‑SiC抗氧化涂层的方法
CN113321533A (zh) * 2021-07-01 2021-08-31 西北工业大学 一种成分及微结构可控高熵陶瓷改性涂层及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIGUANG WANG ET AL.: "C/C-SiC-ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy" *
赵志刚: "ZrC基陶瓷掺杂碳/碳复合材料的烧蚀行为研究" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116573953A (zh) * 2023-04-29 2023-08-11 西北工业大学 一种碳/碳复合材料表面网格结构增强抗烧蚀涂层及制备方法和应用
CN116573953B (zh) * 2023-04-29 2024-04-30 西北工业大学 一种碳/碳复合材料表面网格结构增强抗烧蚀涂层及制备方法和应用
CN116639980A (zh) * 2023-05-22 2023-08-25 中南大学 一种多元碳化物陶瓷涂层的制备方法
CN116639980B (zh) * 2023-05-22 2024-02-02 中南大学 一种多元碳化物陶瓷涂层的制备方法

Also Published As

Publication number Publication date
CN115286390B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN115286390B (zh) C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法
Li et al. ZrB 2 particles reinforced glass coating for oxidation protection of carbon/carbon composites
US9340460B2 (en) Ultra-refractory material that is stable in a wet environment, and process for manufacturing same
US9463489B2 (en) Process for coating a part with an oxidation-protective coating
Zhu et al. SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation
CN105967759B (zh) 一种稀土氧化物改性Si-Mo-O梯度抗氧化涂层及制备方法
US5900277A (en) Method of controlling infiltration of complex-shaped ceramic-metal composite articles and the products produced thereby
CN107056334B (zh) 一种ZrC陶瓷材料表面ZrB2-SiC复合涂层的制备方法
Li et al. Ablation properties of HfB2 coatings prepared by supersonic atmospheric plasma spraying for SiC-coated carbon/carbon composites
CN102295474A (zh) 一种SiC-TaC涂层/基体协同改性C/C复合材料及其制备方法
CN107759251B (zh) 一种多孔陶瓷表面高韧性陶瓷涂层的制备方法
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN111892424A (zh) 一种在基体材料上形成的宽温域抗烧蚀涂层及其制备方法
CN112409025A (zh) 一种具有SiC-HfB2-Si单层复合涂层的碳/碳复合材料的制备方法
CN110981546A (zh) C-C复合材料表面抗氧化ZrB2-SiC-Y2O3涂层及其制备方法
CN114538964B (zh) SiC-Si包覆碳/碳复合材料表面富含MoSi2高温抗氧化涂层及制备方法
CN113929485A (zh) 一种TiC-Ti3SiC2双重改性的C/C-SiC复合材料的制备方法
Abdollahi et al. C/SiC gradient oxidation protective coating on graphite by modified reactive melt infiltration method: effects of processing parameters on transition interface thickness and high-temperature anti-oxidation behavior
CN110304946B (zh) 一种陶瓷基复合材料表面的宽温域抗氧化涂层及其制备方法
CN108504980B (zh) 一种耐高温抗烧蚀复合涂层及其制备方法
CN109678560B (zh) 一种在基体材料上形成的高温抗烧蚀涂层及其制备方法和应用
CN108642439B (zh) 一种在金属钨表面渗铝制备高强度涂层的方法
CN111848222A (zh) 一种在基体材料上形成的梯度环境障涂层及其制备方法
CN108218475B (zh) 一种碳材料表面硼化物固溶体改性硅基涂层的制备方法
CN109321874A (zh) 一种纯钨表面硅铝共渗抗氧化复合涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant