CN109400164B - 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用 - Google Patents

一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用 Download PDF

Info

Publication number
CN109400164B
CN109400164B CN201811315225.0A CN201811315225A CN109400164B CN 109400164 B CN109400164 B CN 109400164B CN 201811315225 A CN201811315225 A CN 201811315225A CN 109400164 B CN109400164 B CN 109400164B
Authority
CN
China
Prior art keywords
max phase
composite material
temperature
nitride ceramic
gradient composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811315225.0A
Other languages
English (en)
Other versions
CN109400164A (zh
Inventor
史忠旗
刘思雨
刘丹桂
宁晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811315225.0A priority Critical patent/CN109400164B/zh
Publication of CN109400164A publication Critical patent/CN109400164A/zh
Application granted granted Critical
Publication of CN109400164B publication Critical patent/CN109400164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles

Abstract

本发明公开了一种MAX相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用,属于陶瓷基复合材料制备的技术领域。本发明采用SPS烧结技术制备MAX相/氮化物陶瓷层状梯度复合材料,该方法在温度场和压力场的基础上又引进了电场,能起到对原料的等离子活化作用,从而在较低烧结温度和较短保温时间的条件下就可以快速制备出致密的复相陶瓷材料;同时,等离子体的激活作用也有助于原子的扩散,进而可促进MAX相和氮化物的层间结合,实现MAX相和氮化物之间的高性能连接该方法具有升温速率快、烧结温度低、保温时间短的优点,经该方法能够快速制备出致密度高、杂质含量少、界面结合好的MAX相/氮化物陶瓷层状梯度复合材料。

Description

一种MAX相/氮化物陶瓷层状梯度复合材料及其快速制备方法 和应用
技术领域
本发明属于陶瓷基复合材料制备的技术领域,具体涉及一种MAX相/氮化物 陶瓷层状梯度复合材料及其快速制备方法和应用。
背景技术
MAX相陶瓷材料兼具金属和陶瓷的优良性能,如高弹性模量、良好的导热、 导电性能及优异的抗热震性能,且其耐氧化、耐腐蚀性能好。MAX相陶瓷材料 的这些优势使得其能在高温强腐蚀且有氧存在的环境下稳定的服役。
氮化物陶瓷材料(Si3N4、AlN)具有高导热性、良好的抗热震性、高绝缘系 数、高耐磨性、优良的力学性能及化学稳定性等一系列优良特性。因此其可以用 来制作高温结构部件、散热基板、耐火材料、绝缘材料及耐蚀材料等。
将MAX相和氮化物两类陶瓷进行叠层烧结形成层状梯度复合材料,可作为 液态金属电池用长效高温绝缘封装材料、航空航天用高温密封绝缘部件以及其他 结构/功能一体化部件材料等使用。目前,有关MAX相和氮化物两类陶瓷材料连 接的研究非常少,大多数研究集中在MAX相之间或MAX相和碳化物(如SiC) 陶瓷之间。然而由于MAX相的导电性良好,SiC陶瓷的电阻率也不够高,不能 保证整体复相陶瓷有良好的电绝缘性。极少数的相关研究也是采用传统的热压烧 结方法对MAX相和氮化物陶瓷进行连结。例如,Luo等人对Ti3SiC2和Si3N4粉 末以100MPa的压力预压成型,然后交替置于石墨模具中,在1600℃高温、25MPa压力下保温120min,实现了Ti3SiC2和Si3N4的连接[Ceramics International,2002, 28(2):223-226]。但该方法一方面烧结温度高、保温时间长,易导致MAX相产生 高温分解形成大量杂质相(如SiC、TiC、TiAl合金等),进而降低层状复合材料 的绝缘性能;另一方面,热压烧结工艺还存在烧结工艺复杂、烧结周期长等弊端。 因此,热压烧结所得产品难以作为液态金属电池的长效高温绝缘封装材料,以及 一些结构/功能一体化部件使用。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种MAX相/氮化物 陶瓷层状梯度复合材料及其快速制备方法和应用,该方法具有升温速率快、烧结 温度低、保温时间短的优点,经该方法能够快速制备出致密度高、杂质含量少、 界面结合好的MAX相/氮化物陶瓷层状梯度复合材料。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种MAX相/氮化物陶瓷层状梯度复合材料的快速制备方法, 包括以下步骤:
步骤1:按照设计的梯度层数、梯度组分、每层厚度和各层中的组分含量将 各层所需的MAX相粉末、氮化物粉末及相应的烧结助剂进行充分混合,得到各 层所需的混合粉末;
步骤2:将各层所需的混合粉末按照步骤1的设计依次置于石墨模具中进行 铺层和压制,随后安装上下压头并在模具外表面嵌套石墨碳毡,完成装模工作;
步骤3:将装有待烧结样品的模具置于放电等离子烧结系统的炉膛内,抽真 空至不高于0.01Pa、轴向加压然后通入直流脉冲电流进行快速升温至烧结温度进 行保温;
步骤4:保温结束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具 内部所获得的制品即为MAX相/氮化物陶瓷层状梯度复合材料。
优选地,步骤1中,所述MAX相粉末是Ti3SiC2、Ti2AlC和Ti2AlN中的一 种或者几种;所述氮化物粉末是Si3N4和/或AlN。
优选地,步骤1中,设计梯度层数为5~13层,每层厚度为0.5mm~2mm。
优选地,步骤3中,施加的轴向压力为30~70MPa。
优选地,步骤3中,快速升温是自室温起,以100~300℃/min的速率升温至 1200℃,然后再以100~150℃的速率升温至烧结温度进行保温。
优选地,所述烧结温度为1350~1400℃。
优选地,所述保温时间为3~6min。
本发明还公开了采用上述的快速制备方法制得的MAX相/氮化物陶瓷层状 梯度复合材料。
本发明还公开了上述的MAX相/氮化物陶瓷层状梯度复合材料作为高温绝 缘封装材料的应用。
与现有技术相比,本发明具有以下有益效果:
第一,本发明采用层状梯度过渡层的设计方法将热膨胀系数差异较大的 MAX相和氮化物陶瓷进行有效连接。梯度组分仅含有MAX相、氮化物粉末及 必要的烧结助剂而不引入其他金属焊料进行连接,有利于保持复相陶瓷优异的高 温强度、抗热震性、高温抗氧化性和抗腐蚀性;同时,由于纯氮化物层的高绝缘 系数使得整体复相陶瓷都可以达到良好的绝缘性能;MAX相和氮化物陶瓷的热 膨胀系数差异较大,在纯MAX相层和氮化物层中间引进数层梯度层可以有效调 控不同层的热膨胀系数,以减小烧结后样品内部的残余内应力,从而保证不同梯 度层界面之间无裂纹产生和具有较高的连接强度;该设计方法制备的层状梯度结 构复相陶瓷在高温绝缘封装领域具有广泛的应用前景。
第二,本发明采用SPS烧结技术制备MAX相/氮化物陶瓷层状梯度复合材料。 与传统热压烧结工艺相比,该技术在温度场和压力场的基础上又引进了电场,能 起到对原料的等离子活化作用,从而在较低烧结温度和较短保温时间的条件下就 可以快速制备出致密的复相陶瓷材料;另外,SPS烧结较低的烧结温度和很短的 保温时间可最大程度抑制MAX相的分解,保证MAX相/氮化物陶瓷层状梯度复 合材料的纯度和性能;同时,等离子体的激活作用也有助于原子的扩散,进而可 促进MAX相和氮化物的层间结合,实现MAX相和氮化物之间的高性能连接。
第三,经本发明方法制得的MAX相/氮化物陶瓷层状梯度复合材料致密度高、 杂质含量少、界面结合好。
附图说明
图1是本发明设计的梯度结构、梯度组分和梯度层数示意图;其中,a为实 施例2设计的5层梯度复合材料;b为实施例3设计的6层梯度复合材料;c为 实施例1设计的7层梯度复合材料;d为实施例4设计的7层梯度复合材料;e 为实施例5设计的8层梯度复合材料;f为实施例6设计的呈对称结构的13层梯 度复合材料;
图2a是梯度材料上底面的XRD图;
图2b是梯度材料下底面的XRD图;
图3是梯度材料界面的SEM图;图中,1-2,2-3,3-4,4-5,5-6,6-7表示 对应层数之间的界面。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述 的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的 实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例,都应当属于本发明保护的范围。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包 含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于 清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、 方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
实施例1
选用Ti3SiC2粉、Si3N4粉及相应的烧结助剂为原始粉末材料,经SPS烧结制 备7层梯度材料。
将Ti3SiC2粉、Si3N4粉及相应的烧结助剂按照所设计的体积分数混合,加入 乙醇溶剂进行湿磨,球磨时间24h;将各层所需的混合粉末按照如图1中c所示 依次置于石墨模具中进行铺层和压制,每层厚度1mm,随后安装上下压头并外套 石墨碳毡,完成装模工作;将装有待烧结样品的模具置于放电等离子烧结系统的 炉膛内,抽真空至不高于0.01Pa,在70MPa的轴向压力下,以300℃/min的速率 升温至1200℃,然后再以100℃/min的升温速率升至1350℃保温7min;保温结 束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品即 为MAX相/氮化硅陶瓷层状梯度复合材料。
实施例2
选用Ti3SiC2粉、Si3N4粉及相应的烧结助剂为原始粉末材料,经SPS烧结制 备5层梯度材料。
将Ti3SiC2粉、Si3N4粉及相应的烧结助剂按照所设计的体积分数混合,加入 乙醇溶剂进行湿磨,球磨时间24h;将各层所需的混合粉末按照如图1中a所示 依次置于石墨模具中进行铺层和压制,每层厚度2mm,随后安装上下压头并外套 石墨碳毡,完成装模工作;将装有待烧结样品的模具置于放电等离子烧结系统的 炉膛内,抽真空至不高于0.01Pa,在50MPa的轴向压力下,以200℃/min的速率 升温至1200℃,然后再以120℃/min的升温速率升至1370℃保温5min;保温结 束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品即 为MAX相/氮化硅陶瓷层状梯度复合材料。
实施例3
选用Ti3SiC2粉、Si3N4粉及相应的烧结助剂为原始粉末材料,经SPS烧结制 备6层梯度材料。
将Ti3SiC2粉、Si3N4粉及相应的烧结助剂按照所设计的体积分数混合,加入 乙醇溶剂进行湿磨,球磨时间24h;将各层所需的混合粉末按照如图1中b所示 依次置于石墨模具中进行铺层和压制,每层厚度1.5mm,随后安装上下压头并外 套石墨碳毡,完成装模工作;将装有待烧结样品的模具置于放电等离子烧结系统 的炉膛内,抽真空至不高于0.01Pa,在50MPa的轴向压力下,以100℃/min的速 率升温至1200℃,然后再以150℃/min的升温速率升至1380℃保温4min;保温 结束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品 即为MAX相/氮化硅陶瓷层状梯度复合材料。
实施例4
选用Ti3SiC2粉、Si3N4粉及相应的烧结助剂为原始粉末材料,经SPS烧结制 备7层梯度材料。
将Ti3SiC2粉、Si3N4粉及相应的烧结助剂按照所设计的体积分数混合,加入 乙醇溶剂进行湿磨,球磨时间24h;将各层所需的混合粉末按照如图1中d所示 依次置于石墨模具中进行铺层和压制,每层厚度1mm,随后安装上下压头并外套 石墨碳毡,完成装模工作;将装有待烧结样品的模具置于放电等离子烧结系统的 炉膛内,抽真空至不高于0.01Pa,在40MPa的轴向压力下,以250℃/min的速率 升温至1200℃,然后再以120℃/min的升温速率升至1400℃保温3min;保温结 束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品即 为MAX相/氮化硅陶瓷层状梯度复合材料。
实施例5
选用Ti3SiC2粉、Si3N4粉及相应的烧结助剂为原始粉末材料,经SPS烧结制 备8层梯度材料。
将Ti3SiC2粉、Si3N4粉及相应的烧结助剂按照所设计的体积分数混合,加入 乙醇溶剂进行湿磨,球磨时间24h;将各层所需的混合粉末按照如图1中e所示 依次置于石墨模具中进行铺层和压制,每层厚度0.5mm,随后安装上下压头并外 套石墨碳毡,完成装模工作;将装有待烧结样品的模具置于放电等离子烧结系统 的炉膛内,抽真空至不高于0.01Pa,在30MPa的轴向压力下,以300℃/min的速 率升温至1200℃,然后再以100℃/min的升温速率升至1400℃保温5min;保温 结束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品 即为MAX相/氮化硅陶瓷层状梯度复合材料。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对上述实施例所制 得的梯度材料物相组成和微观形貌表征。
实施例6
选用Ti3SiC2粉、Si3N4粉及相应的烧结助剂为原始粉末材料,经SPS烧结制 备呈上下对称结构的13层梯度材料。
将Ti3SiC2粉、Si3N4粉及相应的烧结助剂按照所设计的体积分数混合,加入 乙醇溶剂进行湿磨,球磨时间24h;将各层所需的混合粉末按照如图1中f所示 依次置于石墨模具中进行铺层和压制,每层厚度1mm,随后安装上下压头并外套 石墨碳毡,完成装模工作;将装有待烧结样品的模具置于放电等离子烧结系统的 炉膛内,抽真空至不高于0.01Pa,在50MPa的轴向压力下,以300℃/min的速率 升温至1200℃,然后再以100℃/min的升温速率升至1380℃保温7min;保温结 束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品即 为呈对称结构的MAX相/氮化硅陶瓷层状梯度复合材料。
图2a是实施例1制得的产物Ti3SiC2侧的XRD图谱,经半定量分析Ti3SiC2的含量在90%以上,证明SPS抑制Ti3SiC2分解的效果明显。图2b是实施例1制 得的产物Si3N4侧的XRD图谱,可以看到,产物只有Si3N4和烧结助剂相,产物 较纯,烧结效果理想。图3是实施例1制得的产物的SEM照片,可见各界面层 无裂纹存在,结合良好。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对其他实施例所得 梯度材料物相组成和微观形貌表征,所得结果与实施案例1类似。
综上所述,本发明采用放电等离子烧结技术(SPS)进行快速制备,放电等 离子烧结技术(SPS)是一种新型的快速烧结技术。在SPS烧结过程中,可对样 品施加一定的轴向压力并通入脉冲电流使得颗粒间产生放电等离子体,进而形成 局部的高温和晶粒活化。SPS烧结技术集等离子活化、热压烧结、电阻加热三种 效果于一体,因而具有升温速率快、烧结时间短、在短时间和较低温度下获得致 密度较高材料等优点。所以,SPS烧结对于MAX相/氮化物层状梯度复合材料的 致密化烧结、抑制MAX相分解方面具有独特优势。另外,在SPS烧结过程中, 等离子体的激活作用也有助于原子的扩散,进而可促进MAX相和氮化物的层间结合,形成高强度结合面。因此,本发明采用SPS技术,通过合适的层状梯度结 构设计和烧结工艺,在较低温度和较短时间内实现对MAX相和氮化物陶瓷材料 的有效连接,进而形成高温绝缘封装领域用层状梯度结构MAX相/氮化物复合材 料。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡 是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发 明权利要求书的保护范围之内。

Claims (7)

1.一种MAX相/氮化物陶瓷层状梯度复合材料的快速制备方法,其特征在于,包括以下步骤:
步骤1:按照设计的梯度层数、梯度组分、每层厚度和各层中的组分含量将各层所需的MAX相粉末、氮化物粉末及相应的烧结助剂进行充分混合,得到各层所需的混合粉末;
步骤2:将各层所需的混合粉末按照步骤1的设计依次置于石墨模具中进行铺层和压制,随后安装上下压头并在模具外表面嵌套石墨碳毡,完成装模工作;
步骤3:将装有待烧结样品的模具置于放电等离子烧结系统的炉膛内,抽真空至不高于0.01Pa、轴向加压然后通入直流脉冲电流进行快速升温至烧结温度进行保温;
步骤4:保温结束后随炉冷却,温度降至室温时卸压,打开炉膛,石墨模具内部所获得的制品即为MAX相/氮化物陶瓷层状梯度复合材料;
步骤1中,所述MAX相粉末是Ti3SiC2、Ti2AlC和Ti2AlN中的一种或者几种;所述氮化物粉末是Si3N4和/或AlN;
步骤1中,设计梯度层数为5~13层,每层厚度为0.5mm~2mm。
2.根据权利要求1所述的MAX相/氮化物陶瓷层状梯度复合材料的快速制备方法,其特征在于,步骤3中,施加的轴向压力为30~70MPa。
3.根据权利要求1所述的MAX相/氮化物陶瓷层状梯度复合材料的快速制备方法,其特征在于,步骤3中,快速升温是自室温起,以100~300℃/min的速率升温至1200℃,然后再以100~150℃/min的速率升温至烧结温度进行保温。
4.根据权利要求1或3所述的MAX相/氮化物陶瓷层状梯度复合材料的快速制备方法,其特征在于,所述烧结温度为1350~1400℃。
5.根据权利要求1或3所述的MAX相/氮化物陶瓷层状梯度复合材料的快速制备方法,其特征在于,所述保温时间为3~6min。
6.采用权利要求1~5中任意一项所述的快速制备方法制得的MAX相/氮化物陶瓷层状梯度复合材料。
7.权利要求6所述的MAX相/氮化物陶瓷层状梯度复合材料作为高温绝缘封装材料的应用。
CN201811315225.0A 2018-11-06 2018-11-06 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用 Active CN109400164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811315225.0A CN109400164B (zh) 2018-11-06 2018-11-06 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811315225.0A CN109400164B (zh) 2018-11-06 2018-11-06 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用

Publications (2)

Publication Number Publication Date
CN109400164A CN109400164A (zh) 2019-03-01
CN109400164B true CN109400164B (zh) 2020-08-28

Family

ID=65471851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811315225.0A Active CN109400164B (zh) 2018-11-06 2018-11-06 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用

Country Status (1)

Country Link
CN (1) CN109400164B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761622A (zh) * 2019-03-27 2019-05-17 广东工业大学 一种基于外场辅助技术的氮化硅基梯度复合材料及其制备方法
CN110282976B (zh) * 2019-06-04 2021-09-10 上海交通大学 一种三维结构碳化铪-钛硅碳复相陶瓷的制备方法
CN110759737B (zh) * 2019-11-19 2021-08-17 中国科学院兰州化学物理研究所 一种高性能氮化硅基复合陶瓷的制备方法
CN110981489B (zh) * 2019-12-30 2021-01-15 燕山大学 一种TiNx-Ti3SiC2复合材料及其制备方法
CN111809075B (zh) * 2020-07-03 2021-07-06 西安石油大学 一种Ti镀层Ti3AlC2颗粒增强Al基内燃机活塞连杆及其制造方法
CN113200759B (zh) * 2021-05-26 2022-04-22 中南大学 非氧化物max相强韧化氮化硅陶瓷复合材料及其制备方法
CN115594504A (zh) * 2021-07-07 2023-01-13 北京科技大学(Cn) 一种max相燃料包壳元件用陶瓷材料、管件及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553630A (zh) * 2013-10-22 2014-02-05 湖北工业大学 一种Ti2AlN/TiN功能梯度材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391898C (zh) * 2006-10-24 2008-06-04 武汉理工大学 放电等离子烧结工艺合成氮化铝钛-氮化钛复合块体材料
CN102240809B (zh) * 2011-06-24 2015-06-03 中国科学院上海硅酸盐研究所 一种制备具有显著熔点差异组分的功能梯度复合材料的方法
CN105541331B (zh) * 2015-10-16 2016-09-14 西安建筑科技大学 一种Ti3SiC2/SiC功能梯度材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553630A (zh) * 2013-10-22 2014-02-05 湖北工业大学 一种Ti2AlN/TiN功能梯度材料的制备方法

Also Published As

Publication number Publication date
CN109400164A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN109400164B (zh) 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用
CN111085688B (zh) 一种钨/氮化硅/钨对称层状梯度复合材料及其快速制备方法和应用
TWI600634B (zh) 緻密質複合材料、其製法、接合體及半導體製造裝置用構件
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
JP2008137830A (ja) セラミックス複合部材とその製造方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN105838920B (zh) 一种Ti/AlN金属陶瓷复合材料及其制备方法
KR101710203B1 (ko) 알루미나 소결체, 그 제법 및 반도체 제조 장치 부재
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
WO2004007401A1 (ja) 炭化ケイ素基複合材料とその製造方法、および炭化ケイ素基複合材料部品の製造方法
US5503122A (en) Engine components including ceramic-metal composites
CN108409333A (zh) 一种AlMgB14-TiB2/Ti梯度功能复合材料及其制备方法
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
KR20210120847A (ko) 적층 구조체 및 반도체 제조 장치 부재
JP2966375B2 (ja) 積層セラミックス及びその製造方法
CN101182212B (zh) 硼化物-氧化物复相陶瓷及其制备方法
CN111116228A (zh) 一种抗烧蚀ZrC-HfC/SiC双层复相陶瓷涂层的制备方法
CN1277743C (zh) 二硅化钼电热元件或耐高温结构件的生产方法
JP2000351673A (ja) 高熱伝導窒化ケイ素質焼結体およびその製造方法
JP3035230B2 (ja) 積層セラミックスの製造方法
JP4348659B2 (ja) 高熱伝導窒化ケイ素質焼結体およびそれを用いた基板、半導体素子用回路基板
EP0753101B1 (en) Engine components including ceramic-metal composites
JP2004169064A (ja) 銅−タングステン合金およびその製造方法
TWI830990B (zh) 積層構造體及半導體製造裝置構件
JP4253932B2 (ja) 炭化珪素系複合材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant