CN109518163A - 一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用 - Google Patents

一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用 Download PDF

Info

Publication number
CN109518163A
CN109518163A CN201811420809.4A CN201811420809A CN109518163A CN 109518163 A CN109518163 A CN 109518163A CN 201811420809 A CN201811420809 A CN 201811420809A CN 109518163 A CN109518163 A CN 109518163A
Authority
CN
China
Prior art keywords
zirconium
film
hafnium
presoma
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811420809.4A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Anderkeming Semiconductor Technology Co Ltd
Original Assignee
Hefei Anderkeming Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Anderkeming Semiconductor Technology Co Ltd filed Critical Hefei Anderkeming Semiconductor Technology Co Ltd
Priority to CN201811420809.4A priority Critical patent/CN109518163A/zh
Publication of CN109518163A publication Critical patent/CN109518163A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供了一种锆掺杂的二氧化铪铁电薄膜的制备方法、产物及其应用,其特征在于,所述制备方法包括HfO2与ZrO2交替的原子层沉积过程,相邻沉积过程的含铪前驱体与含锆前驱体中的有效Hf与有效Zr的摩尔比为(40%~60%):(60%~40%)。本发明能够解决的具有良好铁电性能的掺杂的HfO2薄膜制备困难的技术问题,能够简单、可控地生长高质量的具有应用价值的铁电薄膜。

Description

一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用
【技术领域】
本发明涉及半导体领域,尤其涉及一种高质量铁电薄膜的制备方法、产物及其应用。
【背景技术】
多年来,集成电路增长引擎一直围绕着摩尔定律。摩尔定律指出,每18个月晶体管密度翻一番。根据摩尔定律,为了降低每个晶体管的成本,每18个月,芯片制造商推出一个新工艺。摩尔定律是可行的,但同时它也在发展。在每个节点上,工艺成本和复杂性都在飞涨,所以一个完全按比例缩小的节点的改变节奏从18个月延长到2.5年或更长。也就是说,晶体管尺寸缩小速度在减慢,成本却在快速飙升。目前,业界正在为3nm以后的下一个主要节点确定和缩小晶体管结构。同时,随着互补金属氧化物半导体(CMOS)器件集成密度的提升,飙升的功耗将成为制约集成电路进一步发展的瓶颈。而从现有研究成果来看,负电容场效应晶体管(NC FET)通过减小器件的亚阈值摆幅来降低工作电压,是降低IC功耗的有效技术路线。负电容场效应晶体管(NC FET)采用现有的晶体管和基于氧化铪的高k/金属栅叠层,栅极叠层采用铁电性质材料,由此可以显著提高亚阈值斜率,从而有效降低器件的有功功耗。
在负电容场效应晶体管(NC FET)的制备工艺中,基于氧化铪(HfO2)的铁电氧化物薄膜的沉积、整合工艺与现有的大规模集成电路的制造工艺具有很好的兼容性,因此采用此类材料的负电容场效应晶体管具有重要应用潜力。在一般的NCFET器件中,栅极氧化物101在沟道区之上,由下到上分别为金属电极102、铁电层103和栅极104,如图1所示,是将铁电材料夹在两种其它材料之前并通过沉积将其沉积到基于铪的栅极叠层中。
然而,很多掺杂的HfO2薄膜,如Y:HfO2、Si:HfO2、Al:HfO2、La:HfO2等,在制程工艺上存在很大的困难,其掺杂元素的含量难以精确控制,使得其应用性很差。因此,制备工艺成为限制掺杂的HfO2薄膜在NC FET器件中应用的首要因素。
【发明内容】
本发明所要解决的是具有良好铁电性能的掺杂的HfO2薄膜制备困难的技术问题,提供一种制备方法,能够简单、可控地生长高质量的具有应用价值的铁电薄膜;本发明还提供了上述制备方法的产物及其应用。
本发明的技术解决方案如下:
一种锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,所述制备方法包括HfO2与ZrO2交替的原子层沉积过程,相邻沉积过程的含铪前驱体与含锆前驱体中的有效Hf与有效Zr的摩尔比为(40%~60%):(60%~40%)。
该技术方案通过交替的原子层沉积,可以将薄膜中的Hf与Zr的摩尔比控制在(40%~60%):(60%~40%),该范围的薄膜在退火后保持较好的正交晶向,显示出优异的铁电性能,剩余极化强度高。锆、铪元素分布的均匀性好,与金属电极间的界面清晰。所述含铪前驱体与含锆前驱体中的有效Hf与有效Zr指的是最终沉积在基底上的铪与锆,未被吸附在基底上、可以被惰性气体吹扫走的前驱体部分被成为多余的前驱体。
优选地,相邻沉积过程的含铪前驱体与含锆前驱体中的有效Hf与有效Zr的摩尔比为50%:50%。有效Hf与有效Zr含量相同时,产物稳定性最好。
优选地,上述含铪前驱体包含四氯化铪、四甲乙氨基铪、四甲基氨基铪、四乙基氨基铪、三(二甲基氨基)环戊二烯基铪、三(二甲基氨基)-甲基-环戊二烯基铪、三(二甲基氨基)-三甲基硅基-环戊二烯基铪的任意一种。。
优选地,上述含锆前驱体包含四氯化锆、四甲乙氨基锆、四甲基氨基锆、四乙基氨基锆、三(二甲基氨基)环戊二烯基锆、三(二甲基氨基)-甲基-环戊二烯基锆、三(二甲基氨基)-三甲基硅基-环戊二烯基锆的任意一种。
上述锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,包括以下步骤:
(1)向ALD腔室中导入气化的第一前驱体,泵出多余的前驱体,用惰性气体吹扫,向ALD腔室中导入氧化性气体,通过点亮等离子体或者热反应完成薄膜沉积,泵出副产品;
(2)向ALD腔室中导入气化的第二前驱体,泵出多余的前驱体,用惰性气体吹扫,向腔室中导入氧化性气体,通过点亮等离子体或者热反应完成薄膜沉积,泵出副产品;
所述第一前驱体为含铪前驱体或含锆前驱体的一种,所述第二前驱体为含铪前驱体或含锆前驱体的另一种;
(3)重复步骤(1)~(2)直至得到目标厚度薄膜。
在沉积过程中,衬底温度为200℃-250℃,腔室压强为50mTorr-5Torr。点亮等离子体可以由氧化性气体+等离子体氧化完成。等离子体可以为原位(direct plasma)等离子体,也可为远程(remote)等离子体。等离子体的产生原理可以为电感耦合(Inductivecoupled plasma-ICP),也可以是电容耦合(capacitance coupled plasma-CCP)。其中氧化性气体可以由氧气、臭氧、二氧化碳、笑气、水蒸气、过氧化氢等含氧气体中的一种或混合气体替换以达到薄膜性质的优化。
优选地,在沉积之前对衬底进行等离子体处理、热处理、化学处理、紫外光暴露、电子束轰击或者其组合。
一种锆掺杂的二氧化铪薄膜,其特征在于,由上述制备方法制备。上述薄膜的掺杂元素(锆)的分布均匀性好;薄膜退火后保持较纯的正交晶向,有利于维持好的铁电性能,剩余极化强度高,所述薄膜经极化处理、撤除外电场后,剩余极化强度≥16μC/cm2;与此相比,锆、铪含量差异较大时,薄膜中体现出较多的四方晶向,不利于薄膜的铁电性能;薄膜与电极见的界面清晰。所述薄膜的厚度优选为1-50nm,进一步优选为1-10nm,更优选地,厚度为2-8nm。
上述锆掺杂的二氧化铪薄膜的应用,其特征在于,上述薄膜作为铁电性材料应用于负电容场效应晶体管中。
本发明的有益效果如下:
1.本发明薄膜的锆和铪的摩尔比例可以控制在(40%~60%):(60%~40%),掺杂元素(锆)的分布均匀性好,退火后保持较纯的正交晶向,有利于维持好的铁电性能,剩余极化强度高,能够达到16μC/cm2及以上;与此相比,锆、铪含量超过此范围时,薄膜中体现出较多的四方晶向,不利于薄膜的铁电性能;2.本发明薄膜与电极间可以形成边界清晰的界面,避免薄膜剥落、形成漏电流;3.本发明的制备过程简单可控,铁电薄膜稳定性高,重复性好,批次稳定性高。
【附图说明】
图1为常见的NC-FET晶体管的基本构造示意图;
图2为本发明薄膜的GI-XRD分析检测图谱,薄膜体现出良好的正交晶向;
图3为一实施例的薄膜极化强度的测量图;
图4为采用本发明薄膜的NC-FET晶体管测试结构(TiN/HfZrO4/TiN)的TEM截面图。
图5为采用本发明薄膜的铁电性能(剩余极化强度)批次稳定性测量。
标注说明:101,栅极氧化物;102,金属电极;103,铁电层;104,栅极。
【具体实施方式】
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
以下所提供的实施例并非用以限制本发明所涵盖的范围,所描述的步骤也不是用以限制其执行顺序。本领域技术人员结合现有公知常识对本发明做显而易见的改进,亦落入本发明要求的保护范围之内。
本发明提供了一种锆掺杂的二氧化铪铁电薄膜的制备方法,通过HfO2与ZrO2交替的原子层沉积过程而形成;在沉积过程中,两次相邻的沉积步骤,含铪前驱体与含锆前驱体中的有效Hf与Zr的摩尔比控制在(40%~60%):(60%~40%),即接近50%:50%。所述的有效Hf和有效Zr是指最终留在薄膜中的Hf和Zr。
沉积过程需要在衬底(或称基体)上进行,对衬底可做等离子体预沉积处理,用以影响膜的一个或多个性质。预沉积处理可以是等离子体处理、热处理、化学处理、紫外光暴露、电子束轰击及其组合。这些沉积前处理可以在选自惰性、氧化和/或还原的气氛下进行。衬底可以是单晶硅晶片、碳化硅晶片、氧化铝(蓝宝石)晶片、玻璃片、金属箔、有机聚合物膜、聚合物、玻璃、硅或金属三维制品。衬底可以涂布有本领域公知的多种材料,包括氧化硅、氮化硅、无定形碳、碳氧化硅、氮氧化硅、碳化硅、砷化镓、氮化镓、金属氧化物、金属氮化物、金属等的膜。这些涂层可以完全涂布衬底,可以是各种材料的多个层,并且可以被部分蚀刻以暴露下层材料层。表面也可以在其上具有光致抗蚀剂材料,其以图案曝光并显影以部分地覆盖衬底。
沉积所用前驱体化合物可以以多种方式递送至反应室。可以以纯液体直接喷射并加热气化(Direct Liquid Injection或简称DLI)形式递送,或者可以通过鼓泡方式以气体形式递送,或者可以通过蒸气抽吸的形式递送,还可以用于包含该前驱体的溶剂制剂或组合物中。因此,在某些实施方式中,前驱体制剂可以包含具有适合特性的一种或多种溶剂组分,如可以在形成衬底上的膜的给定最终用途应用中期望的和有利的适合特性。
虽然本文使用的前驱体、试剂和原料有时可以被描述为“气态的”,但应理解,前驱体可以是液体或固体,其通过直接蒸发、鼓泡、升华或DLI与惰性气体一起或在没有惰性气体的情况下输送到反应器中。在一些情况下,气化的前驱体可以通过等离子体发生器。在一个实施方式中,膜使用基于等离子体(例如,远程产生的或原位的)的ALD工艺沉积。本文所用术语“反应器”包括但不限于反应室或沉积室。
在一个实施例中,薄膜的具体沉积过程如下:(1)向ALD腔室中导入气化的TEMAHf(四甲乙氨基铪);用氩气(Ar)吹扫,泵出多余的TEMAHf;向ALD腔室中充入氧气,并点亮等离子体;泵出副产品;(2)向ALD腔室中导入气化的TEMAZ(四甲乙氨基锆);用氩气(Ar)吹扫,泵出多余的TEMAZ;向腔室中导入氧气,并点亮等离子体;泵出副产品。这样完成一个沉积周期,通过重复上述过程直至得到目标厚度薄膜。其中(1)与(2)也可以替换先后顺序。薄膜的厚度控制在1-50nm,优选为1-10nm,更优选地,HFZrO4厚度为1-5nm。
在其他实施例中,第(1)步中铪的前驱体可以为TEMAHf,还可以为四氯化铪,四甲基氨基铪,四乙基氨基铪,三(二甲基氨基)环戊二烯基铪(CpHf(NMe2)3),三(二甲基氨基)-甲基-环戊二烯基铪,三(二甲基氨基)-三甲基硅基-环戊二烯基铪等;第(2)步中锆的前驱体可以为TEMAZ,亦可以为四氯化锆,四甲基氨基锆,四乙基氨基锆,三(二甲基氨基)环戊二烯基锆(CpZr(NMe2)3),三(二甲基氨基)-甲基-环戊二烯基锆,三(二甲基氨基)-三甲基硅基-环戊二烯基锆等。在不引起干扰的情况下,前驱体也可以为上述任意几种的混合物。
在沉积过程中,衬底温度为200℃-250℃,腔室压强为50mTorr-5Torr。点亮等离子体可以由氧化性气体+等离子体氧化完成,其中氧化性气体可以由氧气、臭氧、二氧化碳、笑气等含氧气体中的一种或混合气体替换以达到薄膜性质的优化。等离子体可以为原位(direct plasma)等离子体,也可为远程(remote)等离子体。等离子体的产生原理可以为电感耦合(Inductive coupled plasma-ICP),也可以是电容耦合(capacitance coupledplasma-CCP)。
在其他实施例中,薄膜的沉积也可由氧化性气体通过热反应直接氧化完成,其中氧化性气体可以由氧气、臭氧、二氧化碳、笑气、水蒸气、过氧化氢等含氧气体中的一种或混合气体替换以达到薄膜性质的优化。
在整个沉积过程中,薄膜沉积的衬底温度控制在200℃-350℃。薄膜沉积的腔室压强为50mTorr-5Torr。
实施例一
将12寸硅晶圆置于PEALD腔体中并加热至250℃。向ALD腔室中通过蒸汽抽吸(vapor draw)方式导入气化的四甲乙氨基铪,导入时长为5秒,抽出多余前驱体后,向ALD腔室中充入200sccm的氧气,并点亮等离子体(300W),等离子体持续时长为5秒;泵出副产品后,向ALD腔室中通过蒸汽抽吸方式导入气化的四甲乙氨基锆,导入时长为5秒,抽出多余前驱体后,向ALD腔室中充入200sccm的氧气,并点亮等离子体(300W),等离子体持续时长为5秒;泵出副产品后即完成沉积的一个周期。
重复此薄膜沉积共50周期。将此薄膜置于650℃腔体中退火30分钟。
薄膜性质测试:
所得的薄膜通过椭偏仪测量,薄膜厚度为55A;XPS元素成分分析表明,元素铪、锆、氧的含量分别17.6%、15.6%、66.8%;HfO2:ZrO2的含量为53.0%:47.0%。
实施例二
将12寸硅晶圆置于PEALD腔体中并加热至270℃。向ALD腔室中通过蒸汽抽吸(vapor draw)方式导入气化的四氯化铪,导入时长为5秒,抽出多余前驱体后,向ALD腔室中充入250sccm的氧气,并点亮等离子体(450W),等离子体持续时长为5秒;泵出副产品后,向ALD腔室中通过蒸汽抽吸方式导入气化的四氯化锆,导入时长为3.5秒,抽出多余前驱体后,向ALD腔室中充入250sccm的氧气,并点亮等离子体(300W),等离子体持续时长为5秒;泵出副产品后即完成沉积的一个周期。
重复此薄膜沉积共60周期。将此薄膜置于600℃腔体中退火30分钟。
薄膜性质测试:
所得的薄膜通过椭偏仪测量,薄膜厚度为55A;XPS元素成分分析表明,元素铪、锆、氧的含量分别19.8%,13.4%,66.8%;HfO2:ZrO2的含量为59.6%:40.4%。
实施例三
将12寸硅晶圆置于PEALD腔体中并加热至350℃。向ALD腔室中通过蒸汽抽吸(vapor draw)方式导入气化的三(二甲基氨基)-三甲基硅基-环戊二烯基铪,导入时长为7秒,抽出多余前驱体后,向ALD腔室中充入300sccm的臭氧,并通过450℃热反应完成沉积;泵出副产品后,向ALD腔室中通过蒸汽抽吸方式导入气化的三(二甲基氨基)-三甲基硅基-环戊二烯基锆,导入时长为10秒,抽出多余前驱体后,向ALD腔室中充入300sccm的臭氧,并通过450℃热反应完成沉积;泵出副产品后即完成沉积的一个周期。
重复此薄膜沉积共60周期。将此薄膜置于630℃腔体中退火30分钟。
薄膜性质测试:
所得的薄膜通过椭偏仪测量,薄膜厚度为51A;XPS元素成分分析表明,元素铪、锆、氧的含量分别14.7%,18.7%,66.6%;HfO2:ZrO2的含量为44.1%:55.9%。
实施例四
将12寸硅晶圆置于PEALD腔体中并加热至300℃。向ALD腔室中通过蒸汽抽吸(vapor draw)方式导入气化的三(二甲基氨基)环戊二烯基锆,导入时长为10秒,抽出多余前驱体后,向ALD腔室中充入300sccm的臭氧,持续时长为4.5秒;泵出副产品后,向ALD腔室中通过蒸汽抽吸方式导入气化的三(二甲基氨基)环戊二烯基铪,导入时长为10秒,抽出多余前驱体后,向ALD腔室中充入300sccm的臭氧,持续时长为4.5秒;泵出副产品后即完成沉积的一个周期。
重复此薄膜沉积共50周期。将此薄膜置于650℃腔体中退火30分钟。
薄膜性质测试:
所得的薄膜通过椭偏仪测量,薄膜厚度为47A。XPS元素成分分析表明,元素铪、锆、氧的含量分别16.9%,16.3%,66.8%;HfO2:ZrO2的含量为50.9%:49.1%。
通过掠入射X射线衍射(GI-XRD)测量退火后的HfZrO4薄膜的晶格结构,HfZrO4薄膜体现为正交晶向,如图2所示,与HfO2、ZrO2体现出的四方晶向不同。
实施例五
以实施例一的薄膜作为铁电层制备金属-绝缘体-金属的堆栈结构(MIM)(即NCFET基本结构):
在12寸硅晶圆上通过PVD的形式沉积约30nm TiN薄膜,按照实施例一中的方法沉积约11.0nm HfZrO4薄膜(100周期)。之后在其顶部通过PVD的形式沉积约30nmTiN薄膜。将此薄膜置于650℃腔体中退火30分钟。
通过上述金属-绝缘体-金属的堆栈结构(MIM),测量薄膜的铁电性质和介电常数。结果显示,在电场撤除后,剩余极化强度约为17μC/cm2,如图3所示,显示了良好的铁电性质;通过电容-电压测量可得介电常数为22.5。
通过透射电镜(TEM)分析可以得出,HfZrO4薄膜与电极及栅极之间保持了清晰的分界面,如图4所示。
重复实施例一与实施例五中的MIM结构制备与铁电性质测量,所得剩余极化强度在16~18μC/cm2之间,稳定性好,如图5所示。

Claims (10)

1.一种锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,所述制备方法包括HfO2与ZrO2交替的原子层沉积过程,相邻沉积过程的含铪前驱体与含锆前驱体中的有效Hf与有效Zr的摩尔比为(40%~60%):(60%~40%)。
2.根据权利要求1所述的锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,相邻沉积过程的所述含铪前驱体与含锆前驱体中的有效Hf与有效Zr的摩尔比为50%:50%。
3.根据权利要求1所述的锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,所述含铪前驱体包含四氯化铪、四甲乙氨基铪、四甲基氨基铪、四乙基氨基铪、三(二甲基氨基)环戊二烯基铪、三(二甲基氨基)-甲基-环戊二烯基铪、三(二甲基氨基)-三甲基硅基-环戊二烯基铪的任意一种。
4.根据权利要求1所述的锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,所述含锆前驱体包含四氯化锆、四甲乙氨基锆、四甲基氨基锆、四乙基氨基锆、三(二甲基氨基)环戊二烯基锆、三(二甲基氨基)-甲基-环戊二烯基锆、三(二甲基氨基)-三甲基硅基-环戊二烯基锆的任意一种。
5.根据权利要求1所述的锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,包括以下步骤:
(1)向ALD腔室中导入气化的第一前驱体,泵出多余的前驱体,用惰性气体吹扫,向ALD腔室中导入氧化性气体,通过点亮等离子体或者热反应完成薄膜沉积,泵出副产品;
(2)向ALD腔室中导入气化的第二前驱体,泵出多余的前驱体,用惰性气体吹扫,向腔室中导入氧化性气体,通过点亮等离子体或者热反应完成薄膜沉积,泵出副产品;
所述第一前驱体为含铪前驱体或含锆前驱体的一种,所述第二前驱体为含铪前驱体或含锆前驱体的另一种;
(3)重复步骤(1)~(2)直至得到目标厚度薄膜。
6.根据权利要求5所述的锆掺杂的二氧化铪铁电薄膜的制备方法,其特征在于,所述氧化性气体包含O2、CO2、N2O、O3、H2O、H2O2中的至少一种;所述惰性气体包含N2,He,Ne,Ar,Kr,Xe中的至少一种。
7.一种锆掺杂的二氧化铪薄膜,其特征在于,由权利要求1~6任一项所述的制备方法制备。
8.根据权利要求7所述的锆掺杂的二氧化铪薄膜,其特征在于,所述薄膜为正交晶向。
9.根据权利要求7所述的锆掺杂的二氧化铪薄膜,其特征在于,所述薄膜经极化处理、撤除外电场后,剩余极化强度≥16μC/cm2
10.如权利要求7所述的锆掺杂的二氧化铪薄膜的应用,其特征在于,所述薄膜作为铁电性材料应用于负电容场效应晶体管中。
CN201811420809.4A 2018-11-27 2018-11-27 一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用 Pending CN109518163A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811420809.4A CN109518163A (zh) 2018-11-27 2018-11-27 一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811420809.4A CN109518163A (zh) 2018-11-27 2018-11-27 一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用

Publications (1)

Publication Number Publication Date
CN109518163A true CN109518163A (zh) 2019-03-26

Family

ID=65779200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811420809.4A Pending CN109518163A (zh) 2018-11-27 2018-11-27 一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用

Country Status (1)

Country Link
CN (1) CN109518163A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098065A (zh) * 2019-04-28 2019-08-06 复旦大学 一种双硅片基固态超级电容及其制备方法
CN110165053A (zh) * 2019-05-28 2019-08-23 肇庆市华师大光电产业研究院 一种面向铁电存储器应用的ALD制备Hf0.5Zr0.5O2铁电薄膜的方法
CN111312898A (zh) * 2020-03-02 2020-06-19 中南大学 一种HfO2基铁电薄膜材料及其制备方法和应用
CN111549329A (zh) * 2020-05-13 2020-08-18 湘潭大学 铁电薄膜的制备方法、铁电存储器及其制备方法
WO2022015274A3 (en) * 2020-07-13 2022-03-17 Nero Endüstri̇ Savunma Sanayi̇ Anoni̇m Şi̇rketi̇ Method for metal oxide coating of pyroelectric crystal
CN114959640A (zh) * 2022-05-13 2022-08-30 浙江大学 一种氧化铪/氧化锆铁电薄膜特性的调控方法和应用
CN114988470A (zh) * 2022-05-26 2022-09-02 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456785A (zh) * 2012-05-31 2013-12-18 联华电子股份有限公司 半导体结构及其制作工艺
CN104658982A (zh) * 2013-11-21 2015-05-27 昆山中辰矽晶有限公司 光学组件及其制造方法
US20170004967A1 (en) * 2015-07-01 2017-01-05 SK Hynix Inc. Method of fabricating hafnium oxide layer and semiconductor device having the same
CN107170812A (zh) * 2017-06-08 2017-09-15 湘潭大学 一种铁电薄膜晶体管及其制备方法
CN108470773A (zh) * 2018-03-21 2018-08-31 湘潭大学 一种铁电薄膜晶体管及其制备方法
CN108520878A (zh) * 2018-04-18 2018-09-11 湘潭大学 一种cmos后端工艺嵌入式的铁电随机存储器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456785A (zh) * 2012-05-31 2013-12-18 联华电子股份有限公司 半导体结构及其制作工艺
CN104658982A (zh) * 2013-11-21 2015-05-27 昆山中辰矽晶有限公司 光学组件及其制造方法
US20170004967A1 (en) * 2015-07-01 2017-01-05 SK Hynix Inc. Method of fabricating hafnium oxide layer and semiconductor device having the same
CN107170812A (zh) * 2017-06-08 2017-09-15 湘潭大学 一种铁电薄膜晶体管及其制备方法
CN108470773A (zh) * 2018-03-21 2018-08-31 湘潭大学 一种铁电薄膜晶体管及其制备方法
CN108520878A (zh) * 2018-04-18 2018-09-11 湘潭大学 一种cmos后端工艺嵌入式的铁电随机存储器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TERENCE MITTMANN等: "Optimizing process conditions for improved Hf1-xZrxO2 ferroelectric capacitor performance", 《MICROELECTRONIC ENGINEERING》 *
邱家稳等: "《航天器热控薄膜技术》", 30 June 2016, 国防工业出版社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098065A (zh) * 2019-04-28 2019-08-06 复旦大学 一种双硅片基固态超级电容及其制备方法
CN110165053A (zh) * 2019-05-28 2019-08-23 肇庆市华师大光电产业研究院 一种面向铁电存储器应用的ALD制备Hf0.5Zr0.5O2铁电薄膜的方法
CN111312898A (zh) * 2020-03-02 2020-06-19 中南大学 一种HfO2基铁电薄膜材料及其制备方法和应用
CN111549329A (zh) * 2020-05-13 2020-08-18 湘潭大学 铁电薄膜的制备方法、铁电存储器及其制备方法
WO2022015274A3 (en) * 2020-07-13 2022-03-17 Nero Endüstri̇ Savunma Sanayi̇ Anoni̇m Şi̇rketi̇ Method for metal oxide coating of pyroelectric crystal
CN114959640A (zh) * 2022-05-13 2022-08-30 浙江大学 一种氧化铪/氧化锆铁电薄膜特性的调控方法和应用
CN114988470A (zh) * 2022-05-26 2022-09-02 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法
CN114988470B (zh) * 2022-05-26 2024-04-05 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法

Similar Documents

Publication Publication Date Title
CN109518163A (zh) 一种锆掺杂二氧化铪铁电薄膜的制备方法、产物及其应用
Ponraj et al. Review on atomic layer deposition and applications of oxide thin films
KR100716654B1 (ko) 정방정계 구조의 지르코늄산화막 형성 방법 및 그를 구비한캐패시터의 제조 방법
KR20140144222A (ko) 원자층 퇴적
JP2002075989A (ja) ジルコニウム酸化膜の製造方法
JP2007266464A (ja) 半導体集積回路装置の製造方法
CN108441830A (zh) 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
JP2008537765A (ja) 半球粒状シリコン及びナノ結晶粒サイズのポリシリコンのための単一ウエハ熱cvdプロセス
JPH06196654A (ja) 半導体メモリ装置及びその製造方法
KR20200132369A (ko) 멤리스터 소자 및 그 제조 방법
JP4502189B2 (ja) 薄膜の形成方法および半導体装置の製造方法
KR100562731B1 (ko) 고유전율 게이트 산화막상의 강유전체 박막의mocvd용 시드층 프로세스
CN114360929A (zh) 一种氧化铪基铁电薄膜电容器及其制备方法
Aarik et al. Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: growth of high-permittivity dielectrics with low leakage current
Hudec et al. High-permittivity metal-insulator-metal capacitors with TiO2 rutile dielectric and RuO2 bottom electrode
JP2023531194A (ja) 固有強誘電性Hf-Zr含有膜
TW466750B (en) Semiconductor device and production thereof
TW557576B (en) MOCVD and annealing processes for C-axis oriented ferroelectric thin films
Lei et al. The tunable dielectric properties of sputtered yttrium oxide films
CN107425053A (zh) 一种用ald构建同心核壳三维纳米多铁异质结阵列的方法
CN105679785B (zh) 一种基于多层氮化硼的rram器件及其制备方法
CN114628233A (zh) 一种半导体器件制备方法
TW593734B (en) A method and system for metal organic chemical vapor deposition (MOCVD) and annealing of lead germanite (PGO) thin films
Kitajima et al. Enhanced interfacial reaction of precursor and low temperature substrate in HfO2 atomic layer deposition with highly Ar diluted O2 plasma
CN114990530B (zh) 一种低温制备hzo铁电薄膜的方法及hzo铁电薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190326

RJ01 Rejection of invention patent application after publication