CN108441830A - 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法 - Google Patents

一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法 Download PDF

Info

Publication number
CN108441830A
CN108441830A CN201810171185.0A CN201810171185A CN108441830A CN 108441830 A CN108441830 A CN 108441830A CN 201810171185 A CN201810171185 A CN 201810171185A CN 108441830 A CN108441830 A CN 108441830A
Authority
CN
China
Prior art keywords
target
sputtering
hafnium oxide
film
ferroelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810171185.0A
Other languages
English (en)
Other versions
CN108441830B (zh
Inventor
周大雨
孙纳纳
徐进
徐军
张昱
赵鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810171185.0A priority Critical patent/CN108441830B/zh
Publication of CN108441830A publication Critical patent/CN108441830A/zh
Application granted granted Critical
Publication of CN108441830B publication Critical patent/CN108441830B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明属于材料制备领域,公开了一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法。先使用标准的RCA清洗工艺,除去表面的残留的杂质和脏污;然后以金属铪和拟掺杂单质金属或非金属作为靶材,在Ar和O2混合气氛中,采用反应磁控溅射,沉积非晶二氧化铪基薄膜;之后对沉积好的薄膜进行退火晶化,得到正交相Pca21空间群晶体结构的二氧化铪基铁电薄膜。本发明提出的反应磁控溅射制备二氧化铪基铁电薄膜的方法具有以下优点:沉积速率快、基材温度低、对膜层的损伤少;薄膜与基片的结合好;薄膜纯度高、致密性好、成膜均匀性好;溅射电源选择灵活、掺杂元素选择灵活多样、靶材冷却没有特殊要求;工艺重复性好、薄膜成长条件容易控制且易于实现工业化。

Description

一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
技术领域
本发明属于材料制备技术领域,涉及一种具有正交相Pca21空间群晶体结构的二氧化铪基铁电薄膜的制备方法。
背景技术
在全球化、信息化、科技化的大时代,人们对智能化硬件的需求越来越高,铁电材料因其优异的介电性、压电性、热释电性、铁电性以及电光效应、光折变效应和非线性光学效应等重要特性,在新型信息存储器、传感器和光电器件等多个领域有着广泛的应用前景。传统的钙钛矿结构铁电材料因与半导体CMOS集成工艺技术兼容性差和难以实现三维纳米结构制备等缺点严重制约了铁电存储器等集成铁电器件的发展,急需新的材料来进行替代。以HfO2为代表的二元氧化物高介电常数(高-k)薄膜材料自上世纪90年代起成为研究热点,并于近年来在微电子工业中广泛取代SiO2作为晶体管栅介质和动态随机存储器(DRAM)电容器介质。近年来,HfO2基薄膜铁电性质的发现为超大集成密度铁电器件的研究和应用带来了新的发展契机。HfO2薄膜在常压下主要存在三种稳定的晶体结构,分别是单斜相(monoclinic)、四方相(tetragonal)和立方相(cubic)。在室温下HfO2稳定存在的形式是单斜相(空间群P21/c);升温到2050K转化成四方相(P42/nmc);继续升温到2803K转化为立方相(Fm3m)。
HfO2基薄膜是否具备铁电性质与其晶体结构密切相关。研究证明,HfO2铁电相属于正交晶系,空间群为Pca21,该物相晶格是非中心对称的,符合经典电介质理论中材料产生铁电性质的必要微观结构条件。目前,实现HfO2正交铁电相在室温附近稳定的方法主要有阳离子或阴离子掺杂、顶电极夹持、薄膜厚度和退火晶化工艺的控制等。其中,离子掺杂是最有效且重复性最好的方法。该方法曾广泛应用于制备HfO2高-k材料和高韧性的ZrO2材料。目前,HfO2基铁电薄膜的制备方法主要有原子层沉积、化学溶液法和磁控溅射等。其中磁控溅射法具有沉积速率快、基材温度低、对膜层的损伤少;薄膜与基片的结合好;薄膜纯度高、致密性好、成膜均匀性好;工艺重复性好、薄膜成长条件容易控制并且易于实现工业化等优点。Olsen等人在文章“Co-sputtering yttrium into hafnium oxide thin film toproduce ferroelectric properties,Applied Physics Letters,101,082905(2015)”报道了一种采用HfO2和Y2O3氧化物陶瓷靶材磁控溅射制备Y掺杂HfO2铁电薄膜的方法。Lee等人在文章“Preparation and characterization of ferroelectric Hf0.5Zr0.5O2thinfilms grown by reactive sputtering,Nanotechnology,28,305703(2017)”报道了一种采用HfO2和ZrO2陶瓷靶材磁控溅射制备Hf0.5Zr0.5O2铁电薄膜的方法。Lun Xu等人在文章“Kinetic pathway of the ferroelectric phase formation in doped HfO2films,Journal of Applied Physics,112,124104(2017)”中报道了一种利用Sc2O3,Y2O3,Al2O3,SiO2,GeO2,ZrO2,Nb2O5等氧化物靶材和HfO2陶瓷靶材进行磁控溅射制备多种元素掺杂HfO2基铁电薄膜的方法。上述报道都是采用磁控溅射方法制备HfO2基铁电薄膜,但是所使用的靶材均为陶瓷氧化物,因此只能采用射频电源进行溅射,另外陶瓷靶材在溅射过程中容易开裂、对冷却要求高,需要采用特殊的工艺制备加工,因此陶瓷靶材成本高。本发明采用反应磁控溅射,利用金属铪靶材和掺杂剂靶材制备HfO2基铁电薄膜。该方法具有溅射电源选择灵活、掺杂元素选择灵活多样和靶材冷却没有特殊的要求等优点,克服了采用氧化物陶瓷靶材电源选择单一、靶材易开裂和靶材冷却要求高等问题。
发明内容
本发明目的在于提供一种具有正交相Pca21空间群晶体结构的的二氧化铪基铁电薄膜的制备方法,其中采用金属铪和拟掺杂单质金属或非金属作为靶材,在Ar和O2混合气氛中,通过反应溅射制备HfO2基铁电薄膜。其中采用元素掺杂使HfO2正交相Pca21空间群晶体结构在室温附近稳定,同时,通过更换掺杂剂靶材可以实现不同元素的掺杂。
为了达到上述目的,本发明采用的技术方案如下:
一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,包括以下步骤:
步骤一:采用半导体行业标准的RCA清洗工艺清洗基片,除去表面的杂质和脏污。
所述的基片采用Si、Ge或三五族半导体材料中的一种,所述三五族半导体为砷化镓等。
步骤二:将处理后的基片放置在磁控溅射的样品台上,本底真空抽至高真空,通入氩气对金属铪靶和掺杂剂靶进行预溅射,去除靶材表面的氧化物和油污,预溅射时间不小于5min。再通入高纯氩气和氧气的混合气体,对金属铪靶和掺杂剂靶进行溅射,制备HfO2基非晶薄膜。其中氩气作为工作气体、高纯氧气作为反应气体,氩气被电离成氩正离子和电子,氩正离子在电场作用下轰击金属铪靶和掺杂剂靶,使两种靶材发生溅射,溅射出的金属铪离子和掺杂剂离子与氧气反应,生成HfO2基非晶薄膜,沉积到基片上。。
通过调节工作气压、溅射功率、基底温度和溅射时间等工艺参数,控制掺杂剂的掺杂量和HfO2基非晶薄膜的厚度,其中,靶基距为90-160mm,混合气体流量为Ar:O2=(10-40):(10-40)sccm,工作气压为0.3-0.8Pa,Hf靶溅射功率为50-100W,掺杂靶溅射功率为30-120W,基底温度为室温-300℃,溅射时间为30-90min,得到掺杂量为1-50%、厚度为10-30nm的HfO2基非晶薄膜。
所述的磁控溅射设备的电源可以采用直流、脉冲直流、中频或射频电源中的一种;所述的磁控溅射靶材形式,可以采用圆柱靶或平面磁控靶的一种;所述的磁控溅射靶材放置方式,还可以采用靶面与靶面并排安置或相对安置,靶材与样品台垂直的放置方式或靶材与基片台成角度的斜靶放置方式的一种;所述的靶材,其纯度不小于99.9%;所述的高真空的真空度不大于5x10-4Pa;所述的高纯氩气和氧气,其纯度不小于99.99%;所述的掺杂靶采用钇、锆、铝、硅、锗、锶和钕靶中的一种。
步骤三:将步骤二得到的HfO2基非晶薄膜采用顶电极不加持的方式进行退火处理,得到正交相Pca21空间群晶体结构稳定的HfO2基铁电薄膜。退火工艺参数具体为:退火气氛:氮气或氧气,加热温度为600-800℃,保温时间为20-40s。其中,顶电极不加持的方式具体为沉积HfO2基非晶薄膜后,先退火再沉积顶电极。
步骤四:制备顶电极,形成金属-绝缘体-半导体结构电容器,利用铁电测试仪测试电容器的铁电性能。
所述的制备顶电极的方法可以采用直流磁控溅射、反应磁控溅射、脉冲直流磁控溅射和蒸发镀膜中的一种;所述的顶电极采用高导电性金属Au、Pt、Al、Cu和TiN中的一种。所述的顶电极厚度为80-150nm。
进一步地,上述方法中还可以在基片上沉积底电极后,再沉积HfO2基非晶薄膜,进行退火处理,制备顶电极,形成金属-绝缘体-金属结构的电容器,利用铁电测试仪测试电容器的铁电性能。
进一步地,上述步骤三中所述的退火处理还可以采用顶电极加持的方法,在制备HfO2基非晶薄膜后,先沉积顶电极,再进行退火处理。
本发明采用金属铪和拟掺杂单质金属或非金属靶材,电源选择灵活且靶材冷却没有特殊要求。同时,通过更换掺杂剂靶材可以实现不同元素的掺杂,得到正交相Pca21空间群晶体结构在室温附近稳定的二氧化铪基铁电薄膜,并且采用此方法制备的二氧化铪基铁电薄膜的纯度高、致密性好、成膜均匀性好、表面粗糙度低。
本发明的有益效果是:本发明提供了一种正交相Pca21空间群晶体结构在室温附近稳定的二氧化铪基铁电薄膜方法,能够改变传统陶瓷靶材溅射电源选择单一、靶材易开裂和靶材冷却要求高等问题。同时,该方法具有工艺简单、成本低、过程可控等优点。
附图说明
图1为本发明方法中二氧化铪基铁电薄膜制备方法流程图;
图2是Y掺杂HfO2在掺杂量为1mol%,薄膜厚度为10nm,样品的XRD图谱,其中o代表正交相,m代表单斜相。
图3是Y掺杂HfO2在掺杂量为1mol%,薄膜厚度为10nm,样品的AFM形貌图。
图4是Y掺杂HfO2在掺杂量为1mol%,薄膜厚度为10nm,样品的电滞回线。
具体实施方式
为使本发明的目的、技术方案及优点更加清晰,以下结合附图和具体实例对本发明的操作过程作进一步详细说明。需说明,此处所描述的具体实例仅用于解释本发明,其中图示为示意性质,并不用于限定本发明的范围。
实施案例1:
本实施例中,选用p-Si基片作为基底,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为90mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=10:10sccm,工作气压0.3Pa,Hf靶溅射功率50W,Y靶溅射功率30W,基片温度为室温,预溅射时间5min,溅射时间30min,得到Y掺杂量为1mol%,薄膜厚度为10nm的HfYO2非晶薄膜。对其进行退火处理,在N2气氛下,温度为600℃,保温时间为20s,快速降温晶化,得到HfYO2铁电薄膜,并且薄膜表面较为光滑平整、没有明显的起伏,均方根粗糙度为1.89nm,样品的XRD图谱和AFM形貌如图2和图3所示。随后采用反应磁控溅射制备80nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能,其电滞回线如图4所示。
实施案例2:
本实施例中,选用p-Si基片作为基底,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,硅靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为120mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=20:20sccm,工作气压0.5Pa,Hf靶溅射功率80W,Si靶溅射功率50W,基片温度为200℃,预溅射时间5min,溅射时间60min,得到Si掺杂量为4mol%,薄膜厚度为20nm的HfSiO2非晶薄膜。对其进行退火处理,在N2气氛下,温度为700℃,保温时间为20s,快速降温晶化,得到HfSiO2铁电薄膜。随后采用反应磁控溅射制备100nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能。
实施案例3:
本实施例中,选用p-Si基片为基底,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,锆靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为160mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=40:40sccm,工作气压0.8Pa,Hf靶溅射功率100W,Zr靶溅射功率120W,基片温度为300℃,预溅射时间10min,溅射时间90min,得到掺杂量50mol%,厚度30nm的HfZrO2非晶薄膜。对其进行退火处理,在N2气氛下,温度为800℃,保温时间为40s,快速降温晶化,得到HfZrO2铁电薄膜。随后采用反应磁控溅射制备150nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能。
实施案例4:
本实施例中,选用p-Ge基片为基底,采用半导体行业标准的RCA清洗工艺进行清洗。采用射频反应磁控溅射制备10nm的TiN底电极。利用中频反应磁控溅射制备HfZrO2铁电薄膜,铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,锆靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为160mm,本底真空抽至4x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=40:40sccm,工作气压0.8Pa,Hf靶溅射功率100W,Zr靶溅射功率120W,基片温度为300℃,预溅射时间10min,溅射时间90min,得到掺杂量50mol%,厚度30nm的HfZrO2非晶薄膜。对其进行退火处理,在O2气氛下,温度为600℃,保温时间为40s,快速降温晶化,得到HfZrO2铁电薄膜。随后采用反应磁控溅射制备150nm的TiN顶电极,得到金属-绝缘体-金属型电容器,利用铁电测试仪测试电容器的铁电性能。
上述实施实例仅用以说明而非限制本发明的技术方案,任何不脱离本发明精神和范围的技术方案均应涵盖在本发明的专利申请范围当中。

Claims (10)

1.一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于以下步骤:
步骤一:采用RCA清洗工艺清洗基片,除去表面的杂质和脏污;
步骤二:将处理后的基片放置在磁控溅射的样品台上,本底真空抽至高真空,通入氩气对金属铪靶和掺杂剂靶进行预溅射;再通入高纯氩气和高纯氧气的混合气体,对金属铪靶和掺杂剂靶进行溅射,制备HfO2基非晶薄膜;
通过调节工作气压、溅射功率、基底温度和溅射时间工艺参数,控制掺杂剂的掺杂量和HfO2基非晶薄膜的厚度;工艺参数具体为:靶基距为90-160mm,混合气体流量Ar:O2=(10-40):(10-40)sccm,工作气压为0.3-0.8Pa,溅射时间为30-90min,金属铪靶溅射功率为50-100W,掺杂剂靶溅射功率为30-120W,基底温度为室温-300℃,得到掺杂量为1-50%、厚度为10-30nm的HfO2基非晶薄膜;
步骤三:将步骤二得到的HfO2基非晶薄膜采用顶电极不加持的方式进行退火处理,得到正交相Pca21空间群晶体结构在室温附近稳定的HfO2基铁电薄膜;工艺参数具体为:退火气氛:氮气或氧气,加热温度为600-800℃,保温时间为20-40s;
步骤四:制备厚度为80-150nm顶电极,形成金属-绝缘体-半导体结构电容器。
2.根据权利要求1所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,上述方法还可以在基片上沉积底电极后,再沉积HfO2基非晶薄膜,进行退火处理,制备顶电极,形成金属-绝缘体-金属结构的电容器。
3.根据权利要求1或2所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤三中所述的退火处理还可以采用顶电极加持的方法,先沉积顶电极,再进行退火处理。
4.根据权利要求1或2所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤一中所述的基片采用Si、Ge或其它三五族半导体材料中的一种;步骤二中所述的掺杂靶采用钇、锆、铝、硅、锗、锶和钕靶中的一种。
5.根据权利要求3所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤一中所述的基片采用Si、Ge或其它三五族半导体材料中的一种;步骤二中所述的掺杂靶采用钇、锆、铝、硅、锗、锶和钕靶中的一种。
6.根据权利要求1或2或5所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤二中所述的磁控溅射设备的电源采用直流、脉冲直流、射频和中频电源中的一种;所述的磁控溅射金属靶材形式,采用平面磁控靶或圆柱靶中的一种。
7.根据权利要求3所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤二中所述的磁控溅射设备的电源采用直流、脉冲直流、射频和中频电源中的一种;所述的磁控溅射金属靶材形式,采用平面磁控靶或圆柱靶中的一种。
8.根据权利要求4所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤二中所述的磁控溅射设备的电源采用直流、脉冲直流、射频和中频电源中的一种;所述的磁控溅射金属靶材形式,采用平面磁控靶或圆柱靶中的一种。
9.根据权利要求1或2或5或7或8所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤四中所述的顶电极采用高导电性金属Au、Pt、Al、Cu和TiN中的一种。
10.根据权利要求6所述的一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,其特征在于,步骤四中所述的顶电极采用高导电性金属Au、Pt、Al、Cu和TiN中的一种。
CN201810171185.0A 2018-03-01 2018-03-01 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法 Expired - Fee Related CN108441830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810171185.0A CN108441830B (zh) 2018-03-01 2018-03-01 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810171185.0A CN108441830B (zh) 2018-03-01 2018-03-01 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法

Publications (2)

Publication Number Publication Date
CN108441830A true CN108441830A (zh) 2018-08-24
CN108441830B CN108441830B (zh) 2020-01-10

Family

ID=63193282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810171185.0A Expired - Fee Related CN108441830B (zh) 2018-03-01 2018-03-01 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法

Country Status (1)

Country Link
CN (1) CN108441830B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355622A (zh) * 2018-09-12 2019-02-19 湘潭大学 一种磁控溅射制备铁电薄膜的方法及铁电薄膜
CN110132445A (zh) * 2019-04-02 2019-08-16 上海交通大学 一种负温度系数电阻型深低温温度传感器及制备方法
CN110218979A (zh) * 2019-05-15 2019-09-10 东莞理工学院 一种硅掺杂HfO2基铁电薄膜的制备方法
CN111554745A (zh) * 2020-04-23 2020-08-18 西安电子科技大学 一种铁电电容和铁电场效应晶体管及制备方法
CN112831768A (zh) * 2021-01-04 2021-05-25 南京佑天金属科技有限公司 一种高结晶质量的氮化铪薄膜制备方法及应用
CN113025959A (zh) * 2021-03-07 2021-06-25 中国航空制造技术研究院 一种离子束辅助磁控溅射沉积低温制备氧化铪基铁电薄膜的方法
CN113178477A (zh) * 2021-03-10 2021-07-27 中国科学院微电子研究所 一种HfO2基铁电薄膜及其沉积方法
US20210249515A1 (en) * 2018-05-18 2021-08-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN113948520A (zh) * 2019-03-26 2022-01-18 湘潭大学 一种氧化铪基铁电电容及其制备方法
CN114360929A (zh) * 2021-12-24 2022-04-15 华南师范大学 一种氧化铪基铁电薄膜电容器及其制备方法
CN114369805A (zh) * 2022-01-13 2022-04-19 中国科学院上海硅酸盐研究所 一种磁控溅射制备高表面质量HfO2基混合薄膜的方法
RU2772926C1 (ru) * 2021-05-27 2022-05-27 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Способ изготовления элемента на основе сегнетоэлектрического оксида гафния для переключаемых устройств опто- и микроэлектроники
CN115261793A (zh) * 2022-08-01 2022-11-01 复旦大学 一种基于PVD的Hf基铁电薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451612A (zh) * 2013-08-29 2013-12-18 电子科技大学 高k二氧化铪非晶薄膜的制备方法
CN106558481A (zh) * 2015-09-24 2017-04-05 中国科学院微电子研究所 半导体器件制造方法
CN107146759A (zh) * 2017-05-04 2017-09-08 湘潭大学 一种基于离子注入掺杂的氧化铪铁电栅制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451612A (zh) * 2013-08-29 2013-12-18 电子科技大学 高k二氧化铪非晶薄膜的制备方法
CN106558481A (zh) * 2015-09-24 2017-04-05 中国科学院微电子研究所 半导体器件制造方法
CN107146759A (zh) * 2017-05-04 2017-09-08 湘潭大学 一种基于离子注入掺杂的氧化铪铁电栅制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戈占伟: "二氧化铪基纳米薄膜的反应磁控溅射制备工艺及电容器集成", 《中国优秀硕士论文全文数据库 工程科技I辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973119B2 (en) * 2018-05-18 2024-04-30 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US20210249515A1 (en) * 2018-05-18 2021-08-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN109355622A (zh) * 2018-09-12 2019-02-19 湘潭大学 一种磁控溅射制备铁电薄膜的方法及铁电薄膜
CN113948520A (zh) * 2019-03-26 2022-01-18 湘潭大学 一种氧化铪基铁电电容及其制备方法
CN110132445A (zh) * 2019-04-02 2019-08-16 上海交通大学 一种负温度系数电阻型深低温温度传感器及制备方法
CN110218979A (zh) * 2019-05-15 2019-09-10 东莞理工学院 一种硅掺杂HfO2基铁电薄膜的制备方法
CN111554745A (zh) * 2020-04-23 2020-08-18 西安电子科技大学 一种铁电电容和铁电场效应晶体管及制备方法
CN111554745B (zh) * 2020-04-23 2022-03-08 西安电子科技大学 一种铁电电容和铁电场效应晶体管及制备方法
CN112831768A (zh) * 2021-01-04 2021-05-25 南京佑天金属科技有限公司 一种高结晶质量的氮化铪薄膜制备方法及应用
CN113025959A (zh) * 2021-03-07 2021-06-25 中国航空制造技术研究院 一种离子束辅助磁控溅射沉积低温制备氧化铪基铁电薄膜的方法
CN113178477A (zh) * 2021-03-10 2021-07-27 中国科学院微电子研究所 一种HfO2基铁电薄膜及其沉积方法
CN113178477B (zh) * 2021-03-10 2022-07-22 中国科学院微电子研究所 一种HfO2基铁电薄膜及其沉积方法
RU2772926C1 (ru) * 2021-05-27 2022-05-27 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Способ изготовления элемента на основе сегнетоэлектрического оксида гафния для переключаемых устройств опто- и микроэлектроники
CN114360929A (zh) * 2021-12-24 2022-04-15 华南师范大学 一种氧化铪基铁电薄膜电容器及其制备方法
CN114360929B (zh) * 2021-12-24 2024-06-04 华南师范大学 一种氧化铪基铁电薄膜电容器及其制备方法
CN114369805A (zh) * 2022-01-13 2022-04-19 中国科学院上海硅酸盐研究所 一种磁控溅射制备高表面质量HfO2基混合薄膜的方法
CN115261793A (zh) * 2022-08-01 2022-11-01 复旦大学 一种基于PVD的Hf基铁电薄膜的制备方法

Also Published As

Publication number Publication date
CN108441830B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN108441830A (zh) 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
CN108441831B (zh) 一种钇掺杂二氧化铪铁电薄膜的制备方法
CN110165053A (zh) 一种面向铁电存储器应用的ALD制备Hf0.5Zr0.5O2铁电薄膜的方法
CN109355622A (zh) 一种磁控溅射制备铁电薄膜的方法及铁电薄膜
AU2020101866A4 (en) A method for preparing ferroelectric thin film by magnetron sputtering and ferroelectric thin film
CN102858691A (zh) 具有阴离子控制的介电性质的钙钛矿材料、薄膜电容器器件及其制造方法
CN104379807A (zh) 原子层沉积
CN108493102A (zh) 采用全无机前驱体溶液制备二氧化铪基铁电薄膜的方法及应用
CN108588693A (zh) 采用全无机前驱体溶液制备钇掺杂二氧化铪铁电薄膜的方法及应用
Zhang et al. Effects of Hf buffer layer at the Y-doped HfO2/Si interface on ferroelectric characteristics of Y-doped HfO2 films formed by reactive sputtering
Zhang et al. Structural and electrical study of highly (100)-oriented KNN films fabricated by a sol-gel non-alkoxide process
Stawski et al. Influence of high temperature processing of sol–gel derived barium titanate thin films deposited on platinum and strontium ruthenate coated silicon wafers
CN1851039A (zh) 一种锆钛酸铅铁电薄膜材料的制备方法
Sun et al. Superior-performance TiN films sputtered for capacitor electrodes
Mizutani et al. Cerium oxide capping on Y-doped HfO2 films for ferroelectric phase stabilization with endurance improvement
Zhu et al. Growth and properties of (0 0 1)-oriented Pb (Zr0. 52Ti0. 48) O3/LaNiO3 films on Si (0 0 1) substrates with TiN buffer layers
Oh et al. Effects of Zr content and annealing on ferroelectricity of as-grown crystalline Hf1-xZrxO2 thin films using Hf [Cp (NMe2) 3] and Zr [Cp (NMe2) 3] precursors via atomic layer deposition
Zhu et al. Effects of growth temperature and film thickness on the electrical properties of Ba0. 7Sr0. 3TiO3 thin films grown on platinized silicon substrates by pulsed laser deposition
CN112038212A (zh) 一种利用氧化铝介电薄膜层诱导铪锆氧薄膜铁电性的方法
CN103469156A (zh) 一种对较厚铁电薄膜实施应力工程用于材料改性的方法
Ma et al. Microstructure and ferroelectric properties of Ta-doped Bi3. 25La0. 75Ti3O12/ZnO thin film capacitors
Chen et al. Low temperature improvement method on characteristics of Ba (Zr 0.1 Ti 0.9) O 3 thin films deposited on indium tin oxide/glass substrates
Xu et al. Preparation and electrical properties of highly (1 1 1) oriented antiferroelectric PLZST films by radio frequency magnetron sputtering
Mukundan et al. Structural correlation of ferroelectric behavior in mixed Hafnia-zirconia high-k dielectrics for FeRAM and NCFET applications
Bag et al. Effect of excess lead on the structural and electrical characteristics of sol-gel synthesized RuO2/Pb (ZrxTi1− x) O3/RuO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200110