CN106558481A - 半导体器件制造方法 - Google Patents

半导体器件制造方法 Download PDF

Info

Publication number
CN106558481A
CN106558481A CN201510616088.4A CN201510616088A CN106558481A CN 106558481 A CN106558481 A CN 106558481A CN 201510616088 A CN201510616088 A CN 201510616088A CN 106558481 A CN106558481 A CN 106558481A
Authority
CN
China
Prior art keywords
dielectric layer
gate dielectric
ferroelectricity
manufacture method
doped chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510616088.4A
Other languages
English (en)
Other versions
CN106558481B (zh
Inventor
许高博
殷华湘
徐秋霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201510616088.4A priority Critical patent/CN106558481B/zh
Publication of CN106558481A publication Critical patent/CN106558481A/zh
Application granted granted Critical
Publication of CN106558481B publication Critical patent/CN106558481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种铁电栅介质层的制造方法,包括:提供半导体衬底;在所述半导体衬底上淀积高k栅介质层;在所述高k栅介质层上淀积应力层;在所述高k栅介质层中引入掺杂元素;对所述高k栅介质层进行退火处理,实现高k栅介质层的相变,从而形成铁电栅介质层。本发明提供的铁电栅介质层的制造方法,通过在高k栅介质层中引入掺杂元素,在应力层的夹持作用下退火形成具有铁电属性的高k栅介质层,该方法有利于与CMOS工艺相兼容,提高铁电材料在小尺寸半导体器件中的应用。

Description

半导体器件制造方法
技术领域
本发明涉及一种半导体器件制造方法,尤其涉及一种铁电栅介质层的制造方法。
背景技术
40多年来,集成电路技术按摩尔定律持续发展,特征尺寸不断缩铁电材料是室温下具有自发极化且其自发极化在外电场的作用下可以改变的一类晶体材料。在没有电场时,铁电材料的晶体(铁电体)具有两个或更多个取向态(即极化),在电场的作用下可以由一个取向态转变到另一个取向态。由铁电体的铁电、介电、压电和热电性为基础制成的器件,在铁电随机存储器(FRAM)、MEMS系统、微波器件、光电器件等方面取得了广泛的应用,成为当前国际高新技术材料中非常活跃的研究领域之一。
迄今为止,人们已经发现了一千多种铁电材料,包括钛酸铅、锆钛酸铅等,但是这些材料与互补金属氧化物半导体(CMOS)集成工艺兼容性较差,使其在半导体领域的应用受到了很大的限制。
发明内容
本发明的目的旨在解决上述技术缺陷,提供一种隧穿场效应晶体本发明的目的旨在解决上述技术缺陷,提供一种铁电栅介质层的制造方法。
本发明提供了一种铁电栅介质层的制造方法,包括:提供半导体衬底;在所述半导体衬底上淀积高k栅介质层;在所述高k栅介质层上淀积应力层;在所述高k栅介质层中引入掺杂元素;对所述高k栅介质层进行退火处理,实现高k栅介质层的相变,从而形成铁电栅介质层。
其中,所述高k栅介质层包括,选自HfO2、HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx、HfLaSiOx的铪基材料,或是包括选自ZrO2、La2O3、LaAlO3、Ta2O5、TiO2、Y2O3、CeO2的稀土基高K介质材料,或是包括SiN、AlSiN、AlN、Al2O3,以其上述材料的复合层。
其中,所述应力层包括,金属氮化物、金属氧化物、氧化硅、氮化硅、氮氧化硅、DLC、ta-C。
其中,金属氮化物包括TiN、TaN、WN、AlN、TiAlN、TaAlN任一种或组合;任选地,金属氧化物包括ZrO2、Al2O3任一种或组合。
其中,所述高k栅介质层中引入掺杂元素包括,采用离子注入或等离子体掺杂在高k栅介质层引入掺杂元素,或者沉积含掺杂元素的牺牲层、执行扩散工艺之后去除牺牲层,或者淀积高k栅介质层的同时原位掺杂。
其中,所述掺杂元素包括硅、铝、钇、钆、镓元素中的任一种或几种的组合。
其中,所述实现高k栅介质层的相变是使高k栅介质层由淀积时的无铁电属性的晶相转变为具有铁电属性的晶相。
其中,所述无铁电属性的晶相包括单斜晶相和/或正方晶相。
其中,所述具有铁电属性的晶相包括正交晶相。
其中,退火温度为400℃至1000℃,退火时间为1s至30s。
本发明提供的铁电栅介质层的制造方法,通过在高k栅介质层中引入掺杂元素,在应力层的夹持作用下退火形成具有铁电属性的高k栅介质层,该方法有利于与CMOS工艺相兼容,提高铁电材料在小尺寸半导体器件中的应用。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1-图5示出了本发明实施例的铁电栅介质层制备工艺中各个阶段的截面示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
在附图中示出了根据本发明实施例的层结构示意图。这些图并非是按比例绘制的,其中为了清楚的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
为了更好的理解本发明,以下将结合附图对具体的实施例进行详细的描述。
首先,如图1所示,提供衬底1000。
在本发明中,所述衬底1000可以包括任何的半导体材料,例如单晶硅、多晶硅、非晶硅、锗、硅锗、碳化硅、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓、合金半导体或其他化合物半导体,所述衬底1000还可以为叠层半导体结构,例如Si/SiGe、绝缘体上硅(SOI)或绝缘体上硅锗(SGOI)。此处仅为示例,本发明并不限于此。本实施例中,所述衬底为硅衬底。
接着,在所述半导体衬底1000上淀积高k栅介质层1002,如图2所示。高k材料包括但不限于包括选自HfO2、HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx、HfLaSiOx的铪基材料(其中,各材料依照多元金属组分配比以及化学价不同,氧原子含量x可合理调整,例如可为1~6且不限于整数),或是包括选自ZrO2、La2O3、LaAlO3、TiO2、Y2O3的稀土基高K介质材料,或是包括Al2O3,以其上述材料的复合层。沉积工艺例如为UHVCVD、MOCVD、MBE、ALD、磁控溅射等。
具体的,在本实施例中,例如首先经过常规清洗,采用dHF(稀释HF酸,HF/H2O混合物)或dBOE(缓释刻蚀剂,NH4F、HF混合水溶液)溶液去除自然氧化层;而后,采用原子层淀积工艺(ALD)在硅片上淀积二氧化铪HfO2,可选地,在淀积HfO2之前,还可采用氧化工艺(热氧化、化学氧化)在硅衬底上形成5至的界面氧化层。在其他实施例中,可以选用上述其他高k材料。
然后,在所述高k栅介质层1002上淀积应力层1004,如图3所示。淀积工艺例如PECVD、UHVCVD、MOCVD、MBE、ALD等。应力层1004材料例如包括但不限于,诸如金属氮化物(例如TiN、TaN、WN、AlN、TiAlN、TaAlN等)、金属氧化物(例如ZrO2、Al2O3)的金属基材料,诸如氧化硅(SiO2)、氮化硅(SiNx,例如Si3N4)、氮氧化硅(SiOxNy)的硅化合物材料,或者为ta-C、DLC等碳基材料。应力层1004用于向栅介质层1002施加应力,以促使后续退火过程中由热应力释放推进掺杂元素与层1002材料反应而引起相变。应力层1004具有的应力的绝对值大小例如600MPa~4GPa、优选1GPa~3GPa、最佳2GPa。具体的,在一个优选实施例中,采用原子层淀积工艺在高k栅介质层上淀积TiN金属层。
然后,在所述高k栅介质层1002中引入掺杂元素1006,如图4所示。掺杂方法可以为离子注入或者等离子体掺杂,可以为沉积含掺杂元素的牺牲层、执行扩散工艺并且除去牺牲层,还可以为在图2所示淀积高k栅介质层1002同时进行原位掺杂。掺杂元素包括但不限于,Si、Al、Y、Gd、Ga任一种或其组合。具体的,在一个优选实施例中,采用离子注入工艺在高k栅介质层中引入Si、Y和Gd等元素,所述离子注入的能量为10-100keV,以使离子穿过TiN金属层到达高k栅介质层(并且优选地不穿透进入沟道区),注入剂量为1e13-1e15。
对所述高k栅介质层进行退火处理,实现高k栅介质层的相变,从而形成具有铁电属性的高k栅介质层1008,如图5所示。具体的,在一个优选实施例中,采用热退火工艺,退火温度为400℃至1000℃,退火时间为1s至30s,使高k栅介质由无铁电属性的单斜晶相或正方晶相等晶相转变为具有铁电属性的正交晶相。
本发明提供的铁电栅介质层的制造方法,通过在高k栅介质层中引入掺杂元素,在应力层的夹持作用下退火形成具有铁电属性的高k栅介质层,该方法有利于与CMOS工艺相兼容,提高铁电材料在小尺寸半导体器件中的应用。
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种铁电栅介质层的制造方法,包括:
提供半导体衬底;
在所述半导体衬底上淀积高k栅介质层;
在所述高k栅介质层上淀积应力层;
在所述高k栅介质层中引入掺杂元素;
对所述高k栅介质层进行退火处理,实现高k栅介质层的相变,从而形成铁电栅介质层。
2.根据权利要求1所述的铁电栅介质层的制造方法,其特征在于,所述高k栅介质层包括,选自HfO2、HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx、HfLaSiOx的铪基材料,或是包括选自ZrO2、La2O3、LaAlO3、Ta2O5、TiO2、Y2O3、CeO2的稀土基高K介质材料,或是包括SiN、AlSiN、AlN、Al2O3,以其上述材料的复合层。
3.根据权利要求1所述的铁电栅介质层的制造方法,其特征在于,所述应力层包括,金属氮化物、金属氧化物、氧化硅、氮化硅、氮氧化硅、DLC、ta-C。
4.根据权利要求3所述的铁电栅介质层的制造方法,其特征在于,金属氮化物包括TiN、TaN、WN、AlN、TiAlN、TaAlN任一种或组合;任选地,金属氧化物包括ZrO2、Al2O3任一种或组合。
5.根据权利要求1所述的铁电栅介质层的制造方法,其特征在于,所述高k栅介质层中引入掺杂元素包括,采用离子注入或等离子体掺杂在高k栅介质层引入掺杂元素,或者沉积含掺杂元素的牺牲层、执行扩散工艺之后去除牺牲层,或者淀积高k栅介质层的同时原位掺杂。
6.根据权利要求1所述的铁电栅介质层的制造方法,其特征在于,所述掺杂元素包括硅、铝、钇、钆、镓元素中的任一种或几种的组合。
7.根据权利要求1所述的铁电栅介质层的制造方法,其特征在于,所述实现高k栅介质层的相变是使高k栅介质层由淀积时的无铁电属性的晶相转变为具有铁电属性的晶相。
8.根据权利要求6所述的铁电栅介质层的制造方法,其特征在于,所述无铁电属性的晶相包括单斜晶相和/或正方晶相。
9.根据权利要求6所述的铁电栅介质层的制造方法,其特征在于,所述具有铁电属性的晶相包括正交晶相。
10.根据权利要求1所述的铁电栅介质层的制造方法,其中,退火温度为400℃至1000℃,退火时间为1s至30s。
CN201510616088.4A 2015-09-24 2015-09-24 半导体器件制造方法 Active CN106558481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510616088.4A CN106558481B (zh) 2015-09-24 2015-09-24 半导体器件制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510616088.4A CN106558481B (zh) 2015-09-24 2015-09-24 半导体器件制造方法

Publications (2)

Publication Number Publication Date
CN106558481A true CN106558481A (zh) 2017-04-05
CN106558481B CN106558481B (zh) 2021-05-07

Family

ID=58415270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510616088.4A Active CN106558481B (zh) 2015-09-24 2015-09-24 半导体器件制造方法

Country Status (1)

Country Link
CN (1) CN106558481B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146759A (zh) * 2017-05-04 2017-09-08 湘潭大学 一种基于离子注入掺杂的氧化铪铁电栅制备方法
CN108441831A (zh) * 2018-03-01 2018-08-24 大连理工大学 一种钇掺杂二氧化铪铁电薄膜的制备方法
CN108441830A (zh) * 2018-03-01 2018-08-24 大连理工大学 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
CN109712868A (zh) * 2018-12-20 2019-05-03 西安电子科技大学 基于氧化铝材料内嵌纳米晶结构的铁电薄膜制备方法
CN110890272A (zh) * 2019-11-22 2020-03-17 中国科学院微电子研究所 一种氧化铪基铁电薄膜的制备方法
CN111668372A (zh) * 2020-06-18 2020-09-15 中国科学院微电子研究所 一种HfO2基铁电电容器及其制备方法和HfO2基铁电存储器
CN111834447A (zh) * 2020-07-16 2020-10-27 深圳市瑞之辰科技有限公司 HfO2基栅介质层材料及其制备方法和半导体器件
CN112786438A (zh) * 2019-11-11 2021-05-11 上海新微技术研发中心有限公司 半导体器件及其栅极结构的形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114677A (zh) * 2006-07-27 2008-01-30 三星电子株式会社 非易失半导体存储器装置及其制造方法
CN104810269A (zh) * 2014-01-27 2015-07-29 格罗方德半导体公司 具有铁电氧化铪的半导体装置及形成该半导体装置的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114677A (zh) * 2006-07-27 2008-01-30 三星电子株式会社 非易失半导体存储器装置及其制造方法
CN104810269A (zh) * 2014-01-27 2015-07-29 格罗方德半导体公司 具有铁电氧化铪的半导体装置及形成该半导体装置的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.MULLER. ETC.: "Ferroelectricity in yttrium-doped hafnium oxide", 《JOURNAL OF APPLIED PHYSICS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146759A (zh) * 2017-05-04 2017-09-08 湘潭大学 一种基于离子注入掺杂的氧化铪铁电栅制备方法
CN108441831A (zh) * 2018-03-01 2018-08-24 大连理工大学 一种钇掺杂二氧化铪铁电薄膜的制备方法
CN108441830A (zh) * 2018-03-01 2018-08-24 大连理工大学 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
CN109712868A (zh) * 2018-12-20 2019-05-03 西安电子科技大学 基于氧化铝材料内嵌纳米晶结构的铁电薄膜制备方法
CN112786438A (zh) * 2019-11-11 2021-05-11 上海新微技术研发中心有限公司 半导体器件及其栅极结构的形成方法
CN110890272A (zh) * 2019-11-22 2020-03-17 中国科学院微电子研究所 一种氧化铪基铁电薄膜的制备方法
CN111668372A (zh) * 2020-06-18 2020-09-15 中国科学院微电子研究所 一种HfO2基铁电电容器及其制备方法和HfO2基铁电存储器
CN111834447A (zh) * 2020-07-16 2020-10-27 深圳市瑞之辰科技有限公司 HfO2基栅介质层材料及其制备方法和半导体器件

Also Published As

Publication number Publication date
CN106558481B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN106558481A (zh) 半导体器件制造方法
CN106463513B (zh) 铁电存储器单元及形成半导体结构的方法
TWI569336B (zh) 半導體裝置的形成方法
CN100416765C (zh) 用晶片接合的方法来制造半导体-电介质-半导体器件结构
TWI248208B (en) High-K gate dielectric stack with buffer layer to improve threshold voltage characteristics
CN101401297B (zh) 制造双表面取向半导体结构的方法
US8952462B2 (en) Method and apparatus of forming a gate
US9691662B2 (en) Field effect transistors having multiple effective work functions
TWI658491B (zh) 半導體裝置與其之製造方法
CN103904029B (zh) 具有双重功函数栅叠层的半导体器件及其制造方法
US11387149B2 (en) Semiconductor device and method for forming gate structure thereof
US9269812B2 (en) Semiconductor device having V-shaped region
US11251036B2 (en) Semiconductor devices and methods of manufacturing semiconductor devices
US9634116B2 (en) Method to improve reliability of high-K metal gate stacks
TW201515226A (zh) 半導體裝置及其形成方法
US20080146012A1 (en) Novel method to adjust work function by plasma assisted metal incorporated dielectric
KR102311437B1 (ko) 삽입 층을 구비한 반도체 구조체 및 이를 제조하는 방법
US7635634B2 (en) Dielectric apparatus and associated methods
TW201013899A (en) Semiconductor device and method of forming the same
US11374115B2 (en) Method for forming semiconductor device having boron-doped germanium tin epitaxy structure
TWI389214B (zh) 半導體裝置的製造方法
TW200901474A (en) Semiconductor device and manufacturing method therefor
EP3796393A1 (en) Electronic device and method of manufacturing the same
CN106158630A (zh) 晶体管的形成方法
TWI508139B (zh) 製作半導體裝置的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant