CN108441831B - 一种钇掺杂二氧化铪铁电薄膜的制备方法 - Google Patents

一种钇掺杂二氧化铪铁电薄膜的制备方法 Download PDF

Info

Publication number
CN108441831B
CN108441831B CN201810171317.XA CN201810171317A CN108441831B CN 108441831 B CN108441831 B CN 108441831B CN 201810171317 A CN201810171317 A CN 201810171317A CN 108441831 B CN108441831 B CN 108441831B
Authority
CN
China
Prior art keywords
target
yttrium
sputtering
film
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810171317.XA
Other languages
English (en)
Other versions
CN108441831A (zh
Inventor
周大雨
孙纳纳
徐进
徐军
张昱
赵鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810171317.XA priority Critical patent/CN108441831B/zh
Publication of CN108441831A publication Critical patent/CN108441831A/zh
Application granted granted Critical
Publication of CN108441831B publication Critical patent/CN108441831B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于材料制备领域,公开了一种钇掺杂二氧化铪铁电薄膜的制备方法。先使用标准的RCA清洗法,除去表面的杂质和脏污;然后以金属铪和钇作为靶材,在Ar和O2混合气氛中,采用反应磁控溅射,在基底上沉积钇掺杂氧化铪薄膜;之后对沉积好的薄膜进行退火晶化,得到正交相Pca21空间群晶体结构的钇掺杂二氧化铪铁电薄膜。本发明提出的反应磁控溅射制备钇掺杂二氧化铪基铁电薄膜的方法具有以下优点:薄膜纯度高、致密性好、成膜均匀性好;溅射电源选择灵活、靶材冷却没有特殊要求;操作工艺简单、能耗低、无污染且易于实现工业化。

Description

一种钇掺杂二氧化铪铁电薄膜的制备方法
技术领域
本发明属于材料制备技术领域,涉及一种正交相Pca21空间群晶体结构的钇掺杂二氧化铪铁电薄膜的制备方法。
背景技术
近年来,微电子工业的迅速发展使得便携式电子设备成为人们日常生活不可或缺的一部分,而铁电存储器像非易失铁电存储器和铁电场效应晶体管等无疑在这场巨变中扮演了重要角色。铁电存储器一直遵循着摩尔定律以每两年微电子集成电路晶体管密度增大一倍的速度发展。截至目前,一个半导体芯片上可集成几十亿个晶体管。然而,传统的铁电存储器已经达到物理极限,无法继续降低绝缘层厚度,提高存储密度。制造一种更小尺寸,更快读写速度,且兼具低功耗性能的新型铁电器件迫在眉睫。近年来,HfO2新型铁电材料的发现为铁电存储器的研究和应用带来了新的发展契机。HfO2薄膜在常压下主要存在三种稳定的晶体结构,分别是单斜相(monoclinic)、四方相(tetragonal)和立方相(cubic)。在室温下HfO2稳定存在的形式是单斜相(空间群P21/c);升温到2050K转化成四方相(P42/nmc);继续升温到2803K转化为立方相(Fm3m)。
HfO2是否具备铁电性与其晶体结构密切相关。研究证明,HfO2铁电相属于正交晶系,空间群为Pca21,该物相晶格是非中心对称的,符合经典电介质理论中材料产生铁电性质的必要微观结构条件。目前,实现HfO2正交铁电相在室温附近稳定的方法主要有阳离子或阴离子掺杂、顶电极夹持、薄膜厚度和退火晶化工艺的控制等。其中,离子掺杂是最有效且重复性最好的方法。目前,研究者采用多种元素对HfO2薄膜进行掺杂,半径大于Hf的元素像Y、Gd、La和Sr等有利于获得HfO2的铁电性能,而半径小于Hf的元素Si和Al等有利于引发反铁电性能。其中Y元素掺杂HfO2的铁电薄膜因其具有最大的剩余极化而受到研究者的广泛关注。J.Müller等人在文章“Ferroelectricity in yttrium-doped hafnium oxide,Journal of applied physics,110,114113(2011)”制备的Y掺杂HfO2铁电薄膜,其剩余极化达到24μC/cm2
目前,制备Y掺杂HfO2铁电薄膜的方法主要有原子层沉积、化学溶液法和磁控溅射等。磁控溅射法具有沉积速率快、基材温度低、对膜层的损伤少;薄膜与基片的结合好;薄膜纯度高、致密性好、成膜均匀性好;工艺重复性好、薄膜成长条件容易控制并且易于实现工业化等优点。Olsen等人在文章“Co-sputtering yttrium into hafnium oxide thin filmto produce ferroelectric properties,Applied Physics Letters,101,082905(2015)”报道了一种采用磁控溅射,利用HfO2和Y2O3陶瓷靶材制备HfYO2铁电薄膜的方法。Lun Xu等人在文章“Kinetic pathway of the ferroelectric phase formation in dopedHfO2films,Journal of Applied Physics,112,124104(2017)”中也报道了一种采用磁控溅射,同样利用Y2O3和HfO2陶瓷靶材制备HfYO2铁电薄膜的方法。上述报道都是采用磁控溅射方法制备HfYO2铁电薄膜,但是所使用的靶材均为陶瓷氧化物,因此只能采用射频电源进行溅射,另外陶瓷靶材在溅射过程中容易开裂、对冷却要求高,需要采用特殊的工艺制备加工,因此陶瓷靶材成本高。本发明采用反应磁控溅射,利用金属铪和钇靶材制备HfYO2铁电薄膜。该方法具备溅射电源选择灵活和靶材冷却没有特殊的要求等优点,克服了采用氧化物靶材,溅射电源选择单一、靶材易开裂和靶材冷却要求高等问题。
发明内容
本发明目的在于提供一种采用反应磁控溅射制备钇掺杂二氧化铪铁电薄膜的方法,其中采用金属铪靶和钇靶,在Ar和O2混合气氛中,通过反应溅射生成HfYO2非晶薄膜,然后退火晶化,得到正交相Pca21空间群晶体结构在室温附近稳定的HfYO2铁电薄膜。
为了达到上述目的,本发明采用的技术方案如下:
一种正交相Pca21空间群晶体结构在室温附近稳定的钇掺杂二氧化铪铁电薄膜的制备方法,包括以下步骤:
步骤一:使用半导体行业标准的RCA清洗工艺清洗基片,除去表面的杂质和脏污。
所述的基片采用Si、Ge或其它三五族半导体材料中的一种,所述三五族半导体为砷化镓等。
步骤二:将处理后的基片放置在磁控溅射的样品台上,本底真空抽至高真空,通入氩气对金属铪靶和钇靶进行预溅射,去除靶材表面的氧化物和油污;再通入高纯氩气和高纯氧气的混合气体,对金属铪靶和钇靶进行溅射,制备HfYO2非晶薄膜。其中,氩气被电离成氩正离子和电子,氩离子在电场作用下轰击金属铪靶和钇靶,使两种靶材发生溅射,溅射出的金属铪离子和钇离子与氧气反应,生成HfYO2非晶薄膜,沉积到基片上。
通过调节工作气压、溅射功率、基底温度和溅射时间等工艺参数,控制钇的掺杂量和薄膜的厚度,其中,靶基距为90-160mm,混合气体流量Ar:O2=(10-40):(10-40)sccm,工作气压0.3-0.8Pa,金属铪靶溅射功率50-100W,钇靶溅射功率30-80W,基底温度室温-300℃,预溅射时间不小于5min,溅射时间为30-90min,得到掺杂量1.5-5%、厚度为10-30nm的HfYO2非晶薄膜。
所述的磁控溅射设备的电源采用直流、脉冲直流、射频和中频电源中的一种;所述的磁控溅射金属靶材形式,采用平面磁控靶或圆柱靶。所述的磁控溅射金属靶材放置方式,采用靶面与靶面并排安置或相对安置,靶材与样品台垂直的放置方式或靶材与基片台成角度的斜靶放置方式的一种;所述的金属靶材,其纯度不小于99.9%;所述的高真空,其真空度为不大于5x10-4Pa;所述的高纯氩气和氧气,纯度不小于99.99%。
步骤三:将步骤二得到的HfYO2非晶薄膜采用顶电极不加持的方式进行退火处理,得到正交相Pca21空间群晶体结构稳定的HfYO2铁电薄膜。退火工艺参数具体为:退火气氛:氮气或氧气,温度为600-800℃,保温时间为20-40s。其中,顶电极不加持的方式具体为制备HfYO2非晶薄膜后,先退火再沉积顶电极。
步骤四:制备顶电极,形成金属-绝缘体-半导体结构电容器,利用铁电测试仪测试电容器的铁电性能。
所述的制备顶电极的方法可以采用直流磁控溅射、反应磁控溅射、脉冲直流磁控溅射和蒸发镀膜中的一种;所述的顶电极采用高导电性金属Au、Pt、Al、Cu和TiN中的一种;所述的顶电极厚度为80-150nm。
进一步地,上述方法中还可以在基片上沉积底电极后,再沉积HfYO2非晶薄膜,进行退火处理后,制备顶电极,形成金属-绝缘体-金属结构的电容器,利用铁电测试仪测试电容器的铁电性能。
进一步地,上述步骤三中所述的退火处理还可以采用顶电极加持的方法,具体为:沉积HfYO2非晶薄膜后,先沉积顶电极,再进行退火。
本发明采用金属靶材,可以选用直流、脉冲直流、中频或射频电源进行溅射镀膜。通过控制薄膜厚度和钇的掺杂量,得到正交相Pca21空间群晶体结构稳定的HfYO2铁电薄膜,并且薄膜纯度高、光滑致密、表面粗糙度低。
本发明的有益效果是:本发明提供了一种钇掺杂二氧化铪铁电薄膜制备方法,能够改变传统陶瓷靶材溅射电源选择单一、靶材易开裂和靶材冷却要求高等问题。同时,该方法具有工艺简单、成本低、过程可控等优点。
附图说明
图1为本发明方法中钇掺杂二氧化铪铁电电容器制备方法流程图;
图2为本发明方法中Y掺杂HfO2在掺杂量为1.5mol%,薄膜厚度为10nm,样品的XRD图谱,其中o代表正交相,m代表单斜相;
图3是为本发明方法中Y掺杂HfO2在掺杂量为1.5mol%,薄膜厚度为10nm,样品的AFM形貌图。
图4为本发明方法中Y掺杂HfO2在掺杂量为1.5mol%,薄膜厚度为10nm,样品的电滞回线。
具体实施方式
为使本发明的目的、技术方案及优点更加清晰明了,以下结合附图和具体实例对本发明的操作过程作进一步详细说明。需说明,此处所描述的具体实例仅用于解释本发明,其中图示为示意性质,并不用于限定本发明的范围。
实施案例1
本实施例中,选用p-Si基片,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为90mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=10:10sccm,工作气压0.3Pa,Hf靶溅射功率50W,Y靶溅射功率30W,基底温度为室温,预溅射时间5min,溅射时间30min,得到Y掺杂量为1.5mol%,厚度10nm的HfYO2非晶薄膜。对其进行退火处理,在N2气氛下,温度600℃,保温20s,快速降温晶化,得到HfYO2铁电薄膜,并且薄膜表面较为光滑平整、没有明显的起伏,均方根粗糙度为1.19nm,样品的XRD图谱和AFM形貌图如图2和图3所示。随后采用反应磁控溅射制备80nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能,其电滞回线如图4所示。
实施案例2
本实施例中,选用用p-Si基片,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为120mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=20:20sccm,工作气压0.5Pa,Hf靶溅射功率80W,Y靶溅射功率50W,基底温度为200℃,预溅射时间5min,溅射时间60min,得到Y掺杂量为3mol%,厚度20nm的HfYO2非晶薄膜。对其进行退火处理,在N2气氛下,温度700℃,保温30s,快速降温晶化,得到HfYO2铁电薄膜,随后采用反应磁控溅射制备100nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能。
实施案例3
本实施例中,选用p-Si基片,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为160mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=40:40sccm,工作气压0.6Pa,Hf靶溅射功率100W,Y靶溅射功率80W,基底温度300℃,预溅射时间10min,溅射时间90min,得到Y掺杂量为5mol%,厚度30nm的HfYO2非晶薄膜。对其进行退火处理,在N2气氛下,温度800℃,保温40s,快速降温晶化,得到HfYO2铁电薄膜,随后采用反应磁控溅射制备150nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能。
实施案例4
本实施例中,选用p-Ge基片,采用半导体行业标准的RCA清洗工艺进行清洗。利用射频反应磁控溅射制备10nm的TiN底电极。随后采用中频反应磁控溅射制备HfYO2铁电薄膜,铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为160mm,本底真空抽至4x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=40:40sccm,工作气压0.8Pa,Hf靶溅射功率100W,Y靶溅射功率80W,基底温度300℃,预溅射时间10min,溅射时间90min,得到Y掺杂量为5mol%,厚度30nm的HfYO2非晶薄膜。对其进行退火处理,在O2气氛下,温度800℃,保温40s,快速降温晶化,得到HfYO2铁电薄膜,随后采用反应磁控溅射制备150nm的TiN顶电极,得到金属-绝缘体-金属型电容器,利用铁电测试仪测试电容器的铁电性能。
上述实施实例仅用以说明而非限制本发明的技术方案,任何不脱离本发明精神和范围的技术方案均应涵盖在本发明的专利申请范围当中。

Claims (1)

1.一种采用反应磁控溅射制备金属-绝缘体-半导体结构电容器的方法,其特征在于以下步骤:
步骤一:采用RCA清洗工艺清洗p-Si基片,除去表面的杂质和脏污;
步骤二:将处理后的基片放置在磁控溅射的样品台上,本底真空抽至高真空,通入氩气对金属铪靶和钇靶进行预溅射,铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方;采用中频反应磁控溅射,本底真空抽至5x10-4Pa,再通入纯度为99.99%的高纯氩气作为工作气体,通入纯度为99.99%的高纯氧气作为反应气体,对金属铪靶和钇靶进行溅射,制备HfYO2非晶薄膜;
通过调节工作气压、溅射功率、基底温度和溅射时间工艺参数,控制钇的掺杂量和薄膜的厚度,其中,靶基距为120mm,混合气体流量Ar:O2=20:20,工作气压0.5Pa,预溅射时间5min,溅射时间为60min,金属铪靶溅射功率80W,钇靶溅射功率50W,基底温度200℃,得到掺杂量3%、厚度为20nm的HfYO2非晶薄膜;
步骤三:将步骤二得到的HfYO2非晶薄膜进行退火处理,得到正交相Pca21空间群晶体结构在室温附近稳定的HfYO2铁电薄膜;退火工艺参数具体为:退火气氛:氮气,加热温度为700℃,保温时间为30s,得到HfYO2铁电薄膜;
步骤四:采用反应磁控溅射制备厚度为100nm的TiN顶电极,形成金属-绝缘体-半导体结构电容器。
CN201810171317.XA 2018-03-01 2018-03-01 一种钇掺杂二氧化铪铁电薄膜的制备方法 Expired - Fee Related CN108441831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810171317.XA CN108441831B (zh) 2018-03-01 2018-03-01 一种钇掺杂二氧化铪铁电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810171317.XA CN108441831B (zh) 2018-03-01 2018-03-01 一种钇掺杂二氧化铪铁电薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN108441831A CN108441831A (zh) 2018-08-24
CN108441831B true CN108441831B (zh) 2020-01-10

Family

ID=63193256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810171317.XA Expired - Fee Related CN108441831B (zh) 2018-03-01 2018-03-01 一种钇掺杂二氧化铪铁电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108441831B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355622A (zh) * 2018-09-12 2019-02-19 湘潭大学 一种磁控溅射制备铁电薄膜的方法及铁电薄膜
CN109943819A (zh) * 2019-04-10 2019-06-28 天津大学 一种高介电常数氧化镍薄膜介质层电容器的制备方法
CN110491673A (zh) * 2019-07-25 2019-11-22 南通通成电子有限公司 一种长寿命防水耐高温的电容器
CN111554745B (zh) * 2020-04-23 2022-03-08 西安电子科技大学 一种铁电电容和铁电场效应晶体管及制备方法
CN112831766B (zh) * 2021-01-04 2022-04-01 南京佑天金属科技有限公司 一种利用磁控溅射在硅衬底上制备金属锆薄膜的方法及应用
CN113025959A (zh) * 2021-03-07 2021-06-25 中国航空制造技术研究院 一种离子束辅助磁控溅射沉积低温制备氧化铪基铁电薄膜的方法
CN114988470B (zh) * 2022-05-26 2024-04-05 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451612A (zh) * 2013-08-29 2013-12-18 电子科技大学 高k二氧化铪非晶薄膜的制备方法
CN106558481B (zh) * 2015-09-24 2021-05-07 中国科学院微电子研究所 半导体器件制造方法
CN107146759B (zh) * 2017-05-04 2020-06-05 湘潭大学 一种基于离子注入掺杂的氧化铪铁电栅制备方法

Also Published As

Publication number Publication date
CN108441831A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN108441831B (zh) 一种钇掺杂二氧化铪铁电薄膜的制备方法
CN108441830B (zh) 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
AU2020101866A4 (en) A method for preparing ferroelectric thin film by magnetron sputtering and ferroelectric thin film
CN109355622A (zh) 一种磁控溅射制备铁电薄膜的方法及铁电薄膜
CN107012439B (zh) 一种钪掺杂氮化铝薄膜及其制备方法
US6440276B2 (en) Process for producing thin film gas sensors with dual ion beam sputtering
CN112080732B (zh) 一种硅集成的bt-bmz薄膜、电容器及其制造方法
JPH01305815A (ja) 酸素の前に窒素のアニールを用いる超伝導酸化物フイルムの製法
CN113025959A (zh) 一种离子束辅助磁控溅射沉积低温制备氧化铪基铁电薄膜的方法
CN111525024B (zh) 铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用
CN105529399B (zh) 一种基于多元金属氧化物薄膜的阻变储存器及其制备方法
Sun et al. Superior-performance TiN films sputtered for capacitor electrodes
CN1851039A (zh) 一种锆钛酸铅铁电薄膜材料的制备方法
CN111321384A (zh) 一种在镍基合金上制备二氧化锆薄膜的方法
CN106601903A (zh) c轴高度取向的钛酸钡薄膜及其在中低温下的原位制法
CN112038212A (zh) 一种利用氧化铝介电薄膜层诱导铪锆氧薄膜铁电性的方法
Sun et al. DC substrate bias enables preparation of superior-performance TiN electrode films over a wide process window
CN110224064B (zh) 一种基于BN(Al)薄膜的电阻开关及制备方法
CN102168268A (zh) 一种金属纳米晶的制备方法
CN112635670A (zh) 一种钇掺杂氧化铪基铁电薄膜材料及其制备方法与应用
CN111430228A (zh) 一种超高介电常数介质薄膜的制备方法
CN110937925A (zh) 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法
CN114836716A (zh) 一种无顶电极夹持HfO2基薄膜材料的制备方法及应用
Zhang et al. Microstructural and Electrical Resistivity of TiN Electrode Films Prepared by Direct Current (DC) Reactive Magnetron Sputtering
CN113293353B (zh) 一种金属掺杂的二硼化锆薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200110

CF01 Termination of patent right due to non-payment of annual fee