CN112080732B - 一种硅集成的bt-bmz薄膜、电容器及其制造方法 - Google Patents

一种硅集成的bt-bmz薄膜、电容器及其制造方法 Download PDF

Info

Publication number
CN112080732B
CN112080732B CN202010746968.4A CN202010746968A CN112080732B CN 112080732 B CN112080732 B CN 112080732B CN 202010746968 A CN202010746968 A CN 202010746968A CN 112080732 B CN112080732 B CN 112080732B
Authority
CN
China
Prior art keywords
film
bmz
substrate
transition layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010746968.4A
Other languages
English (en)
Other versions
CN112080732A (zh
Inventor
刘明
罗健
金靓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010746968.4A priority Critical patent/CN112080732B/zh
Publication of CN112080732A publication Critical patent/CN112080732A/zh
Application granted granted Critical
Publication of CN112080732B publication Critical patent/CN112080732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/306Stacked capacitors made by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种硅集成的BT‑BMZ薄膜、电容器及其制造方法,薄膜电容器包括Si基片、HAO过渡层和BT‑BMZ薄膜,HAO过渡层设置于Si基片表面,BT‑BMZ薄膜设置于HAO过渡层表面,Pt电极设置于Si基片BT‑BMZ薄膜表面;制造方法,包括以下过程:采用原子层沉积方法在Si基片上生长HAO过渡层;采用射频磁控溅射方法在HAO过渡层上生长BT‑BMZ薄膜,射频磁控溅射完成后进行退火;采用溅射镀膜方法在Si基片和BT‑BMZ薄膜上沉积Pt电极,得到所述硅集成的BT‑BMZ薄膜电容器。本发明的薄膜电容器大幅度提升了硅基片上薄膜电容器的储能密度,其储能效率和温度稳定性也维持在较高水平。

Description

一种硅集成的BT-BMZ薄膜、电容器及其制造方法
技术领域
本发明涉及固体电容器及其制造方法领域,特别是薄膜或厚膜电容器,具体涉及一种硅集成的BT-BMZ薄膜、电容器及其制造方法。
背景技术
随着传统化石能源的日益枯竭和可再生能源的发展,能源存储技术已成为当前科学技术研究的重要发展方向。对于储能材料与器件,相较于燃料电池、锂离子电池和超级电容器,介电电容器凭借其高功率密度、高可靠性、快速充放电与低成本等特在能量存储领域表现出了明显的优势。同时,随着近年来电子设备的便携化和多功能化的发展趋势,具有维度低、质量轻等优点的薄膜材料及器件,尤其是可集成于半导体硅片上的薄膜材料与器件,在集成电路的设计与发展中表现出巨大的优势。性能优良且小型化的硅集成介电薄膜电容器已成为当今的一大研究热点。
储能密度和储能效率是表征介电电容器储能特性的两大的重要参数,如何进一步提高材料的储能密度并保持优良的储能效率及温度稳定性,是介电薄膜电容器研究领域中需要不断解决的问题。
发明内容
为解决现有技术中存在的问题,本发明的目的是提供一种硅集成的BT-BMZ薄膜、电容器及其制造方法,本发明能够提高薄膜电容器的储能密度并保持优良的储能效率及温度稳定性。
本发明采用的技术方案如下:
一种硅集成的BT-BMZ薄膜,包括Si基片、8Al2O3:96HfO2过渡层和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜,8Al2O3:96HfO2过渡层设置于Si基片表面,0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜设置于8Al2O3:96HfO2过渡层表面。
优选的,所述Si基片为硼元素掺杂的P型(100)取向的Si基片。
优选的,所述8Al2O3:96HfO2过渡层的厚度为10-100nm。
优选的,所述0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜的厚度为50-900nm。
本发明上述硅集成的BT-BMZ薄膜的制造方法,包括以下过程:
采用原子层沉积方法在Si基片上生长8Al2O3:96HfO2过渡层;
采用射频磁控溅射方法在8Al2O3:96HfO2过渡层上生长0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜,射频磁控溅射完成后进行退火,得到所述硅集成的BT-BMZ薄膜电容器;
其中,射频磁控溅射采用0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3陶瓷靶材,磁控溅射腔内的本底真空度优于10-5mbar,工作气体为氩气与氧气的混合气体。
优选的,采用射频磁控溅射方法在8Al2O3:96HfO2过渡层上生长0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜时,溅射气压为0.2mbar,射频溅射功率为100W,衬底温度为700℃,靶材与衬底的距离为55mm。
优选的,进行退火时,向磁控溅射腔内通入混合气体,使真空度至200mbar,并在该真空度及700℃温度下保温15min,随后缓慢冷却至室温,得到所述硅集成的BT-BMZ薄膜,所述混合气体由氩气与氧气按照体积比1:1混合而成。
本发明提供的硅集成的BT-BMZ薄膜电容器,包括电极以及本发明上述的硅集成的BT-BMZ薄膜,所述电极设置于硅集成的BT-BMZ薄膜的Si基片和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜表面。
优选的,所述电极采用Pt电极。
本发明上述硅集成的BT-BMZ薄膜电容器的制造方法,包括硅集成的BT-BMZ薄膜的制备以及电极的制备,硅集成的BT-BMZ薄膜的制备过程采用本发明上述硅集成的BT-BMZ薄膜的制造方法;制备电极时,采用溅射镀膜方法在硅集成的BT-BMZ薄膜的Si基片和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜上沉积电极材料,得到电极。
本发明具有以下有益的有益效果:
本发明硅集成的BT-BMZ薄膜中,通过在Si基片和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜之间设置8Al2O3:96HfO2过渡层,能够提高BT-BMZ薄膜的储能特性。首先,8Al2O3:96HfO2过渡层可以解决0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3铁电薄膜和Si基片之间相互扩散的问题,降低界面中的缺陷,改善界面特性;同时,由于8Al2O3:96HfO2过渡层与0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3层之间的层间电荷耦合,产生退极化场,使得0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜的击穿场强得到提高。从而,本发明的BT-BMZ薄膜能够大幅度提升硅基片上薄膜的储能密度,其储能效率和温度稳定性也维持在较高水平。此外,本发明的BT-BMZ薄膜集成于Si基片上,可广泛地应用于半导体集成电路中的电容器。同时,本发明的BT-BMZ薄膜所用材料不含铅,符合当今工业生产中对环境保护的要求。
进一步的,Si基片为硼元素掺杂的P型(100)取向的Si基片,所述Si基片为当今集成电路生产中普遍使用的半导体衬底,使得本发明的BT-BMZ薄膜可以广泛应用于半导体集成电路中的电容器。
进一步的,8Al2O3:96HfO2过渡层的厚度为10-100nm,在该厚度范围内,HAO(8Al2O3:96HfO2的简称)过渡层可以有效阻挡0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3铁电薄膜和Si基片之间的固-固扩散;同时,在该厚度范围内,相对介电常数较低的HAO过渡层在BT-BMZ/HAO结构中所占的体积比小,不至导致BT-BMZ/HAO的整体介电常数较BT-BMZ薄膜发生大幅度下降。
进一步的,0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜的厚度为50-900nm,纳米级的薄膜厚度符合半导体集成电路小型化的需要。
本发明硅集成的BT-BMZ薄膜的制造方法,主要采用射频磁控溅射方法,生长的BT-BMZ薄膜沉积层具有均匀的厚度和优异的组分一致性,以此为基础制得的BT-BMZ薄膜性能稳定。
进一步的,采用射频磁控溅射方法在8Al2O3:96HfO2过渡层上生长0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜时,溅射气压为0.2mbar,射频溅射功率为100W,衬底温度为700℃,靶材与衬底的距离为55mm,在所述生长条件下获得适当的薄膜沉积速率,具体为15.82nm/h,这样能获得表面粗糙度较低的BT-BMZ薄膜。
进一步的,进行退火时,向磁控溅射腔内通入混合气体,使真空度至200mbar,并在该真空度及700℃温度下保温15min,随后缓慢冷却至室温,得到所述硅集成的BT-BMZ薄膜,所述混合气体由氩气与氧气按照体积比1:1混合而成,富氧的退火环境可以减少薄膜中的氧空位,确保制得的薄膜具有良好的结晶质量,进而获得优良的储能特性。
本发明硅集成的BT-BMZ薄膜电容器由于有本发明上述硅集成的BT-BMZ薄膜,因此本发明的硅集成的BT-BMZ薄膜电容器的储能密度大幅提升,其储能效率和温度稳定性也维持在较高水平。此外,本发明的BT-BMZ薄膜电容器集成于Si基片上,可广泛地应用于半导体集成电路中。同时,本发明的BT-BMZ薄膜电容器所用材料不含铅,符合当今工业生产中对环境保护的要求。
附图说明
图1是本发明实施例硅集成的BT-BMZ薄膜电容器的截面结构示意图。
图2是不含HAO过渡层的BT-BMZ薄膜电容器与本发明实施例硅集成的含HAO过渡层的BT-BMZ薄膜电容器在25℃工作环境下的储能密度及储能效率对比图。
图3是本发明实施例硅集成的BT-BMZ薄膜电容器在-100℃~150℃范围内的储能密度及储能效率图。
具体实施方式
下面结合附图和具体实施例,对本发明作进一步阐释。
参照图1,本发明硅集成的BT-BMZ薄膜电容器,包括电极以及本发明的硅集成的BT-BMZ薄膜,本发明的硅集成的BT-BMZ薄膜包括Si基片、8Al2O3:96HfO2过渡层和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜,8Al2O3:96HfO2过渡层设置于Si基片表面,0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜设置于8Al2O3:96HfO2过渡层表面,所述电极设置于Si基片和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜表面。其中,电极可采用Pt电极。
作为发明优选的实施方案,本发明的上述薄膜电容器中,Si基片为硼元素掺杂的P型(100)取向的Si基片;8Al2O3:96HfO2过渡层的厚度为10-100nm,优选厚度为14.5nm;0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜的厚度为50-900nm,优选厚度为400nm。
本发明硅集成的BT-BMZ薄膜电容器的制造方法,包括硅集成的BT-BMZ薄膜的制备以及电极的制备,具体包括如下步骤。
(1)Si基片处理
将Si基片依次浸入氢氟酸、去离子水中,进行清洗,去除Si基片表面的杂质和自然氧化层,再用高压氮气将其吹干后送入原子层沉积设备的真空沉积室,置于样品台上。
(2)8Al2O3:96HfO2(可简称为HAO)过渡层的制备(其中,8Al2O3:96HfO2中,8Al2O3与96HfO2之间用“:”,表示Al2O3与HfO2交替生长)
采用原子层沉积方法在Si基片上生长预设厚度的HAO过渡层。
(3)BT-BMZ(0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3的简称)薄膜的制备(其中,0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3中,0.85BaTiO3和0.15Bi(Mg0.5Zr0.5)O3之间用“-”,表示BaTiO3与Bi(Mg0.5Zr0.5)O3固相均匀混合)
采用射频磁控溅射方法在HAO过渡层上生长预设厚度的BT-BMZ薄膜。射频磁控溅射采用BT-BMZ陶瓷靶材,磁控溅射腔内的本底真空度优于10-5mbar,工作气体为氩气与氧气的混合气体,调节溅射气压、射频溅射功率、衬底温度和靶材到衬底的距离,经过预设时间的溅射并进行退火,得到所述硅集成的BT-BMZ薄膜电容器。其中,射频磁控溅射气压为0.2mbar,射频溅射功率为100W,衬底温度为700℃,靶材与衬底的距离为55mm;BT-BMZ薄膜生长结束后,向磁控溅射腔内通入混合气体至200mbar,并在该气压及700℃温度下保温15min,随后缓慢冷却至室温;射频磁控溅射生长BT-BMZ薄膜过程中,所用混合气体由氩气与氧气按照体积比1:1混合而成。所述氩气的纯度为99.999%,氧气的纯度为99.999%;
(4)Pt电极的制备
采用溅射镀膜方法在BT-BMZ薄膜上沉积预设厚度的Pt层,作为电极。
实施例
本实施例的硅集成的BT-BMZ薄膜电容器的制造方法,包括如下步骤:
(1)Si基片处理
选取用硼元素掺杂的P型(100)Si基片,用金刚石笔将基片切割为所需尺寸,即5mm*10mm大小。将切割好的基片短暂浸入体积分数2%的氢氟酸中,去除Si基片表面的SiO2氧化层及其他杂质;随后用去离子水进行快速冲洗,以去除残留的氢氟酸;再用高压氮气将基片吹干后送入原子层沉积设备的真空沉积室,置于样品台上。
(2)过渡层制备
采用原子层沉积方法在Si基片上生长预设厚度的HAO过渡层。采用如表1所示的条件,改变HfO2循环和Al2O3循环的沉积顺序在Si基片上生长HfO2:Al2O3循环比为96:8的HAO过渡层,厚度为14.5nm。
表1
Figure BDA0002608705060000061
Figure BDA0002608705060000071
(3)BT-BMZ薄膜制备
将BT-BMZ的陶瓷靶材依次用1200目、3000目、5000目砂纸打磨至光滑平整,再用高压氮气清洁表面后,将靶材安装到磁控溅射系统中。向磁控溅射腔内充入氩气与氧气的混合气体至0.2mbar,在室温条件下进行10~12h预溅射,以除去BT-BMZ陶瓷靶材表面的杂质。
采用射频磁控溅射技术在8Al2O3:96HfO2过渡层上生长预设厚度的BT-BMZ薄膜,采用如表2所示的条件,溅射时间25h17min,所制得BT-BMZ薄膜厚度是400nm。
表2
Figure BDA0002608705060000072
Figure BDA0002608705060000081
(4)Pt电极制备
将生长在硅基片上的BT-BMZ/HAO/Si样品进行部分打磨,选用100目的方孔铜网(孔径200μm)作为掩膜版,采用溅射镀膜方法在BT-BMZ/HAO/Si样品上沉积一层Pt,作为电极,溅射时间15分钟。
至此,本实施例制造得到硅集成的BT-BMZ薄膜电容器,所述电容器截面结构示意图如图1所示,电容器中HAO过渡层厚度为14.5nm,BT-BMZ层厚度为400nm,Pt电极厚度为100nm。
将本实施例制备的薄膜电容器放置于探针台上,控制探针台温度,使用铁电工作站对电容器的电性能进行测试。
图2为不含HAO过渡层的BT-BMZ薄膜电容器与本实施例硅集成的含HAO过渡层的BT-BMZ薄膜电容器在25℃工作环境下的储能密度及储能效率对比图。图2表明,通过HAO过渡层的设计使得薄膜电容器的储能密度较不含HAO过渡层的薄膜电容器有明显提高。在25℃的工作温度下,本实施例的电容器的储能密度可达85.73J/cm3,同时储能效率在73.69%以上,均达到了较高的水平。
附图3为本发明实施例1集成于硅基片上含HAO过渡层的BT-BMZ薄膜电容器在-100℃~150℃范围内的储能密度及储能效率图。图3表明本实施例的薄膜样品在-100℃到150℃温度范围内,仍然具有优异的储能特性。150℃时,在4.58MV/cm电场下,储能密度可达49.56J/cm3,储能效率69.54%。
从上述结果可以看出,本发明通过HAO过渡层的设计使得硅基片上的BT-BMZ薄膜电容器具有较高的储能密度,同时储能效率和温度稳定性也保持在较高水平,其储能密度较不含HAO过渡层的薄膜电容器有大幅度提高。
本发明的集成于硅基片上含HAO过渡层的BT-BMZ薄膜电容器具有以下几个方面的优点:
(1)本发明进行结构设计,通过插入HAO过渡层,大幅度提升了硅基片上薄膜电容器的储能密度,其储能效率和温度稳定性也维持在较高水平。
(2)本发明的薄膜电容器集成于Si基片上,可广泛地应用于半导体集成电路中。
(3)本发明的薄膜电容器所用材料不含铅,符合当今工业生产中对环境保护的要求。

Claims (7)

1.一种硅集成的BT-BMZ薄膜,其特征在于,包括Si基片、8Al2O3:96HfO2过渡层和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜,8Al2O3:96HfO2过渡层设置于Si基片表面,0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜设置于8Al2O3:96HfO2过渡层表面;
所述8Al2O3:96HfO2过渡层的厚度为10-100nm;
所述0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜的厚度为50-900nm;
所述Si基片为硼元素掺杂的P型(100)取向的Si基片;
8Al2O3:96HfO2过渡层表示Al2O3与HfO2以循环比为8:96进行交替生长得到的过渡层。
2.权利要求1所述硅集成的BT-BMZ薄膜的制造方法,其特征在于,包括以下过程:
采用原子层沉积方法在Si基片上生长8Al2O3:96HfO2过渡层;
采用射频磁控溅射方法在8Al2O3:96HfO2过渡层上生长0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜,射频磁控溅射完成后进行退火,得到所述硅集成的BT-BMZ薄膜电容器;
其中,射频磁控溅射采用0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3陶瓷靶材,磁控溅射腔内的本底真空度优于10-5mbar,工作气体为氩气与氧气的混合气体。
3.根据权利要求2所述的一种硅集成的BT-BMZ薄膜的制造方法,其特征在于,采用射频磁控溅射方法在8Al2O3:96HfO2过渡层上生长0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜时,溅射气压为0.2 mbar,射频溅射功率为100W,衬底温度为700℃,靶材与衬底的距离为55mm。
4.根据权利要求2所述的一种硅集成的BT-BMZ薄膜的制造方法,其特征在于,进行退火时,向磁控溅射腔内通入混合气体,使真空度至200mbar,并在该真空度及700℃温度下保温15min,随后缓慢冷却至室温,得到所述硅集成的BT-BMZ薄膜,所述混合气体由氩气与氧气按照体积比1:1混合而成。
5.一种硅集成的BT-BMZ薄膜电容器,其特征在于,包括电极以及权利要求1所述的硅集成的BT-BMZ薄膜,所述电极设置于硅集成的BT-BMZ薄膜的Si基片和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜表面。
6.根据权利要求5所述的一种硅集成的BT-BMZ薄膜电容器,其特征在于,所述电极采用Pt电极。
7.权利要求5或6所述硅集成的BT-BMZ薄膜电容器的制造方法,其特征在于,包括硅集成的BT-BMZ薄膜的制备以及电极的制备,硅集成的BT-BMZ薄膜的制备过程采用权利要求2-4任意一项所述硅集成的BT-BMZ薄膜的制造方法;制备电极时,采用溅射镀膜方法在硅集成的BT-BMZ薄膜的Si基片和0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3薄膜上沉积电极材料,得到电极。
CN202010746968.4A 2020-07-29 2020-07-29 一种硅集成的bt-bmz薄膜、电容器及其制造方法 Active CN112080732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010746968.4A CN112080732B (zh) 2020-07-29 2020-07-29 一种硅集成的bt-bmz薄膜、电容器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010746968.4A CN112080732B (zh) 2020-07-29 2020-07-29 一种硅集成的bt-bmz薄膜、电容器及其制造方法

Publications (2)

Publication Number Publication Date
CN112080732A CN112080732A (zh) 2020-12-15
CN112080732B true CN112080732B (zh) 2021-12-28

Family

ID=73735205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010746968.4A Active CN112080732B (zh) 2020-07-29 2020-07-29 一种硅集成的bt-bmz薄膜、电容器及其制造方法

Country Status (1)

Country Link
CN (1) CN112080732B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985330A (zh) * 2021-02-07 2021-06-18 西安交通大学 一种用于在线仪器校准的晶圆级膜厚标准片的制备方法
CN113012939B (zh) * 2021-02-22 2022-09-09 四川大学 高耐电压低损耗硅基薄膜电容器及其制备方法
CN113371703A (zh) * 2021-05-21 2021-09-10 西安交通大学 一种石墨烯改良的硅集成储能薄膜及其制备方法
CN115304822B (zh) * 2022-08-26 2023-05-23 广东腐蚀科学与技术创新研究院 一种纳米改性的介电储能聚合物薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441496A (zh) * 2002-02-28 2003-09-10 三星电子株式会社 半导体器件用电容器、其制造方法及采用它的电子器件
WO2006028215A1 (ja) * 2004-09-09 2006-03-16 Tokyo Electron Limited 薄膜キャパシタ及びその形成方法、及びコンピュータ読み取り可能な記憶媒体
CN106783174A (zh) * 2016-12-20 2017-05-31 上海集成电路研发中心有限公司 一种用于铁电存储器的铁电薄膜电容及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469158B1 (ko) * 2002-12-30 2005-02-02 주식회사 하이닉스반도체 반도체소자의 캐패시터 형성방법
JP5330126B2 (ja) * 2009-07-06 2013-10-30 株式会社デンソー セラミックス材料、及びキャパシタ
CN101887910A (zh) * 2010-06-03 2010-11-17 复旦大学 一种适合于半导体闪存器件的栅叠层结构及制备方法
US9087645B2 (en) * 2012-01-30 2015-07-21 QuantrumScape Corporation Solid state energy storage devices
CN104692800B (zh) * 2015-02-04 2016-08-24 桂林理工大学 一种温度稳定型无铅巨介电常数陶瓷材料
CN109133915B (zh) * 2018-08-30 2021-11-16 武汉理工大学 一种高储能钛酸钡基介质材料及其制备方法
CN110863184B (zh) * 2019-11-29 2020-10-27 西安交通大学 一种宽工作温度无铅外延薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441496A (zh) * 2002-02-28 2003-09-10 三星电子株式会社 半导体器件用电容器、其制造方法及采用它的电子器件
WO2006028215A1 (ja) * 2004-09-09 2006-03-16 Tokyo Electron Limited 薄膜キャパシタ及びその形成方法、及びコンピュータ読み取り可能な記憶媒体
CN106783174A (zh) * 2016-12-20 2017-05-31 上海集成电路研发中心有限公司 一种用于铁电存储器的铁电薄膜电容及其制造方法

Also Published As

Publication number Publication date
CN112080732A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN112080732B (zh) 一种硅集成的bt-bmz薄膜、电容器及其制造方法
CN109545548B (zh) 一种稀土元素改性的宽温薄膜储能电容器及其制备方法
CN109768165B (zh) 一种钙钛矿太阳能电池及其制备方法
CN111676456B (zh) 一种自组装Ba(Hf,Ti)O3:HfO2纳米复合无铅外延单层薄膜及其制备方法
CN109082642A (zh) 一种具有高储能密度与优良热稳定性的无铅外延多层薄膜及其制备方法
Salam et al. Effects of additive elements on improvement of the dielectric properties of Ta2O5 films formed by metalorganic decomposition
WO2020036927A1 (en) Lithium-containing thin films
CN113725006A (zh) 一种高耐压低漏电的硅基AlN电容器及其制备方法
CN116845333A (zh) 一种全固态薄膜型锂离子电池及其制备方法
CN116896972A (zh) 一种移相器用低压高介电可调铁电材料及其制备方法
CN112670086A (zh) 一种硅集成具有高储能密度的薄膜电容器及其制备方法
CN114188362A (zh) 一种特殊结构的soi及其制备方法
JP3682913B2 (ja) 強弾性鉛ゲルマニウム酸化物膜の生成方法およびキャパシタ
CN112133753B (zh) 一种硅集成bto薄膜及其制备方法
CN111020504A (zh) 一种Li1+xAlxGe2-x(PO4)3固体电解质薄膜的制备方法及应用
CN110120434A (zh) 电池片及其制备方法
CN114908319B (zh) 一种金刚石-氧化铝复合薄膜及其制备方法
CN113809391B (zh) 一种高离子电导率氧化物固态电解质薄膜的制备方法
EP4353864A2 (en) High-crystallinity barium titanate film structure, method of preparation and application thereof
CN113035693B (zh) 在半导体ZnO上外延制备HfO2基铁电薄膜的方法及其系统
CN113206002B (zh) 一种用于制备高均匀性的超薄氧化层的方法
CN114150296B (zh) 近室温红外成像用稀土锰氧化物薄膜制备方法
CN115763955A (zh) 一种表面亲锂的固体电解质及其制备方法
CN118545984A (zh) 一种高k富铝α-(Al,Cr)2O3栅介质薄膜的制备方法及其应用
CN116504532A (zh) 一种具有高介电击穿电场的high-k氧化物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant