CN110937925A - 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法 - Google Patents

一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法 Download PDF

Info

Publication number
CN110937925A
CN110937925A CN201911194262.5A CN201911194262A CN110937925A CN 110937925 A CN110937925 A CN 110937925A CN 201911194262 A CN201911194262 A CN 201911194262A CN 110937925 A CN110937925 A CN 110937925A
Authority
CN
China
Prior art keywords
bismuth ferrite
substrate
ferroelectric layer
thin film
based ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911194262.5A
Other languages
English (en)
Inventor
梁瑞虹
胡钰晴
赵祥永
董显林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201911194262.5A priority Critical patent/CN110937925A/zh
Publication of CN110937925A publication Critical patent/CN110937925A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法。所述高极化强度和大应变特性的铁酸铋基薄膜包括基体、铁酸铋基铁电层和顶电极,所述铁酸铋基铁电层组成为0.7Bi x FeO3‑0.3BaTiO3+ywt%MnCO3,其中x=1.0~1.2,y=0.1~0.2。本发明制备的铁酸铋基铁电薄膜为高度取向,室温下具有矩形度很好的电滞回线,极化强度高,自发极化强度可高达~120μC/cm2,单极应变高达1.26%,具有较大的应变性能。

Description

一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法
技术领域
本发明属于功能薄膜领域,涉及一种铁电薄膜材料及其制备,具体涉及一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法。
背景技术
铁酸铋(BiFeO3)是一种在室温下同时具有铁电性和反铁磁性的多铁性材料,而且在理论上,其薄膜的剩余极化可为现在广泛使用的含铅材料的2-3倍,因此铁酸铋材料在存储器、高电容和大电感一体化的电子元器件、自旋电子器件方面有着较为广阔的应用前景,其研究日益受到了人们的关注。
铁酸铋是迄今为止发现的唯一一个铁电居里温度(Tc=1143K)和磁有序温度(Tn=643K)均在室温以上的多铁性材料。铁酸铋薄膜的制备主要有溶胶-凝胶、磁控溅射、分子束外延、化学气相沉积和脉冲激光沉积等方法。溶胶-凝胶法生长的薄膜均一性差;分子束外延法生长的薄膜速率缓慢,不适应大量生产,生长系统需要超高真空,而且设备维护费用高,限制了其工业应用;脉冲激光沉积设备具备使用方便,沉积速率快,溅射出的薄膜纯度高、致密性和均一性好,工艺重复性高,对靶材的要求低等优点。但是铁酸铋薄膜的制备却存在着很多问题,例如由于在制备过程中容易产生氧空位以及Fe3+离子变价等问题,因此很难制得纯相的、漏电小的高质量薄膜。因此,铁酸铋-ABO3固溶体系的设计是一种改善铁酸铋薄膜的结构稳定性和性能的有效手段,钛酸钡作为稳定的铁电钙钛矿氧化物成为ABO3的较优选择。有研究通过在铁酸铋-钛酸钡薄膜体系中掺杂锰降低漏导(参见CurrentApplied Physics,16,10(2016)),或者通过过量铋的过量减少薄膜沉积过程中铋挥发的影响(参见Ceramics International,39,(2013)),但所制备的薄膜性能仍然不佳。总而言之,由于制备困难,一种高极化强度和大应变性能的铁酸铋-钛酸钡薄膜未见报道。
发明内容
本发明的目的是针对现有技术的不足,提供一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法。
第一方面,本发明提供一种高极化强度和大应变特性的铁酸铋基薄膜,包括基体、铁酸铋基铁电层和顶电极,所述铁酸铋基铁电层组成为0.7BixFeO3-0.3BaTiO3+ywt%MnCO3,其中x=1.0~1.2,y=0.1~0.2。
较佳地,所述基体为晶格常数与铁酸铋接近的Nb掺杂的单晶氧化物导电基片。
本发明的铁酸铋基铁电薄膜材料具有高极化强度和大应变特性,是一种非常有前景的无铅铁电存储及驱动器材料。
第二方面,本发明还提供上述高极化强度和大应变特性的铁酸铋基薄膜的制备方法,包括以下步骤:
(1)靶材制备:采用传统固相烧结法制备0.7BixFeO3-0.3BaTiO3+ywt%MnCO3陶瓷靶材,其中x=1.0~1.2,y=0.1~0.2;
(2)基体处理:选用晶格常数与铁酸铋接近的Nb掺杂的单晶氧化物导电基片作为基体,对基体进行预处理;
(3)在基体上采用脉冲激光沉积的方法沉积铁酸铋基铁电层:使用步骤(1)制备的陶瓷靶材0.7BixFeO3-0.3BaTiO3+ywt%MnCO3,采用脉冲激光沉积的方式,在基底上沉积铁酸铋基铁电层;
(4)在铁酸铋基铁电层上沉积顶电极:采用金属靶,以射频或直流磁控溅射方式在铁酸铋基铁电层上沉积顶电极。
较佳地,步骤(3)中溅射气氛为氧气,氧气压力控制在1~10Pa,基底温度为550~650℃,基底和靶材距离为40~60mm,沉积完成后在原位通入氧气至5000~15000Pa氧压并保温15~40min。
较佳地,步骤(4)中,溅射气氛为空气,靶功率密度为2~5W/cm2
较佳地,步骤(3)所述的铁酸铋铁电层厚度为100nm~0.5μm。
较佳地,步骤(4)所述的金属靶为金或铂。
较佳地,所述顶电极直径20~500μm。
较佳地,步骤(2)所述的预处理为先用丙酮和酒精对基体进行超声清洗,去除基体表面上的油性杂质,再用水对其进行清洗,干燥。
本发明采用脉冲激光沉积法制备的特定组成的铁酸铋基铁电薄膜具有结晶性好、致密性好、和基片粘附力强、平整度高等优点。
附图说明
图1为本发明实施例1中所制备铁酸铋基铁电薄膜体系的结构示意图,其中1-基体、2-铁酸铋基铁电薄膜、3-顶电极。
图2为本发明实施例1中所制备铁酸铋基铁电薄膜的XRD图,其中BFBT指的是铁酸铋基铁电层,Nb:STO指的是0.7%Nb-SrTiO3单晶导电基片。
图3为本发明实施例1中所制备铁酸铋基铁电薄膜的电滞回线。
图4为本发明实施例1中所制备铁酸铋基铁电薄膜的应变曲线。
图5为本发明实施例5中所制备铁酸铋基铁电薄膜的电滞回线。
图6为本发明实施例5中所制备铁酸铋基铁电薄膜的应变曲线。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
以下结合图1本发明铁酸铋基铁电薄膜体系的结构示意图示出本公开旨在公开的高极化强度和大应变特性的铁酸铋基薄膜,包括基体、铁酸铋基铁电层和顶电极。基于铁酸铋优异的铁电性能,本发明在铁酸铋基铁电层中首次同时引入钛酸钡,碳酸锰以及过量铋。其中铁酸铋-钛酸钡固溶体存在准同型相界MPB,通常在相界附近的体系中材料具有较优异的性能。通过添加碳酸锰引入Mn离子,引入过量铋来弥补在靶材及薄膜制备过程中所引起的铋挥发。通过引入第二组元以及碳酸锰和铋,可有效提高薄膜性能。其增强机理主要可归因以下几个方面:构筑相界;促进烧结,提高靶材质量;抑制体系Fe3+变价和氧空位的出现,进而改善体系的电学性能及应变特性等。具有一些实施方式中,所述铁酸铋基铁电层组成为0.7BixFeO3-0.3BaTiO3+ywt%MnCO3,其中x=1.0~1.2,优选1.05~1.15,y=0.1~0.2。
所述基体可为晶格常数与铁酸铋接近的Nb掺杂的单晶氧化物导电基片。通过使用Nb掺杂的单晶氧化物导电基片作为基体,可以省去导电氧化物底电极的制备,简化制备工艺从而提高薄膜的制备效率。
材料体系结构为典型的钙钛矿结构,因此本发明采用钙钛矿结构的单晶基片。使用具有取向的钙钛矿单晶作为基片,通过制备出具有较优取向度和钙钛矿结构的薄膜,从而提高薄膜的电学性能。
另外,顶电极可为金属薄膜点电极。所述的金属薄膜点电极的材料可为金或铂。一些实施方式中,顶电极直径20~500μm。
所述的高极化强度和大应变性能的铁酸铋薄膜通过在基体上采用激光脉冲沉积的方法沉积铁酸铋基铁电层,所制备的薄膜具有更好的均匀性,且能较好的保持设计组分。最后在铁酸铋基铁电层上沉积顶电极制成。
在具体实施方式中,是通过以下技术方案实现的:
首先,制备0.7BixFeO3-0.3BaTiO3+ywt%MnCO3陶瓷靶材,其中x=1.0~1.2,y=0.1~0.2。例如可通过传统固相烧结法制备。可通过以Bi2O3、BaCO3、TiO2、MnCO3、Fe2O3粉体为原料得到。一些实施方式中,烧结温度可为1000~1200℃。烧结时间可为180~300min。烧结气氛可空气中烧结。
随后,选用晶格常数与铁酸铋接近的Nb掺杂的单晶氧化物导电基片作为基体,对基体进行预处理。所述的预处理可为先用丙酮和酒精对基体进行超声清洗,去除表面上的油性杂质,再用去离子水对其进行最后的清洗,吹干。
然后,在基体上采用上述制备的陶瓷靶材0.7BixFeO3-0.3BaTiO3+ywt%MnCO3通过脉冲激光沉积的方法沉积铁酸铋铁电层。一些实施方式中,所述的铁酸铋基铁电层厚度为100nm~0.5μm。采用脉冲激光沉积法制备的铁酸铋基铁电薄膜具有结晶性好、致密性好、和基片粘附力强、平整度高等优点。一些实施方式中,采用脉冲激光沉积的方式溅射,溅射气氛为氧气,氧气压力控制在1~10Pa,基底温度为550~650℃,基底和靶材距离为40~60mm,沉积完成后在原位通入氧气至5000~15000Pa氧压并保温15~40min。具体实施方式中使用99.99%的高纯氧气。
最后,在铁酸铋基铁电层上沉积顶电极。可采用金属靶,以射频或直流磁控溅射方式沉积。又,所述的金属靶可为金或铂。一些实施方式中,溅射气氛可为空气,靶功率密度可为2~5W/cm2
本发明通过工艺组分优化以及原位退火后处理,得到了高度取向,室温下具有矩形度很好的电滞回线的铁酸铋基铁电薄膜,其极化强度高,自发极化强度可高达~120μC/cm2,单极应变高达1.26%,具有较大的应变性能,其优异性能使其有望在无铅非挥发性铁电存储、微型驱动器、自旋电子器件等微电子领域得到极大的应用。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种高极化强度和大应变性能的铁酸铋薄膜的制备方法,包括步骤如下:
(1)靶材制备
以Bi2O3、BaCO3、TiO2、MnCO3、Fe2O3粉体为原料,按照对应元素的化学计量比制备0.7BixFeO3-0.3BaTiO3+ywt%MnCO3陶瓷靶材,其中x=1.1,y=0.1。烧结温度为1100℃。烧结时间为240min。烧结气氛为空气中烧结。
(2)基体的处理
采用(100)取向的0.7%Nb-SrTiO3单晶衬底,将该衬底依次用丙酮、无水乙醇超声清洗,再用去离子水冲洗后,高纯氮气吹干,用银浆固定在样品托盘上,将样品托盘装入真空镀膜腔室的样品托盘架上,关闭真空腔室,将系统用机械泵抽气实现低真空~10-1Pa,再由分子泵抽真空至~10-4Pa。
(3)铁酸铋基铁电薄膜的制备
采用陶瓷0.7BixFeO3-0.3BaTiO3+ywt%MnCO3靶材,其中x=1.5,y=0.1,在基底上沉积铁酸铋基铁电层,采用脉冲激光沉积的方式溅射,溅射气氛为99.99%的高纯O2,O2压力控制在5Pa,基底温度为600℃,基底和靶材距离为50mm,沉积完成后在600℃、10000Pa氧压下保温30min。
(4)顶电极的制备
采用金箔靶,以掩模板溅射的方式完成。即将刻有电极形状的掩模板盖在薄膜上方,溅射仪直接溅射,溅射气氛为空气,靶功率密度为4W/cm2。顶电极的直径控制在200μm。
本实施例中所得铁酸铋基铁电薄膜的XRD测试结果如图2所示,铁酸铋基铁电薄膜呈(100)择优取向,经性能测试,所得薄膜的铁电性能显著提高,耐压性明显的提高,电滞回线如图3所示,应变曲线如图4所示。
实施例2
本实施例与实施例1的不同步骤是步骤(3)中基底温度为650℃。其它步骤及参数与实施例1相同。
实施例3
本实施例与实施例1的不同步骤是步骤(3)中基底和靶材距离为45mm。其它步骤及参数与实施例1相同。
实施例4
本实施例与实施例1的不同步骤是步骤(3)中顶电极的直径控制在100μm。其它步骤及参数与实施例1相同。
实施例5
本实施例与实施例1的不同步骤是步骤(1)中使用0.7BixFeO3-0.3BaTiO3+ywt%MnCO3陶瓷靶材,其中x=1.0,y=0.1。对本实施例的薄膜电滞回线如图5所示,应变曲线如图6所示。与实施例1的最大极化强度(Pmax),剩余极化强度(Pr)及单极应变大小(S)对比见表1。如表一数据所示,实施例1采用了10%Bi过量的靶材,实施例5采用了正常化学计量比的靶材。
表1不同实施例室温时的极化强度及应变对比
Figure BDA0002294314980000061
根据所列数据对比可得,Bi过量导致薄膜的极化强度和应变都得到了较大的提升。这是由于Bi过量弥补了在靶材及薄膜制备过程中造成的Bi的挥发,在过量的一定范围内能够优化薄膜性能。

Claims (9)

1.一种高极化强度和大应变特性的铁酸铋基薄膜,其特征在于,包括基体、铁酸铋基铁电层和顶电极,所述铁酸铋基铁电层组成为0.7Bi x FeO3-0.3BaTiO3+ywt%MnCO3,其中x=1.0~1.2,y=0.1~0.2。
2.根据权利要求1所述的铁酸铋基薄膜,其特征在于,所述基体为晶格常数与铁酸铋接近的Nb掺杂的单晶氧化物导电基片。
3.权利要求1或2所述的高极化强度和大应变特性的铁酸铋基薄膜的制备方法,其特征在于,包括以下步骤:
(1)靶材制备:采用传统固相烧结法制备0.7Bi x FeO3-0.3BaTiO3+ywt%MnCO3陶瓷靶材,其中x=1.0~1.2,y=0.1~0.2;
(2)基体处理:选用晶格常数与铁酸铋接近的Nb掺杂的单晶氧化物导电基片作为基体,对基体进行预处理;
(3)在基体上采用脉冲激光沉积的方法沉积铁酸铋基铁电层:使用步骤(1)制备的陶瓷靶材0.7Bi x FeO3-0.3BaTiO3+ywt%MnCO3,采用脉冲激光沉积的方式,在基底上沉积铁酸铋基铁电层;
(4)在铁酸铋基铁电层上沉积顶电极:采用金属靶,以射频或直流磁控溅射方式在铁酸铋基铁电层上沉积顶电极。
4.根据权利要求3所述的制备方法,其特征在于,步骤(3)中溅射气氛为氧气,氧气压力控制在1~10Pa,基底温度为550~650℃,基底和靶材距离为40~60mm,沉积完成后在原位通入氧气至5000~15000Pa氧压并保温15~40min。
5.根据权利要求3或4所述的制备方法,其特征在于,步骤(4)中,溅射气氛为空气,靶功率密度为2~5 W/cm2
6.根据权利要求3至5中任一项所述的制备方法,其特征在于,步骤(3)所述的铁酸铋铁电层厚度为100nm~0.5μm。
7.根据权利要求3至6中任一项所述的制备方法,其特征在于,步骤(4)所述的金属靶为金或铂。
8.根据权利要求3至7中任一项所述的制备方法,其特征在于,所述顶电极直径20~500μm。
9.根据权利要求3至8中任一项所述的制备方法,其特征在于,步骤(2)所述的预处理为先用丙酮和酒精对基体进行超声清洗,去除基体表面上的油性杂质,再用水对其进行清洗,干燥。
CN201911194262.5A 2019-11-28 2019-11-28 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法 Pending CN110937925A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911194262.5A CN110937925A (zh) 2019-11-28 2019-11-28 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911194262.5A CN110937925A (zh) 2019-11-28 2019-11-28 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN110937925A true CN110937925A (zh) 2020-03-31

Family

ID=69909032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911194262.5A Pending CN110937925A (zh) 2019-11-28 2019-11-28 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110937925A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525024A (zh) * 2020-04-13 2020-08-11 欧阳俊 铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用
CN113912390A (zh) * 2021-12-01 2022-01-11 中南大学 一种用于提高铁酸铋-钛酸钡铁电陶瓷极化强度的热处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187990A1 (en) * 2012-01-19 2013-07-25 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
CN103343315A (zh) * 2013-06-04 2013-10-09 南京理工大学 一种掺杂铁酸铋半导体薄膜材料及其制备方法
CN103839928A (zh) * 2014-03-05 2014-06-04 欧阳俊 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN105439635A (zh) * 2015-11-19 2016-03-30 中国海洋大学 一种新型高介电复合材料的低温制备方法
CN109115940A (zh) * 2018-10-22 2019-01-01 北京科技大学 一种测定铁酸铋基无铅压电陶瓷中氧空位浓度的碘量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187990A1 (en) * 2012-01-19 2013-07-25 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
CN103343315A (zh) * 2013-06-04 2013-10-09 南京理工大学 一种掺杂铁酸铋半导体薄膜材料及其制备方法
CN103839928A (zh) * 2014-03-05 2014-06-04 欧阳俊 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN105439635A (zh) * 2015-11-19 2016-03-30 中国海洋大学 一种新型高介电复合材料的低温制备方法
CN109115940A (zh) * 2018-10-22 2019-01-01 北京科技大学 一种测定铁酸铋基无铅压电陶瓷中氧空位浓度的碘量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMIKSHA DABAS,MANISH KUMAR,PRACHI CHAUDHARY,O.P. THAKUR: "Enhanced magneto-electric coupling and energy storage analysis in Mn-modified lead free BiFeO3-BaTiO3 solid solutions", <JOURNAL OF APPLIED PHYSICS> *
王月花: "《薄膜的设计、制备及应用》", 30 September 2016, ,中国矿业大学出版社 *
马剑,张波萍,陈建银: "《Bi过量及冷却方式对BiFeO3-BaTiO3陶瓷的相结构及电学性能的影响》", 《无机材料学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525024A (zh) * 2020-04-13 2020-08-11 欧阳俊 铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用
CN113912390A (zh) * 2021-12-01 2022-01-11 中南大学 一种用于提高铁酸铋-钛酸钡铁电陶瓷极化强度的热处理方法
CN113912390B (zh) * 2021-12-01 2022-06-14 中南大学 一种用于提高铁酸铋-钛酸钡铁电陶瓷极化强度的热处理方法

Similar Documents

Publication Publication Date Title
CN108441830B (zh) 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
CN111312898B (zh) 一种HfO2基铁电薄膜材料及其制备方法和应用
CN106058039B (zh) 一种锆钛酸铅/钌酸锶铁电超晶格材料及其制备方法
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN109545548B (zh) 一种稀土元素改性的宽温薄膜储能电容器及其制备方法
Zhang et al. Structural and electrical study of highly (100)-oriented KNN films fabricated by a sol-gel non-alkoxide process
CN110937925A (zh) 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法
CN112928200A (zh) 一种锆钛酸铅压电薄膜及其制备方法与应用
CN1851039A (zh) 一种锆钛酸铅铁电薄膜材料的制备方法
CN106601903A (zh) c轴高度取向的钛酸钡薄膜及其在中低温下的原位制法
CN107604310A (zh) 一种氧化镍‑钛酸钡纳米复合铁电薄膜材料及其制备方法与应用
Yang et al. Mechanism of grain growth and excellent polarization, dielectric relaxtion of La 3+, Nd 3+ modified PZT nano-films prepared by sol–gel technique
CN111525024B (zh) 铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用
KR100321561B1 (ko) 휘발 성분이 포함된 다성분 산화물 강유전체 박막의 제조방법
CN105296946B (zh) 一种具有a轴高度取向的铌酸铋钙薄膜材料体系及制备方法
KR101547600B1 (ko) 이종 접합 계면에서 생성된 2차원 전자 가스의 전기전도도 제어 방법
CN108930017B (zh) 一种La0.7Sr0.3MnO3铁磁薄膜的制备方法
CN110643948A (zh) 一种钛酸锶/钌酸锶铁电超晶格薄膜材料及其制备方法
CN102888586A (zh) 一种钛酸锶铅薄膜的制备方法及制备的钛酸锶铅薄膜
Zhou et al. Structure and ferroelectric properties of ferroelectromagnetic YMnO3 thin films prepared by pulsed laser depositon
CN109797367B (zh) 一种锆钛酸铅/氧化镍铁电超晶格薄膜材料及其制备方法
CN107287563A (zh) 一种外延锡酸锶钴薄膜及其制备方法
Grizalez et al. Analysis of multiferroic properties in BiMnO3 thin films
CN112921288B (zh) 一种制备高储能密度BaTiO3铁电薄膜的方法及其产品与应用
Lee et al. Phase development of radio-frequency magnetron sputter-deposited Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 (90/10) thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200331