CN109485402A - 一种改善锰钴铁基热敏陶瓷烧结性的方法 - Google Patents

一种改善锰钴铁基热敏陶瓷烧结性的方法 Download PDF

Info

Publication number
CN109485402A
CN109485402A CN201811533637.1A CN201811533637A CN109485402A CN 109485402 A CN109485402 A CN 109485402A CN 201811533637 A CN201811533637 A CN 201811533637A CN 109485402 A CN109485402 A CN 109485402A
Authority
CN
China
Prior art keywords
hours
temperature
cobalt base
thermal sensitive
base thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811533637.1A
Other languages
English (en)
Inventor
姚金城
王兵
王军华
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201811533637.1A priority Critical patent/CN109485402A/zh
Publication of CN109485402A publication Critical patent/CN109485402A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/30Apparatus or processes specially adapted for manufacturing resistors adapted for baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/046Iron oxides or ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种改善锰钴铁基热敏陶瓷烧结性的方法,该方法以过渡金属氧化物三氧化二钴、四氧化三锰和三氧化二铁为主要原材料,通过添加微量烧结助剂三氧化二铋,经固相反应法制得粉体材料,最终经成型及烧结工艺制得锰钴铁基热敏陶瓷材料。采用本发明所述方法获得的热敏电阻陶瓷体能够大大的促进晶体的结晶性、并大大降低烧结温度。该材料常数B25/50为3695‑3730K,室温电阻率ρ25值为656‑894Ω·cm,具有良好的热敏性和一致性,可广泛应用于高精度仪表等电子元器件的温度测量及控制方面。

Description

一种改善锰钴铁基热敏陶瓷烧结性的方法
技术领域
本发明涉及一种加改善锰钴铁基热敏陶瓷烧结性的方法,属于氧化物热敏陶瓷领域。
背景技术
负温度系数(NTC)热敏电阻由于具备灵敏度高、热惰性小、互换性好、可靠性强、测温范围宽、精度高等众多优势而广泛应用于温度测量、温度控制以及抑制浪涌电流等诸多方面。近年来,随着电子元器件向集成化、微型化方向推进,使得传统的热敏元件由于难于集成导致应用领域受限。但随着半导体微纳加工技术和表面贴装技术的发展,使得NTC热敏电阻在高性能基础上的小型化、片式化成为必然!
对热敏电阻片式化的研究有两个技术难点,一是降低烧结温度的研究;二是提高烧结性的研究。这两点也是国内外关于片式化应用的热点研究方向。
三元的锰钴铁系材料由于具备电阻率高、热敏性好等一系列优势而广泛应用,但三元的锰钴铁系材料仍然存在着烧结温度高、烧结性差问题,所以对此问题展开研究具有十分重要的意义。
发明内容
本发明的目的在于,提供一种改善锰钴铁基热敏陶瓷烧结性的方法,该方法以过渡金属氧化物三氧化二钴、四氧化三锰和三氧化二铁为主要原材料,通过添加微量烧结助剂三氧化二铋,经固相反应法制得粉体材料,最终经成型及烧结工艺制得锰钴铁基热敏陶瓷材料。采用本发明所述方法获得的热敏电阻陶瓷体能够大大的促进晶体的结晶性、并大大降低烧结温度。该材料常数B25/50为3695-3730K,室温电阻率ρ25值为656-894Ω·cm,具有良好的热敏性和一致性,可广泛应用于高精度仪表等电子元器件的温度测量及控制方面。
本发明所述的一种改善锰钴铁基热敏陶瓷烧结性的方法,该方法是在锰钴铁基热敏陶瓷中加入烧结助剂Bi2O3,具体操作按下列步骤进行:
a、将三氧化二钴、四氧化三锰、三氧化二铁按Mn1.1Co1.5Fe0.4O4的质量组成称取原料,然后将称取的氧化物置于球磨罐中球磨混合8-14小时,将球磨后的浆料烘干并置于玛瑙研钵中研磨3-8小时,得到混合的氧化物粉末;
b、将步骤a所得的氧化物粉末在温度800-1000℃煅烧3-5小时,并再次研磨2-6小时,得到氧化物粉料;
c、将烧结助剂Bi2O3按质量百分比0.05-0.15加入到步骤b得到的氧化物粉料中进行二次球磨12小时,经温度90℃烘箱中干燥20小时,研磨6小时,得到粉体材料;
d、将步骤c所得到的粉体材料在1.2MPa下压片成型,然后经100-400MPa冷等静压工艺压制成生坯,将所得生坯在温度1050-1150℃下烧结2-6小时,即得到材料常数B25/50为3695-3730K,室温电阻率ρ25值为656-894Ω·cm得锰钴铁基热敏陶瓷材料。
步骤c中所述的Bi2O3纯度在99.0%-99.9%之间,粒度为10-40μm。
本发明所述的一种改善锰钴铁基热敏陶瓷烧结性的方法,该方法将分析纯的三氧化二钴、四氧化三锰、三氧化二铁和微量的三氧化二铋通过固相反应法经混合球磨、研磨、煅烧、二次球磨、再研磨即制得锰钴铁基热敏陶瓷粉体,然后经过压片成型、等静压、烧结即可制得锰钴铁基热敏陶瓷。采用本发明方法制备的锰钴铁基热敏陶瓷体大大提高了晶体的结晶性,并在较低烧结温度下达到了高的致密度,大大降低了烧结温度,显示了良好的负温度系数特性,该材料常数B25/50为3695-3730K,室温电阻率ρ25值为656-894Ω·cm。
本发明所述的一种改善锰钴铁基热敏陶瓷烧结性的方法,该方法创新点为:
(1)采用低熔点的Bi2O3作为烧结助剂加入到锰钴铁基热敏陶瓷中,使得锰钴铁基热敏陶瓷在烧结过程中形成瞬时液相,大大降低烧结过程的传质阻力,从而促进烧结、降低了烧结温度;
(2)加入微量的三氧化二铋溶于晶界并且降低了电离能,实现了对热敏电阻电学性能的调节。
通过本发明所述方法制备的锰钴铁基热敏陶瓷体大大促进了晶体的结晶性,并在较低烧结温度下达到了高的致密度,大大降低了烧结温度。该材料显示了明显的热敏电阻特性,具有良好的互换性和一致性,可广泛应用于高精度仪表等电子元器件的温度测量及控制方面。
具体实施方式
实施例1(对照,不加烧结助剂三氧化二铋)
a、按Mn1.1Co1.5Fe0.4O4的质量组成分别称取分析纯三氧化二钴7.7487g、分析纯四氧化三锰5.2420g和分析纯三氧化二铁2.0093g进行混合球磨12小时,球磨后的浆料置于温度90℃烘箱中干燥20小时后研磨6小时,得到混合氧化物粉体;
b、将步骤a所得的氧化物粉末在温度950℃煅烧3小时,并再次研磨4小时;
c、将步骤b研磨后的粉料进行二次球磨12小时,经温度90℃烘箱中干燥20小时,研磨6小时,得到粉体材料;
d、将步骤c所得到的粉体材料在1.2MPa下压片成型为直径10mm,厚度约2mm的圆片,然后经保压值300MPa冷等静压工艺压制成生坯,所得生坯在温度1150℃烧结4小时,得到锰钴铁基热敏陶瓷材料,用阿基米德技术测量烧结陶瓷体的体密度。
将得到的陶瓷体正反两面涂上银电极并置于温度835℃退火20分钟,最后点焊引线进行电性能测试,体密度为5.125g/cm3,室温电阻率ρ25为667Ω·cm,材料常数B25/50值为3712K。
实施例2
a、按Mn1.1Co1.5Fe0.4O4的质量组成分别称取分析纯三氧化二钴7.7487g、分析纯四氧化三锰5.2420g和分析纯三氧化二铁2.0093g置于球磨罐中球磨混合8小时,将球磨后的浆料置于90℃烘箱中干燥20小时,置于玛瑙研钵中研磨3小时,得到混合氧化物粉末;
b、将步骤a所得的氧化物粉末在温度800℃煅烧3小时,并再次研磨4小时,得到氧化物粉料;
c、按质量百分比0.05将烧结助剂纯度为99.0%,粒度为10μm的Bi2O3加入到步骤b研磨后的粉料中进行二次球磨12小时,经温度90℃烘箱中干燥20小时,研磨6小时,得到粉体材料;
d、将步骤c所得到的粉体材料在1.2MPa下压片成型为直径10mm,厚度约2mm的圆片,然后经保压值100MPa冷等静压工艺压制成生坯,所得生坯在温度1150℃烧结2小时,即得到锰钴铁基热敏陶瓷材料,用阿基米德技术测量烧结陶瓷体的体密度。
将得到的陶瓷体正反两面涂上银电极并置于835℃退火20分钟,最后点焊引线进行电性能测试,体密度为5.143g/cm3,室温电阻率ρ25为658Ω·cm,材料常数B25/50值为3713K。
实施例3
a、按Mn1.1Co1.5Fe0.4O4的质量组成分别称取分析纯三氧化二钴7.7487g、分析纯四氧化三锰5.2420g和分析纯三氧化二铁2.0093g置于球磨罐中球磨混合12小时,将球磨后的浆料置于温度90℃烘箱中干燥20小时,并置于玛瑙研钵中研磨6小时,得到混合氧化物粉末;
b、将步骤a所得的氧化物粉末在温度950℃煅烧4小时,并再次研磨4小时,得到氧化物粉料;
c、按质量百分比0.1将烧结助剂纯度为99.7%,粒度为20μm的Bi2O3加入到步骤b得到的氧化物粉料中,进行二次球磨12小时,再经温度90℃烘箱中干燥20小时,研磨6小时,得到粉体材料;
d、将步骤c所得到的粉体材料在1.2MPa下压片成型为直径10mm,厚度约2mm的圆片,然后经保压值300MPa冷等静压工艺压制成生坯,所得生坯分别在温度1050℃下烧结4小时即得到锰钴铁基热敏陶瓷材料,用阿基米德技术测量烧结陶瓷体的体密度。
将得到的陶瓷体正反两面涂上银电极并置于835℃退火20分钟,最后点焊引线进行电性能测试,密度为5.074g/cm3,室温电阻率ρ25为656Ω·cm,材料常数B25/50值为3695K。
实施例4
a、按Mn1.1Co1.5Fe0.4O4的质量组成分别称取分析纯三氧化二钴7.7487g、分析纯四氧化三锰5.2420g和分析纯三氧化二铁2.0093g置于球磨罐中球磨混合14小时,将球磨后的浆料置于温度90℃烘箱中干燥20小时,置于玛瑙研钵中研磨8小时,得到混合氧化物粉末;
b、将步骤a所得的氧化物粉末在温度1000℃煅烧5小时,并再次研磨4小时,得到氧化物粉料;
c、按质量百分比0.15将烧结助剂纯度为99.9%,粒度为40μm的Bi2O3加入到步骤b得到的氧化物粉料中,进行二次球磨12小时,经温度90℃烘箱中干燥20小时,研磨6小时得到粉体材料;
d、将步骤c所得到的粉体材料在1.2MPa下压片成型为直径10mm,厚度约2mm的圆片,然后经保压值400MPa冷等静压工艺压制成生坯,所得生坯在温度1050℃烧结6小时,即得到锰钴铁基热敏陶瓷材料,用阿基米德技术测量烧结陶瓷体的体密度。
将得到的陶瓷体正反两面涂上银电极并置于温度835℃退火20分钟,最后点焊引线进行电性能测试,体密度为5.014g/cm3,室温电阻率ρ25为894Ω·cm,材料常数B25/50值为3730K。
实施例5
由实施例1和实施例2中得知:在烧结温度1150℃下烧结,和不添加烧结助剂Bi2O3的陶瓷体相比,添加Bi2O3的陶瓷体致密度明显提高;同时Bi2O3的添加也改变了材料的室温电阻率值和材料常数B25/50值;
由实施例3和实施例4中可以看出:烧结助剂Bi2O3的添加在温度1050℃下达到了相对较高的体密度,从而大大降低了烧结温度;Bi2O3的添加也调整了材料的室温电阻率值和材料常数B25/50值。

Claims (2)

1.一种改善锰钴铁基热敏陶瓷烧结性的方法,其特征在于该方法是在锰钴铁基热敏陶瓷中加入烧结助剂Bi2O3,具体操作按下列步骤进行:
a、将三氧化二钴、四氧化三锰、三氧化二铁按Mn1.1Co1.5Fe0.4O4的质量组成称取原料,然后将称取的氧化物置于球磨罐中球磨混合8-14小时,将球磨后的浆料烘干并置于玛瑙研钵中研磨3-8小时,得到混合的氧化物粉末;
b、将步骤a所得的氧化物粉末在温度800-1000℃煅烧3-5小时,并再次研磨2-6小时,得到氧化物粉料;
c、将烧结助剂Bi2O3按质量百分比0.05-0.15加入到步骤b得到的氧化物粉料中进行二次球磨12小时,经温度90℃烘箱中干燥20小时,研磨6小时,得到粉体材料;
d、将步骤c所得到的粉体材料在1.2MPa下压片成型,然后经100-400MPa冷等静压工艺压制成生坯,将所得生坯在温度1050-1150℃下烧结2-6小时,即得到材料常数B25/50为3695-3730K,室温电阻率ρ25值为656-894Ω·cm得锰钴铁基热敏陶瓷材料。
2.根据权利要求1所述的一种烧结助剂添加改善锰钴铁基热敏陶瓷烧结性的方法,其特征在于,步骤c中所述的Bi2O3纯度在99.0%-99.9%之间,粒度为10-40μm。
CN201811533637.1A 2018-12-14 2018-12-14 一种改善锰钴铁基热敏陶瓷烧结性的方法 Pending CN109485402A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811533637.1A CN109485402A (zh) 2018-12-14 2018-12-14 一种改善锰钴铁基热敏陶瓷烧结性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811533637.1A CN109485402A (zh) 2018-12-14 2018-12-14 一种改善锰钴铁基热敏陶瓷烧结性的方法

Publications (1)

Publication Number Publication Date
CN109485402A true CN109485402A (zh) 2019-03-19

Family

ID=65710314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811533637.1A Pending CN109485402A (zh) 2018-12-14 2018-12-14 一种改善锰钴铁基热敏陶瓷烧结性的方法

Country Status (1)

Country Link
CN (1) CN109485402A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054488A (zh) * 2019-05-14 2019-07-26 中国科学院新疆理化技术研究所 一种含有复相添加剂的热敏陶瓷材料及其制备方法
CN112679198A (zh) * 2020-12-13 2021-04-20 中国科学院新疆理化技术研究所 一种锰镍钴锂氧热敏陶瓷材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257706A (ja) * 2002-03-05 2003-09-12 Tdk Corp 温度特性直線化補償用サーミスタ組成物
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
CN102122552A (zh) * 2010-12-08 2011-07-13 深圳顺络电子股份有限公司 一种热敏指数可变的负温度系数热敏电阻
CN102775154A (zh) * 2012-08-01 2012-11-14 孝感华工高理电子有限公司 一种负温度系数陶瓷热敏电阻的制造方法
CN106278226A (zh) * 2016-08-17 2017-01-04 中国科学院新疆理化技术研究所 一种三元系负温度系数热敏电阻材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257706A (ja) * 2002-03-05 2003-09-12 Tdk Corp 温度特性直線化補償用サーミスタ組成物
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
CN102122552A (zh) * 2010-12-08 2011-07-13 深圳顺络电子股份有限公司 一种热敏指数可变的负温度系数热敏电阻
CN102775154A (zh) * 2012-08-01 2012-11-14 孝感华工高理电子有限公司 一种负温度系数陶瓷热敏电阻的制造方法
CN106278226A (zh) * 2016-08-17 2017-01-04 中国科学院新疆理化技术研究所 一种三元系负温度系数热敏电阻材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054488A (zh) * 2019-05-14 2019-07-26 中国科学院新疆理化技术研究所 一种含有复相添加剂的热敏陶瓷材料及其制备方法
CN112679198A (zh) * 2020-12-13 2021-04-20 中国科学院新疆理化技术研究所 一种锰镍钴锂氧热敏陶瓷材料的制备方法

Similar Documents

Publication Publication Date Title
CN104671771B (zh) 一种高电压梯度氧化锌基压敏电阻材料及其制备方法
CN107324799B (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN104003709B (zh) 避雷器用氧化锌基压敏陶瓷材料及制备方法和应用
CN105330277B (zh) 负温度系数热敏电阻生料组合物及应用
CN106187168A (zh) 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
CN105110786A (zh) 氧化锌电阻片及其制备方法
CN108439982A (zh) 一种轴向复合负温度系数热敏陶瓷材料及其制备方法
CN109485402A (zh) 一种改善锰钴铁基热敏陶瓷烧结性的方法
CN105753474A (zh) 一种锶掺杂铬酸镧热敏电阻材料
CN102643086B (zh) 一种二氧化锡基压敏电阻材料及制备方法
CN102270531A (zh) 叠层片式负温度系数热敏电阻的制备方法
CN103073302A (zh) 一种高电位梯度压敏陶瓷材料的低温烧结方法
CN101613199A (zh) 一种高性能氧化锌复合陶瓷压敏电阻材料及制备方法
CN104557040B (zh) 一种高温热敏电阻材料及其制备方法
CN102964119B (zh) 一种可低温烧结BiFeO3基高性能负温度系数热敏陶瓷材料及其制备方法
CN103214239A (zh) 一种高介电常数x8r型mlcc介质材料
CN101118793A (zh) 一种低电阻率/高b值负温度系数热敏电阻芯片及其制造方法
CN112876232A (zh) 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN115626820B (zh) 一种异质叠层共烧铁氧体陶瓷的制备方法
US20210317003A1 (en) Preparation method and application of Yb3+-doped high temperature thermistor materials
CN103011803A (zh) 一种高电卡效应的无铅陶瓷及其制备方法
CN113683410B (zh) 具有负电卡效应的钛酸铋基铋层状结构无铅压电陶瓷及其制备方法
KR20200049100A (ko) Ntc 서미스터용 소결체 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190319

RJ01 Rejection of invention patent application after publication