CN109311694A - 二氧化钛溶胶、其制备方法以及由其获得的产物 - Google Patents

二氧化钛溶胶、其制备方法以及由其获得的产物 Download PDF

Info

Publication number
CN109311694A
CN109311694A CN201780034962.0A CN201780034962A CN109311694A CN 109311694 A CN109311694 A CN 109311694A CN 201780034962 A CN201780034962 A CN 201780034962A CN 109311694 A CN109311694 A CN 109311694A
Authority
CN
China
Prior art keywords
tio
colloidal sol
amount
content
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780034962.0A
Other languages
English (en)
Other versions
CN109311694B (zh
Inventor
拉尔夫·贝克尔
托拜厄斯·蒂德
妮可·加尔巴尔奇克
西蒙·博恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wienert Germany Ltd
Original Assignee
Wienert Germany Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wienert Germany Ltd filed Critical Wienert Germany Ltd
Publication of CN109311694A publication Critical patent/CN109311694A/zh
Application granted granted Critical
Publication of CN109311694B publication Critical patent/CN109311694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明涉及包含二氧化钛的溶胶的制备以及从而获得的二氧化钛溶胶及其用途,所述包含二氧化钛的溶胶包含钛化合物,当TiO2根据硫酸盐法通过将包含硫酸氧钛的溶液水解来制备时,优选地获得所述包含二氧化钛的溶胶,和/或所述包含二氧化钛的溶胶具有微晶锐钛矿结构并包含锆化合物。

Description

二氧化钛溶胶、其制备方法以及由其获得的产物
本发明涉及包含二氧化钛的溶胶的制备以及从而获得的二氧化钛溶胶及其用途,所述包含二氧化钛的溶胶包含钛化合物,当TiO2根据硫酸盐法(sulphate method)通过将包含硫酸氧钛的溶液水解来制备时,优选地获得所述包含二氧化钛的溶胶,和/或所述包含二氧化钛的溶胶具有微晶锐钛矿结构并且包含锆化合物。
二氧化钛溶胶被用于许多应用,包括非均相催化。在本上下文中,这样的溶胶例如被用于制备光催化剂,或者还被用作挤出催化体(extruded catalytic body)的生产或涂覆工艺中的粘合剂。锐钛矿改性在这两种应用领域中是特别优选的,因为与金红石改性相比,锐钛矿改性通常呈现出较好的光催化活性并提供较大的表面积,这实际上在热力学上更稳定。
存在若干不同的制备锐钛矿TiO2溶胶的方式。典型的生产工艺包括有机TiO2前体化合物例如醇化物或乙酰丙酮化物等或在工业规模上可获得的TiO2前体化合物例如TiOCl2和TiOSO4的水解。除了可以在具有或不具有水解核(hydrolysing nuclei)的情况下进行的水解之外,细颗粒锐钛矿TiO2还可以用中和反应来制备。
通常,该方法在含水介质中进行,并且使用的酸和碱通常是以工业量通常可获得的物质(例如HCl、HNO3、H2SO4、有机酸、碱金属或碱土金属的氢氧化物或碳酸盐、氨或有机胺)。在水解期间,并且特别是在中和反应的情况下,盐或其他可解离化合物(例如H2SO4)被添加至溶液,并且在随后的胶溶之前,这些盐或其他可解离化合物必须从获得的悬浮液中被除去。这通过过滤并用脱盐水洗涤来进行,过滤并用脱盐水洗涤之前通常是中和步骤(例如在包含H2SO4的悬浮液的情况下)。然后,例如通过在低pH值添加单质子酸例如HCl或HNO3来进行胶溶。描述了用于制备中性或碱性溶胶的基于这种类型的酸性溶胶的许多工艺。典型地,首先将有机酸(例如柠檬酸)添加至酸性溶胶,并且然后用合适的碱(氨、NaOH、KOH或有机胺),将pH值调节至期望的范围。
工业规模的锐钛矿TiO2溶胶的制造不仅取决于便宜的原材料,而且还取决于简单、稳定的制造工艺。金属有机TiO2来源不被认为是合适的原材料,因为它们的非常高的价格,以及由于在水解期间有机化合物的释放而引起的与操作有关的困难和因此在职业安全和处置方面的较严格的要求。TiOCl2和TiOSO4可以被用作起始化合物(starter compound),并且可以经由两种工业生产工艺(氯化物工艺(chloride process)和硫酸盐工艺(sulphate process),还参见Gunter Buxbaum,Wiley-VCH出版的Industrial InorganicPigments,第3版,2005)获得,尽管它们是为此目的在特殊工艺中并单独地由主要产物流来制造。
发明概述
鉴于上文的全部,本发明要解决的问题是提供用于制备含TiO2溶胶的方法,所述方法可以便宜地并在减少的加工努力下进行。
此问题用提供用于制备这样的含TiO2溶胶的根据本发明的方法来解决,所述方法使用在工业规模上可获得的并且从而也是便宜的起始材料,并且仅包括少量的稳定且因此简单的工艺步骤。
发明详述
因此,本发明包括以下方面:
-用于制备溶胶的方法,所述溶胶包含二氧化钛、二氧化锆和/或其水合形式,其中将包含偏钛酸的材料与氧锆基化合物(zirconyl compound)或若干氧锆基化合物的混合物在水相中混合,所述包含偏钛酸的材料可以是来自硫酸盐工艺的悬浮液或滤饼,并且具有相对于包含偏钛酸的材料中TiO2的量的3wt%至15wt%H2SO4的含量,其中取决于硫酸含量,氧锆基化合物以足以将反应混合物转化成溶胶的量来添加。
-上述的方法,其中相对于包含偏钛酸的材料中TiO2的量,H2SO4占包含偏钛酸的材料的4wt%至12wt%。
-上述的方法,其中具有单质子酸的阴离子或其混合物的氧锆基化合物、特别地ZrOCl2或ZrO(NO3)2被用作氧锆基化合物。
-上述的方法,其中在形成溶胶后,含SiO2或其水合预形成体(hydrated preform)的化合物还以相对于氧化物的量的从2wt%至20wt%的量被添加,优选地作为水玻璃被添加。
-一种溶胶,所述溶胶包含二氧化钛、氧化锆和/或其水合形式,并且可以根据先前描述的方法来制备。
-一种溶胶,所述溶胶包含二氧化钛、氧化锆和/或其水合形式,所述溶胶具有相对于包含偏钛酸的材料中TiO2的量的3wt%至15wt%硫酸盐的含量。
-如上文描述的方法,其中将稳定剂添加至获得的溶胶,并且然后,将溶胶与足以获得至少5的pH值的量的碱混合。
-一种溶胶,所述溶胶可以根据最后描述的方法来制备。
-溶胶在催化体的生产中或在涂覆工艺中的用途。
-如上文描述的方法,其中获得的溶胶用碱调节,以获得在4和8之间、特别地在4和6之间的混合物的pH值,将包含二氧化钛、氧化锆、任选地SiO2和/或其水合形式的沉淀的颗粒状材料滤掉,洗涤,直到达到滤液电导率<500μS/cm、特别地<100μS/cm,并且干燥至恒定质量。
-根据最后描述的方法可获得的颗粒状TiO2
-颗粒状TiO2,具有:
3wt%至40wt%、特别地5wt%至15wt%ZrO2的含量,其中包括TiO2和ZrO2的水合形式,
总孔体积的大于80%、特别地大于90%的中孔的含量,所述中孔具有在从3nm至50nm的范围内的孔大小,所述总孔体积大于0.40ml/g、特别地大于0.50ml/g并且最特别地大于0.60ml/g,
-大于150m2/g、特别地大于200m2/g并且最特别地大于250m2/g的BET,以及
-特别地,具有微晶锐钛矿结构,所述微晶锐钛矿结构具有从5nm-50nm的晶粒大小,其中wt%以氧化物来计算,并且指的是最终产物的重量。
-如先前描述的颗粒状TiO2,另外具有3wt%至20wt%、特别地5wt%至15wt%SiO2的含量,其中包括TiO2、ZrO2和SiO2的水合形式,其中wt%以氧化物来计算,并且指的是最终产物的重量。
-如先前描述的颗粒状TiO2,另外包含从3wt%至15wt%的量的催化活性金属,所述催化活性金属选自Co、Ni、Fe、W、V、Cr、Mo、Ce、Ag、Au、Pt、Pd、Ru、Rh、Cu或其混合物,其中wt%以氧化物来计算,并且指的是最终产物的重量。
-如先前描述的颗粒状TiO2作为催化剂或用于其生产的用途,特别是作为非均相催化、光催化、SCR、加氢处理、克劳斯(Claus)、费托法中的催化剂的用途。
在下文中描述的本发明的实施方案可以以任何方式彼此组合并且从而导致特别优选的实施方案。
以下详述公开了根据本发明的单独特征的具体和/或优选的变型。在本发明的范围内,本发明在逻辑上遵循,其中将本发明的两个或更多个优选的实施方案组合的实施方案典型地甚至是更优选的。
除非另外陈述,否则在本申请的上下文中,词语“包括(comprising)”或“包括(comprises)”被用于指示除了明确地列出的那些组分之外,可以存在另外的任选的组分。然而,这些术语的使用还意图意指仅由列出的组分组成,即不包含不同于列出的那些组分的组分的实施方案也被包括在该词语的含义内。
除非另外陈述,否则所有百分比都是按重量计的百分比,并且相对于已经在150℃干燥至恒定质量的固体的重量。关于百分比数据或使用通用术语定义的组分的相对量的其他数据,这样的数据应被理解为涉及落在该通用术语的含义内的所有具体变型的总量。如果在根据本发明的实施方案中一般定义的组分还关于落在该通用术语内的具体变型来指定,那么这应被理解为意指不存在还落在该通用术语的含义内的其他具体变型,并且因此然后原始定义的所有具体变型的总量与一个给出的具体变型的量相关。
在硫酸盐工艺中通过水解包含TiOSO4的溶液(还被称为“黑色溶液(blacksolution)”)获得TiO(OH)2。在工业工艺中,以此方式获得的固体材料通过过滤从母液(mother liquor)中分离出,并且用水强烈地洗涤。为了尽可能完全地除去任何残余的外来离子,特别地Fe离子,进行所谓的“漂白”,这将难溶于水的Fe3+离子还原成易溶于水的Fe2+离子。还非常丰富的更容易制备的化合物是具有通式TiO(OH)2的含细颗粒状TiO2的材料(fine-grained TiO2containing material),所述含细颗粒状TiO2的材料在水解包含TiOSO4的“黑色溶液”之后获得并还被称为水合氧化钛(titanium oxide)、二氧化钛(titania)或偏钛酸,并且可以由化学式TiO(OH)2、H2TiO3或TiO2*xH2O(其中0<x≤1)来表示。在本上下文中,术语微晶应被理解为意指使用Scherrer等式分析微晶TiO(OH)2的x射线粉末衍射图中的衍射峰的宽度示出4nm-10nm的晶粒的平均增宽。
过滤和洗涤产生相同的TiO(OH)2,这也是大量颜料生产(high-volume pigmentproduction)所需要的。这在例如用HNO3或HCl胶溶以产生酸性溶胶中是活性的。此钛化合物或水合氧化钛优选地具有大于150m2/g、更优选地大于200m2/g、特别优选地大于250m2/g的BET表面积,并且由可以在工业规模上容易地获得的微晶TiO2组成。钛化合物的最大BET表面积优选地是500m2/g。在本上下文中,BET表面积根据DIN ISO 9277使用N2在77K,在已经脱气并在140℃干燥持续1小时的水合氧化钛颗粒的样品上确定。分析用多点确定(multipoint determination)(10点确定)来进行。
在现有技术中已知这种类型的TiO2可以被转化成溶胶。为了这样做,重要的是,尽可能多地除去剩余的硫酸(相对于TiO2,约8wt%)。这在另外的中和步骤中进行,随后是过滤/洗涤步骤。对于此中和,可以使用所有惯常的碱,例如以任何浓度的NaOH、KOH、NH3的水溶液。特别是当最终产物必须包含非常少量的碱时,使用NH3可以是必要的。理想地,使用脱盐的水或低盐的水进行洗涤,以获得包含很少盐或不包含盐的滤饼。相对于TiO2固体,在中和以及过滤/洗涤后剩余的硫酸的量典型地小于1wt%。
然后,可以通过添加例如HNO3或HCl,并任选地加温,由具有低硫酸含量的滤饼来制备溶胶。因此,为了通过常规手段将工业上可获得的TiO(OH)2转化成含TiO2的溶胶,需要具有指示的设备和化学品的以下工艺步骤:
1.中和(反应容器,用于中和的碱)
2.过滤(过滤单元)
3.洗涤(脱盐水)
4.胶溶(反应容器,用于胶溶的酸)
因此,除了特别需要的化学品外,还必须为每个单独的步骤提供适当的设备。这意味着,必须考虑到用于其他产物的生产能力的损失,或者必须进行投资,以确保必要的设备和能力是可获得的。还必须谨记,每个单独的工艺步骤也花费一定量的时间,其中特别地洗涤与显著的时间要求有关。
令人惊讶地,据发现含TiO2的溶胶能够通过不同的路线,直接由可用于工业目的的包含约8wt%H2SO4(相对于TiO2)的TiO(OH)2悬浮液非常容易地来制备。为此,将氧锆基化合物例如ZrOCl2以固体形式或先前溶解的形式添加至悬浮液。如通过粘度的显著变化证明的,胶溶在非常短的时间内发生,即通常在几秒内,并且当然是在固体形式已经完全溶解或溶质充分混合后的几分钟内。非胶溶悬浮液比胶溶悬浮液相当地更难以搅拌。PCS测量能够提供通过胶溶形成的TiO2单元的大小的指示。
现在,如果将已经常规制备的溶胶与根据本发明的溶胶比较,那么在溶胶的性质方面观察到的差异仅是微小的,如果它们毕竟存在的话。添加的氧锆基化合物例如ZrOCl2、ZrO(NO3)2的所需量—在下文中,ZrOCl2被用于示例性目的—由使用的TiO2悬浮液中的硫酸含量来确定。除了一种或更多种氧锆基化合物之外,还可以使用可以在制造条件下被转化成氧锆基化合物的其他化合物。这样的实例是ZrCl4或Zr(NO3)4。本发明人已经发现,相对于H2SO4,约一半量(以摩尔比计)的ZrOCl2必须被添加以诱导胶溶。因此,对于典型地存在于工业工艺中的约8wt%(相对于以氧化物计算的TiO2)的硫酸含量,ZrOCl2必须以获得约6wt%(相对于TiO2和ZrO2的组合的wt%的ZrO2含量)的理论ZrO2含量的这样的量来添加。
还可以添加较大量的ZrOCl2,在这种情况下,胶溶迅速发生。如果H2SO4以较小的量存在,则添加的H2SO4的量还可以相应地减少。还可以通过观察悬浮液的粘度来确定对于未知的H2SO4含量需要的ZrOCl2的量。特别是在高度浓缩的起始悬浮液的情况下,粘度的变化是明显且快速的。工业工艺中使用的TiO(OH)2悬浮液中的典型的TiO2含量在约20%-35%的范围内。由此可见,如果添加固体ZrOCl2,那么通过根据本发明的方法制备的溶胶实际上具有相同的TiO2含量。如果较高的TiO2含量是必要的,则任选地,可以预先进行脱水步骤,例如通过膜过滤。将固体ZrOCl2添加至由此获得的滤饼(约50%残余水分)还导致粘度的迅速变化以及随后胶溶。
在许多催化应用中,呈氯离子的形式的氯的存在是不合意的。对于此情况,可以有利地使用硝酸氧锆ZrO(NO3)2或具有单质子酸的阴离子或其混合物的其他氧锆基化合物,而不改变产生的溶胶的性质。所需的ZrO(NO3)2与H2SO4的摩尔比对应于当使用ZrOCl2时应用的摩尔比。
因此,根据本发明的方法提供了常规方法的重要优点,因为完全省去了中和、过滤和洗涤的工艺步骤。这样的结果是,总体上
i)较少的工艺设备必须是可获得的,
ii)消耗较少的化学品,以及
iii)时间支出显著地减少。
由于使用Zr化合物的原材料的任何增加的成本特别地通过不需要在新设备方面进行投资的事实被抵消。由于该方法的极其简单性,对于根据本发明的溶胶,非常易于产生非常高的生产能力。因此,基于根据本发明的方法,生产能力几乎可以等同于工业上可获得的起始产物(TiO(OH)2悬浮液)的生产能力。
与常规制备的含TiO2溶胶的工艺相关的差异特别地在以下参数中呈现:
1.H2SO4含量
2.Zr含量。
由于在常规方法中需要的中和以及过滤/洗涤的步骤在根据本发明的方法中被省略,所以存在于起始悬浮液中的硫酸含量仍然在制备的溶胶中未减少。由于工艺有关的原因,制备的溶胶还包含一定百分比的锆。因为在许多催化应用中,锆的存在并不麻烦,并且事实上通常是合意的(例如,用于改变酸-碱性质),所以Zr化合物的添加对于许多应用不具有负面影响。
根据本发明的酸性含Zr的TiO2溶胶可以被用作用于一系列制剂的起始产物。一方面,它可以被直接用作非均相催化剂的生产中的粘合剂或用作光催化活性材料。另外,它还可以被进一步化学改性或加工。例如,添加柠檬酸,随后通过氨或由现有技术已知的合适的有机胺的pH调节,产生中性或碱性溶胶(DE4119719A1)。也可以通过将pH值移动到更强的碱性范围内使根据本发明的溶胶凝结。这产生白色固体,所述白色固体可以在过滤和洗涤步骤中从盐净化,并且具有中孔性质。另外的添加剂可以被包括在此中和以及洗涤工艺的过程中。高度的热稳定性对于许多催化应用是重要的。在本上下文中,术语热稳定性被理解为意指锐钛矿TiO2的金红石化温度(rutilisation temperature)的升高,以及在热处理期间减少的颗粒生长。此颗粒生长在BET表面积的减小或x射线粉末衍射图中的典型锐钛矿衍射峰的增加的强度方面特别明显。在锐钛矿TiO2的情况下,SiO2的添加还对增加热稳定性是特别有利的。这可以例如在中和步骤期间或在中和步骤之后使用钠水玻璃(sodium waterglass)来添加。其他掺合物也是可想到的,并且含W的化合物的添加可以被提及,例如特别是对于SCR应用。
在中和以及过滤/洗涤后获得的可以包含如先前描述的另外添加剂的产物,可以之后被进一步加工或立即形成为滤饼或例如任选地形成为用水捣碎的悬浮液。
同样地,可以进行干燥步骤,其产生具有大于150m2/g、优选地大于200m2/g、特别优选地大于250m2/g的BET表面积的典型细颗粒状产物。任选地,并取决于具体应用,另外的热处理步骤可以在较高的温度进行,例如在旋转炉中进行。
取决于关于煅烧所选择的温度和化学成分,具有多种BET表面积的材料可以由此选项产生。特别是对于需要非常低硫含量的应用,相对于氧化物的总重量的在从5wt%-20wt%的范围内的较大量的SiO2的添加可以导致允许热处理的产物性质,在热处理结束时仅最小残余量的硫保持在最终产物中,同时BET表面积不显著减少。
将参考以下实施例更详细地解释本发明。
实施例
生产实施例1
TiO2/ZrO2溶胶
使具有硫酸盐含量w(SO4)=7.9%/TiO2和w(TiO2)=29.2%的二氧化钛含量的1027.4g的水合氧化钛浆料与87g ZrOCl2*8H2O(相对于TiO2为10%ZrO2)反应。产生具有二氧化钛含量w(TiO2)=26.9%、353g/L的二氧化钛浓度和1.312g/cm3的密度的二氧化钛溶胶。PCS测量发现在磁力搅拌器分散的情况下46nm的粒度(平均值)。氯化物含量是1.5%,硫酸盐含量是2.0%。
生产实施例2
TiO2/ZrO2溶胶,浓缩的
将具有硫酸盐含量w(SO4)=7.9%/TiO2和w(TiO2)=29.2%的二氧化钛含量的1027.4g的水合氧化钛浆料(MTSA,SB 2/4)滤出。获得具有47.18wt%的固体含量的700g滤饼。
然后,添加87g ZrOCl2*8H2O(相对于TiO2,10%ZrO2)。这产生具有二氧化钛含量w(TiO2)=37%、556g/L的二氧化钛浓度和1.494g/cm3的密度的触变二氧化钛溶胶(thixotropic titanium dioxide sol)。PCS测量发现在磁力搅拌器分散的情况下46nm的粒度(平均值)。氯化物含量是2.1%,硫酸盐含量是2.8%。
生产实施例3
中性/碱性TiO2/ZrO2溶胶
浓缩的56g TiO2/ZrO2溶胶(来自生产实施例2)用部分去矿物质水填充多达至200g。然后,添加在20mL水中的13.0g柠檬酸一水合物的溶液。使混合物稠化。然后,制剂用氨w(NH3)=25%中和。据发现在高于约4的pH值,溶胶再次形成,并且此溶胶稳定多达至9-10的pH值。
变型1:
使浓缩的56g TiO2/ZrO2溶胶(来自生产实施例2)与在20mL水中的13.0g柠檬酸一水合物的溶液未稀释地反应,并用氨调节至期望的pH值(>4.5)。
变型2:
将13.0g柠檬酸溶解在25%氨溶液中(15.4g,约pH 6)。将此溶液预填充,然后添加浓缩的56g TiO2/ZrO2溶胶(来自生产实施例2)。
变型3:
将13.0g柠檬酸溶解在25%氨溶液中(15.4g,约pH 6)。将浓缩的56g TiO2/ZrO2溶胶(来自生产实施例2)预填充,添加柠檬酸铵溶液。
变型4:
在搅动下,将浓缩的26.9g TiO2/ZrO2溶胶(来自生产实施例2)(对应于9g TiO2)和1g柠檬酸一水合物(10%)混合,然后用氨或苛性钠调节至期望的pH值。
变型5:
将浓缩的23.9g TiO2/ZrO2溶胶(来自生产实施例2)(对应于8g TiO2)和2g柠檬酸一水合物(20%)混合,然后用氨或苛性钠调节至期望的pH值。
对于根据生产实施例3和变型1至变型5的所有工艺,pH值可以用NH3升高甚至高达至10的pH值,而不凝结。
生产实施例4
TiO2/ZrO2-中孔固体-用于具有90%二氧化钛和10%二氧化锆的300g最终产物的 配方
用部分去矿物质水,将具有29.2%的二氧化钛含量和w(SO4)=7.9%/TiO2的硫酸盐含量的925g水合氧化钛浆料稀释至200g/L的二氧化钛浓度。添加78.5g ZrOCl2*8H2O,并将混合物加热至50℃。然后,通过用苛性钠w(NaOH)=50%中和,将TiO2絮凝出。为此,在50℃进行中和至pH 5.25。
然后,将产物过滤并洗涤,直到获得滤液电导率<100μS/cm。然后,将滤饼在150℃干燥至恒定质量。BET表面积:326m2/g。总孔体积:0.62mL/g。中孔体积:0.55mL/g。孔直径:19nm。
生产实施例5
TiO2/ZrO2/SiO2-中孔固体-用于具有82%二氧化钛、10%二氧化锆和8%SiO2 300g最终产物的配方:
用部分去矿物质水,将具有29.2%的二氧化钛含量和w(SO4)=7.9%/TiO2的硫酸盐含量的943g水合氧化钛浆料稀释至150g/L的二氧化钛浓度。添加78.5g ZrOCl2*8H2O,并将混合物加热至50℃。然后,将混合物用68mL硅酸钠w(SiO2)=358g/L后处理。为此,在搅动下,经由具有3mL/min的位移速率(displacement rate)的蠕动泵,将硅酸钠添加至胶溶的TiO2悬浮液。然后,在50℃,悬浮液用苛性钠w(NaOH)=50%中和至5.25的pH值。
然后,将产物过滤并洗涤,直到获得滤液电导率<100μS/cm。然后,将滤饼在150℃干燥至恒定质量。BET表面积:329m2/g。总孔体积:0.75mL/g。中孔体积:0.69mL/g。孔直径:19nm。
在另外的生产实施例的情况下,本发明人已经确定制备胶溶的溶胶所需的条件,并且计算出表1中列出的值。
比较实施例1
以类似于生产实施例5的方式制备比较实施例1,除了在ZrOCl2*8H2O之前,添加硅酸钠。BET表面积:302m2/g。总孔体积:0.29mL/g。中孔体积:0.20mL/g。孔直径:4nm。
因此,对于胶溶能力的要求是,起始悬浮液的pH值必须是至少1.0,并且对于以重量百分比计的硫酸的量,氧锆基化合物的必要量必须是至少0.45、特别地至少0.48,氧锆基化合物的必要量以最终产物中的ZrO2的wt%(以氧化物的总和计)与相对于起始悬浮液中的TiO2的H2SO4的wt%来计算。以量比率表示的,硫酸的量可以不超过添加的氧锆基化合物的量的2.2倍、特别地2.0倍(参见表1),以便获得根据本发明的溶胶。
测量方法
PCS测量
该方法的基础是颗粒的布朗分子运动(Brownian molecular motion)。关于此的先决条件是高度稀释的悬浮液,在所述悬浮液中,颗粒可以自由地移动。小颗粒比大颗粒移动更快。激光束穿过样品。散射在移动的颗粒上的光以90°的角检测。测量光强度的变化(波动),并使用斯托克斯定律(Stokes’Law)和米氏理论(Mie theory)计算粒度分布。使用的装置是具有Zetasizer Advanced软件(例如由Malvern制造的Zetasizer 1000HSa)超声探针的光子相关光谱仪(photon correlation spectrometer);例如由Sonics制造的VC-750。从待被分析的样品中取出10滴,并用60ml硝酸稀释水(dilution water of nitric acid)(pH1)稀释。将此悬浮液用磁力搅拌器搅拌持续5分钟。将以此方式制备的样品批次加热控制至25℃,并用硝酸稀释水稀释(如有必要)用于测量,直到Zetasizer 1000 HSa装置中的计数是约200kCps。还使用以下测量条件或参数:
测量温度:25℃
滤波器(衰减器):x16
分析:多峰的
样品Ri:2.55Abs:0.05
分散剂Ri:1.33
分散剂粘度:0.890cP
比表面积的确定(多点法)和根据氮气吸附法(N2孔隙率测量法)的孔结构的分析
使用N2孔隙率测定法,用由Quantachrome GmbH制造的Autosorb 6或6B装置计算比表面积和孔结构(孔体积和孔直径)。BET表面积(Brunnauer、Emmet和Teller)根据DINISO 9277来确定,孔分布根据DIN66134来测量。
样品制备(N2孔隙率测定法)
将样品称重到测量池(measurement cell)中,并在烘烤站(baking station)中在真空中预干燥持续16h。然后,将样品在真空中在约30分钟内加热至180℃。然后,将该温度保持持续1小时,仍然在真空下。如果在脱气器处建立20毫托-30毫托的压力,并且在真空泵已经被断开之后,真空压力计的针稳定持续约2分钟,那么样品被认为被充分地脱气。
测量/分析(N2孔隙率测定法)
用20个吸附点和25个解吸点测量全部N2等温曲线。测量结果被分析如下:
比表面积(多点BET)
在从0.1p/p0至0.3p/p0的分析范围内的5个测量点
总孔体积分析
根据Gurvich规则(Gurvich rule)计算孔体积
(由最后吸附点确定)
总孔体积根据Gurvich规则根据DIN 66134来确定。根据Gurvich规则,样品的全部孔体积由吸附测量期间的最后压力点来确定:
p.吸附剂的压力
p0.吸附剂的饱和蒸汽压
Vp.根据Gurvich规则的比孔体积(specific pore volume)(在p/Po=0.99的总孔体积),在测量期间实际上达到的最后吸附压力点。
平均孔直径(水力孔直径)的分析
对于此计算,使用对应于“平均孔直径”的关系4Vp/ABET。根据ISO 9277的ABET比表面积。
以SiO2计算的硅的确定
称重材料并用硫酸/硫酸铵消化材料,随后用蒸馏水稀释,过滤并用硫酸洗涤。然后,焚烧过滤器和重量法确定(gravimetric determination)SiO2含量。
以TiO2计算的钛的确定
称重材料并用硫酸/硫酸铵,或二硫酸钾消化材料。用铝还原成Ti3+。用硫酸铵铁(III)滴定。(指示剂:NH4SCN)
以ZrO2计算的Zr的确定
将待被检查的材料溶解在氢氟酸中。然后,通过ICP-OES来分析Zr含量。

Claims (17)

1.一种用于制备溶胶的方法,所述溶胶包含二氧化钛、二氧化锆和/或其水合形式,其中将包含偏钛酸的材料与氧锆基化合物或若干氧锆基化合物的混合物在水相中混合,所述包含偏钛酸的材料可以是来自硫酸盐法的悬浮液或滤饼,并且具有相对于所述包含偏钛酸的材料中TiO2的量的3wt%至15wt%H2SO4的含量,其中取决于硫酸的量,所述氧锆基化合物以足以将反应混合物转化成溶胶的量来添加。
2.根据权利要求1所述的方法,其中相对于所述包含偏钛酸的材料的TiO2的量,H2SO4占所述包含偏钛酸的材料的4wt%至12wt%。
3.根据权利要求1或2所述的方法,其中具有单质子酸的阴离子或其混合物的氧锆基化合物被用作所述氧锆基化合物。
4.根据权利要求3所述的方法,其中ZrOCl2或ZrO(NO3)2被用作所述氧锆基化合物。
5.根据权利要求1至4中任一项所述的方法,其中在形成所述溶胶后,含SiO2或其水合预形成体的化合物以相对于氧化物的量的从2wt%至20wt%的量被另外添加,优选地作为水玻璃被添加。
6.一种溶胶,所述溶胶包含二氧化钛、氧化锆和/或其水合形式,所述溶胶根据权利要求1至5中任一项所述的方法可获得。
7.一种溶胶,所述溶胶包含二氧化钛、氧化锆和/或其水合形式,所述溶胶具有相对于包含偏钛酸的材料中TiO2的量的3wt%至15wt%硫酸盐的含量。
8.根据权利要求1至5中任一项所述的方法,其中稳定剂被添加至获得的所述溶胶,并且然后,所述溶胶与足以将pH值调节到至少5的量的碱混合。
9.一种溶胶,所述溶胶能够以根据权利要求8所述的方法制备。
10.根据权利要求6、7或9中任一项所述的溶胶在催化剂成型体的生产中或在涂覆工艺中的用途。
11.根据权利要求1至5中任一项所述的方法,其中获得的所述溶胶用碱调节,以获得在4和8之间、特别地在4和6之间的混合物的pH值,将包含二氧化钛、氧化锆、任选地SiO2和/或其水合形式的沉淀的颗粒状材料滤掉,洗涤,直到达到滤液电导率<500μS/cm、特别地<100μS/cm,并且干燥至恒定质量。
12.一种颗粒状TiO2,所述颗粒状TiO2能够以根据权利要求11所述的方法获得。
13.一种颗粒状TiO2,具有:
-3wt%至40wt%、特别地5wt%至15wt%ZrO2的含量,其中包括TiO2和ZrO2的水合形式,
-总孔体积的大于80%、特别地大于90%的中孔的含量,所述中孔具有在从3nm至50nm的范围内的孔大小,所述总孔体积大于0.40ml/g、特别地大于0.50ml/g并且最特别地大于0.60ml/g,
-大于150m2/g、特别地大于200m2/g并且最特别地大于250m2/g的BET,
-微晶锐钛矿结构,所述微晶锐钛矿结构具有从5nm-50nm的晶粒大小,
其中wt%以氧化物来计算,并且指的是最终产物的重量。
14.根据权利要求12或13所述的颗粒状TiO2,另外具有3wt%至20wt%、特别地5wt%至15wt%SiO2的含量,其中包括TiO2、ZrO2和SiO2的水合形式,其中wt%以氧化物来计算,并且指的是最终产物的重量。
15.根据权利要求12、13或14中任一项所述的颗粒状TiO2,另外包含从3wt%至15wt%的量的催化活性金属,所述催化活性金属选自Co、Ni、Fe、W、V、Cr、Mo、Ce、Ag、Au、Pt、Pd、Ru、Rh、Cu或其混合物,其中wt%以氧化物来计算,并且指的是最终产物的重量。
16.根据权利要求12、13、14或15中任一项所述的颗粒状TiO2作为催化剂或用于制备催化剂的用途。
17.根据权利要求12、13、14或15中任一项所述的颗粒状TiO2作为非均相催化法、光催化法、SCR法、加氢处理法、克劳斯法、以及费托法中的催化剂的用途。
CN201780034962.0A 2016-06-06 2017-06-02 二氧化钛溶胶、其制备方法以及由其获得的产物 Active CN109311694B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016110374.8 2016-06-06
DE102016110374.8A DE102016110374A1 (de) 2016-06-06 2016-06-06 Titandioxid-Sol, Verfahren zu dessen Herstellung und daraus gewonnene Produkte
PCT/EP2017/063441 WO2017211712A1 (en) 2016-06-06 2017-06-02 Titanium dioxide sol, method for preparation thereof and products obtained therefrom

Publications (2)

Publication Number Publication Date
CN109311694A true CN109311694A (zh) 2019-02-05
CN109311694B CN109311694B (zh) 2022-10-18

Family

ID=59054096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780034962.0A Active CN109311694B (zh) 2016-06-06 2017-06-02 二氧化钛溶胶、其制备方法以及由其获得的产物

Country Status (12)

Country Link
US (1) US20210268479A9 (zh)
EP (1) EP3464183A1 (zh)
JP (1) JP7068279B2 (zh)
KR (1) KR102381148B1 (zh)
CN (1) CN109311694B (zh)
BR (1) BR112018074010A2 (zh)
CA (1) CA3025088A1 (zh)
DE (1) DE102016110374A1 (zh)
RU (1) RU2763729C2 (zh)
TW (1) TWI764903B (zh)
UA (1) UA126902C2 (zh)
WO (1) WO2017211712A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075821A (zh) * 2019-04-25 2019-08-02 陕西科技大学 一种TiO2/SiO2/ZrO2复合可见光催化剂及其制备方法
CN110665489A (zh) * 2019-10-08 2020-01-10 内蒙古工业大学 La掺杂TiO2复合材料及其应用
CN113145093A (zh) * 2021-05-07 2021-07-23 中国地质大学(北京) 废弃scr催化剂在制备二氧化硅-二氧化钛复合光催化剂中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237836B (zh) * 2019-06-26 2022-07-15 陕西科技大学 钼修饰二氧化锆材料及其制备方法和应用
WO2021117568A1 (ja) * 2019-12-12 2021-06-17 昭和電工株式会社 高耐熱性アナターゼ型酸化チタン及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290996A1 (en) * 1987-05-12 1988-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd Process for producing aromatic nitriles or heterocyclic nitriles
CN1602282A (zh) * 2001-12-12 2005-03-30 罗狄亚电子与催化公司 制备基于锆和钛的氧化物的方法、由此所得的氧化物及所述氧化物作为催化剂的用途
CN101151096A (zh) * 2005-06-09 2008-03-26 株式会社日本触媒 钛氧化物、废气处理用催化剂及废气净化方法
CN101791546A (zh) * 2010-03-04 2010-08-04 上海大学 一种混晶纳米二氧化钛水溶胶光催化剂的制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448683A (en) * 1944-02-09 1948-09-07 Du Pont Titanium oxide production
US2622010A (en) * 1946-10-24 1952-12-16 Max J Mayer Process of treating metatitanic acid
GB1541928A (en) * 1975-12-23 1979-03-14 Sakai Chemical Industry Co Production of shaped catalysts or carriers comprising titanium oxide
SU929741A1 (ru) * 1979-08-15 1982-05-23 Предприятие П/Я В-8602 Способ получени зол гидратированной двуокиси титана
US5021392A (en) * 1987-09-18 1991-06-04 American Cyanamid Company High porosity titania-zirconia catalyst support prepared by a process
US5403513A (en) * 1987-10-07 1995-04-04 Catalyst & Chemical Industries, Co., Ltd. Titanium oxide sol and process for preparation thereof
DE4119719A1 (de) 1991-06-14 1992-12-17 Merck Patent Gmbh Praeparationen
FI90830C (fi) * 1992-04-23 1994-04-11 Kemira Oy Katalysaattori dieselpakokaasujen puhdistukseen
DE19806471A1 (de) * 1998-02-17 1999-08-19 Kerr Mcgee Pigments Gmbh & Co Reines Titandioxidhydrat und Verfahren zu dessen Herstellung
CN1296327C (zh) * 2004-11-09 2007-01-24 武汉理工大学 一种涂有高反射复合膜的陶瓷聚光腔的制造方法
WO2007145573A1 (en) * 2006-06-12 2007-12-21 Kessler Vadim G Metal oxide hydrogels and hydrosols, their preparation and use
US7820583B2 (en) * 2006-08-24 2010-10-26 Millennium Inorganic Chemicals, Inc. Nanocomposite particle and process of preparing the same
JP2008266043A (ja) * 2007-04-17 2008-11-06 Tayca Corp 透明酸化チタンゾルおよびその製造法
CN101695656B (zh) * 2009-10-21 2012-04-11 东南大学 溶胶浸渍法制备粉末状选择性催化还原脱硝催化剂的方法
EP2397222A1 (de) * 2010-06-17 2011-12-21 Sachtleben Chemie GmbH Titandioxid mit einem Gehalt an ZrO2, Verfahren zu dessen Herstellung und dessen Verwendung
EP2714592A1 (de) * 2011-05-31 2014-04-09 Sachtleben Chemie GmbH Verfahren zur herstellung von titandioxid
US8900705B2 (en) * 2011-11-16 2014-12-02 Cristal Usa Inc. Mesoporous titanium dioxide nanoparticles exhibiting bimodal pore size distributions and process for their production
RU2527262C2 (ru) * 2012-10-09 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Пигмент на основе модифицированного порошка диоксида титана

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290996A1 (en) * 1987-05-12 1988-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd Process for producing aromatic nitriles or heterocyclic nitriles
CN1602282A (zh) * 2001-12-12 2005-03-30 罗狄亚电子与催化公司 制备基于锆和钛的氧化物的方法、由此所得的氧化物及所述氧化物作为催化剂的用途
CN101151096A (zh) * 2005-06-09 2008-03-26 株式会社日本触媒 钛氧化物、废气处理用催化剂及废气净化方法
CN101791546A (zh) * 2010-03-04 2010-08-04 上海大学 一种混晶纳米二氧化钛水溶胶光催化剂的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075821A (zh) * 2019-04-25 2019-08-02 陕西科技大学 一种TiO2/SiO2/ZrO2复合可见光催化剂及其制备方法
CN110665489A (zh) * 2019-10-08 2020-01-10 内蒙古工业大学 La掺杂TiO2复合材料及其应用
CN113145093A (zh) * 2021-05-07 2021-07-23 中国地质大学(北京) 废弃scr催化剂在制备二氧化硅-二氧化钛复合光催化剂中的应用

Also Published As

Publication number Publication date
UA126902C2 (uk) 2023-02-22
BR112018074010A2 (pt) 2019-02-26
KR20190039069A (ko) 2019-04-10
TW201808814A (zh) 2018-03-16
EP3464183A1 (en) 2019-04-10
RU2018146599A3 (zh) 2021-01-29
US20210268479A9 (en) 2021-09-02
DE102016110374A1 (de) 2017-12-07
RU2018146599A (ru) 2020-07-09
US20200306728A1 (en) 2020-10-01
JP2019524631A (ja) 2019-09-05
CA3025088A1 (en) 2017-12-14
WO2017211712A1 (en) 2017-12-14
TWI764903B (zh) 2022-05-21
RU2763729C2 (ru) 2021-12-30
CN109311694B (zh) 2022-10-18
JP7068279B2 (ja) 2022-05-16
KR102381148B1 (ko) 2022-03-31

Similar Documents

Publication Publication Date Title
CN109311694A (zh) 二氧化钛溶胶、其制备方法以及由其获得的产物
US7763232B2 (en) Methods for production of titanium oxide particles, and particles and preparations produced thereby
JP5607158B2 (ja) シリカ−安定化超微細アナターゼ型チタニア、バナジア触媒、およびその製造方法
TWI618578B (zh) 粉狀氧化鈦、其製備方法及其用途
KR102372694B1 (ko) 미립자 산화티탄 및 이의 제조 방법
CN106232225B (zh) TiO2基催化剂前体材料、其制备及其用途
JPH1095617A (ja) 板状酸化チタンおよびその製造方法ならびにそれを含有してなる日焼け止め化粧料、樹脂組成物、塗料組成物、吸着剤、イオン交換剤、複合酸化物前駆体
CN103079700A (zh) 氧化钨光催化剂及其制造方法
JP4977051B2 (ja) 中性領域で安定な酸化チタン分散液
DE10352816A1 (de) Verfahren zur Herstellung eines hochtemperaturstabilen, TiO2-haltigen Katalysators oder Katalysatorträgers
Suwanchawalit et al. Influence of calcination on the microstructures and photocatalytic activity of potassium oxalate-doped TiO2 powders
EP3481777B1 (en) Process for the production of titanium dioxide, and titanium dioxide obtained thereby
Usman et al. Photocatalytic degradation of diazinon using titanium oxide synthesized by alkaline solvent
EP2588230A2 (de) Alkaliarmes katalysatormaterial und verfahren zu dessen herstellung
CN109219577B (zh) 纳米颗粒二氧化钛的制备
JP2012166193A (ja) 中性領域で安定な酸化チタン分散液
JP5897995B2 (ja) アルカリ性のアナタース形チタニアゾル及びその製造方法
Yang et al. Preparation and visible-light photocatalyst activity of nanometric-sized TiO 2-x N y powders from a two-microemulsion process
Alijani et al. Effect of synthesis parameters on the structural properties and photoactivity of TiO2 nanoparticles prepared by the modified sol-gel method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant