RU2527262C2 - Пигмент на основе модифицированного порошка диоксида титана - Google Patents

Пигмент на основе модифицированного порошка диоксида титана Download PDF

Info

Publication number
RU2527262C2
RU2527262C2 RU2012143246/04A RU2012143246A RU2527262C2 RU 2527262 C2 RU2527262 C2 RU 2527262C2 RU 2012143246/04 A RU2012143246/04 A RU 2012143246/04A RU 2012143246 A RU2012143246 A RU 2012143246A RU 2527262 C2 RU2527262 C2 RU 2527262C2
Authority
RU
Russia
Prior art keywords
titanium dioxide
powders
radiation
hours
tio
Prior art date
Application number
RU2012143246/04A
Other languages
English (en)
Other versions
RU2012143246A (ru
Inventor
Михаил Михайлович Михайлов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники
Priority to RU2012143246/04A priority Critical patent/RU2527262C2/ru
Publication of RU2012143246A publication Critical patent/RU2012143246A/ru
Application granted granted Critical
Publication of RU2527262C2 publication Critical patent/RU2527262C2/ru

Links

Landscapes

  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к пигменту для светоотражающих покрытий. Пигмент содержит смесь частиц диоксида титана микронных размеров с наночастицами диоксида циркония. Концентрацию наночастиц диоксида циркония выбирают в диапазоне от 0,5 до 5,0 мас.%. Смесь перемешивают с добавлением дистиллированной воды, полученный раствор выпаривают 6 часов при 150°C, перетирают, прогревают 2 часа при 800°C, измельчают. Изобретение позволяет повысить стойкость к действию излучений. 1 табл., 7 пр.

Description

Изобретение относится к составам пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий, используемых в области пассивных методов терморегулирования объектов, а именно для терморегулирующих покрытий космических аппаратов. Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой и других отраслях промышленности для термостатирования устройств или технологических объектов.
Диоксид титана относится к пигментам, которые особенно перспективны для приготовления терморегулирующих покрытий, так как обладает низким коэффициентом поглощения солнечного излучения aS и большой излучательной способностью ε в инфракрасной области спектра. Но под действием излучений космического пространства в диоксиде титана образуются радиационные дефекты, что приводит к появлению полос поглощения, обусловленных этими дефектами, уменьшению коэффициента отражения, увеличению коэффициента поглощения aS, увеличению доли поглощаемой энергии. Температура космических аппаратов при этом повышается, нарушаются тепловые режимы работы приборов и устройств и сокращаются сроки их активного существования. Для повышения устойчивости диоксида титана к действию излучений космического пространства разработаны различные способы.
Порошки - пигменты диоксида титана, как и диоксида циркония, и оксида алюминия, не стехиометричны по кислороду, и в них под действием излучений образуются центры окраски на биографических анионных вакансиях. Такие пигменты, помимо отражающих покрытий космических аппаратов и люминофоров, где они подвержены действию потоков заряженных частиц, широко применяются в бытовых условиях (краски, бумага, резины), в которых из ионизирующих факторов действует только солнечное электромагнитное излучение.
Выполненные ранее исследования спектров диффузного отражения (ρλ) и разностных спектров диффузного отражения (Δρλ) порошков диоксида титана с решеткой рутила [1] и анатаза [2] после облучения электронами с энергией 30 кэВ показали, что изменения спектров происходят, в основном, в ближней ИК-области, в которой расположены полосы поглощения дефектов анионной подрешетки-полосы F- и F+ центров. Аналогичные качественные изменения спектров ρλ получены и после облучения порошков TiO2 (рутил) ультрафиолетом солнечного спектра [3] и ионами водорода с энергией 3 кэВ [4]. Этими исследованиями доказано, что, если образование фото или радиационных дефектов происходит по ионизационному механизму, то первичные процессы взаимодействия различных видов излучения с порошками диоксида титана качественно одинаковы: образуются электронно-дырочные пары, дырки движутся к отрицательно заряженной поверхности, нейтрализуют кислород решетки, который покидает поверхность с образованием анионных вакансий сначала в поверхностных слоях, а затем - в объеме зерен порошков.
При малых дозах облучения вклад вакансий в общую концентрацию образованных электронных центров окраски может быть определяющим и даже основным. Поэтому представляются важными исследования, направленные на разработку способов увеличения фото- и радиационной стойкости таких пигментов. Ранее были получены положительные результаты, а именно - повышение стабильности спектров диффузного отражения к облучению электронами с энергией 30 кэВ вследствие изменения гранулометрического состава и удельной поверхности порошков рутила [5, 6].
Перспективным представляется способ повышения стабильности оптических свойств порошков диоксида титана путем окисления поверхности и насыщения объема кислородом. Внедренный кислород, помимо замещения биографических анионных вакансий, может быть поставщиком кислорода взамен уходящего при фотолизе или радиолизе решетки во время облучения обработанных пигментов TiO3 квантами света и заряженными частицами.
К настоящему времени известны следующие способы насыщения кислородом поверхности и объема зерен диоксида титана.
Так, в работе [7] представлены результаты исследования одного из самых простых способов окисления порошков и насыщения их кислородом - прогрева порошков в кислороде.
Образцы для исследований приготавливали легким прессованием порошков в металлические чашечки диаметром 24 мм, глубиной 2 мм, закрепляли на предметном столике установки - имитатора условий космического пространства «Спектр» [8] и измеряли спектры диффузного отражения (ρλ0) в вакууме не хуже 10-4 Па с помощью встроенной в вакуумную камеру интегрирующей сферы.
Радиационную стойкость образцов во всем диапазоне солнечного спектра оценивали по изменению интегрального коэффициента поглощения, солнечного излучения. Исследования выполняли на пяти образцах, прогретых в различных режимах порошков TiO2 квалификации Р02. Образец №1 не прогревали, образцы №2-№5 прогревали в различных режимах: температуру изменяли в пределах 110-150°С, время прогрева - 17-120 мин., давление кислорода - 0,2-760 мм рт.ст. Измеряли спектры диффузного отражения до и после облучения (ρλф) флюенсом электронов 2·1016 см-2с энергией 30 кэВ и рассчитывали изменение интегрального коэффициента поглощения ΔaS.
В результате проведенных исследований доказано, что прогрев в кислороде приводит к уменьшению интенсивности полос поглощения дефектов анионной подрешетки (F- и F+ центры, нейтральные анионные вакансии и электроны проводимости) и слабо влияет на образование дефектов катионной подрешетки при облучении электронами обработанных порошков. Определяющую роль в повышении радиационной стойкости пигментов при данных условиях их обработки в кислороде, по-видимому, играет диффузия его в объем зерен порошка. Она зависит и от температуры, и от времени прогрева и для получения высокой радиационной стойкости порошков TiO2 путем прогрева необходимо создать следующие условия: парциальное давления кислорода примерно 10-1 мм рт.ст., средняя температуры прогрева около 100°С, время прогрева 120 мин. Наибольшее повышение радиационной стойкости, полученное при таких оптимальных условиях обработки, составляет 1,4 раза по сравнению с необработанным образцом.
Недостатком данного способа является большие трудо- и энергозатраты, связанные с необходимостью получения высокого вакуума, напуска кислорода и прогрева порошков в его атмосфере. При этом эффективность способа не очень высокая.
Другим подобным способом повышения фото- и радиационной стойкости пигмента TiO2 является его обработка ультрафиолетом в кислороде [9].
Эффект уменьшение концентрации анионных вакансий в обработанных порошках может проявляться как во время действия ультрафиолета, так и при последующем облучении электронами обработанных в различных режимах порошков. Если уменьшение анионных вакансий происходит во время действия ультрафиолета, когда осуществляется диссоциация кислорода по реакции
O 2 + h ν ( E 5,08 э В ) O + O ,                        (1)
Figure 00000001
то эффект может быть зарегистрирован в спектрах отражения после облучения ультрафиолетом. Если такого проявления не будет, то можно считать, что обработка ультрафиолетом в атмосфере приводит к насыщению решетки атомарным кислородом без замещения им анионных вакансий. Этот кислород будет служить поставщиком кислорода взамен уходящего при облучении, он будет замещать вновь образованные вакансии при облучении пигмента электронами.
Сравнение деградации спектров после облучения электронами образцов квалификации Р02, предварительно обработанных ультрафиолетом в кислороде, с деградацией не обработанных кислородом и не выдержанных в кислороде - «свежих» порошков TiO2, облученных электронами при таких же значениях флюенса и энергии, показывает существенно большую деградацию «свежих» порошков по сравнению с деградацией любого из обработанных образцов. Из Таблицы следует, что оптимальное время обработки ультрафиолетом в кислороде порошка Р02 составляет 20 мин, при этом улучшение радиационной стойкости по интегральному коэффициенту поглощения составляет 2,2 раза.
Данный способ является высокоэффективным, но обладает существенным недостатком, связанным с необходимостью размещения порошков в вакуумной камере, в которой после получения вакуума следует создать атмосферу кислорода напуском через специальное устройство - натекатель, и в ней облучать порошки ультрафиолетом. Материальные и энергозатраты для реализации данного способа заключаются в необходимости приобретения и эксплуатации высоковакуумной система и источника ультрафиолетового излучения.
Указанные в способе [9] недостатки частично устраняются в способе повышения фото- и радиационной стойкости порошков TiO2 при обработке ультрафиолетом на воздухе [10]. Экспериментальное оборудование в этом способе значительно упрощается, так как не требуется вакуумной камеры, необходим только источник ультрафиолетового излучения для насыщения порошков диоксида титана кислородом. Но и эффективность обработки существенно снижается по сравнению со способом [9]. Так, экспериментально установлено, что обработка в течение 72 часов с интенсивностью, в 2 раза превышающей интенсивность излучения Солнца, дает повышение радиационной стойкости всего в 1,23 раза при действии электронов с такими же параметрами, что и в способе [9] (Е=30 кэВ, Ф=2·1016 см-2с-1).
Помимо указанных трех способов повышения фото- и радиационной стойкости путем насыщения решетки порошков диоксида титана кислородом, к настоящему времени разработаны способы, основанные на создании на поверхности зерен и гранул слоев других соединений, выполняющих роль центров релаксации первичных продуктов фотолиза и радиолиза и поглощающих часть энергии излучений, падающих на диоксид титана - роль защитных слоев.
Так, изобретение [11] относится к химической промышленности и может быть использовано при изготовлении красок, т.е. таких же покрытий, как и в способах [7, 9, 10]. Запатентованный пигментный композит содержит основу из диоксида титана и слои оксидов циркония и алюминия. Частицы TiO2 диспергируют в воде, добавляют диспергатор (гексаметафосфат натрия), полученную суспензию нагревают до 46,11-50°С. Добавляют раствор H2SO4 для поддержания рН от 7 до 9. Вводят раствор сульфата циркония. Осаждают 0,1-2,5% гидроксида циркония от массы ТiO2 в пересчете на ZrO2. Добавляют водный раствор NaOH для поддержания рН от 7 до 9. Вводят водный раствор алюмината натрия. Осаждают 3,5-4% гидроксида алюминия от массы TiO2 в пересчете на Al2O3. Полученный продукт отфильтровывают, промывают водой и сушат при 110°С, а затем измельчают. Пигментный композит имеет улучшенные оптические свойства, такие как рассеяние, блеск, яркость и цвет, а также стойкость.
Изобретение [12] относится к пигментному рутильному диоксиду титана, к способу его получения и может быть использовано в производстве красок, пластмасс и слоистых пластинок на бумажной основе. Сущность изобретения заключается в пигменте, состоящем из частиц диоксида титана с осажденными на них оксидом церия в количестве 0,01-1 мас.% и плотным аморфным диоксидом кремния в количестве 1-8 мас.% от количества диоксида титана. Пигмент может быть дополнительно покрыт гидроксидом алюминия в количестве 2-4 мас.% от количества диоксида титана. Далее добавляют водорастворимый силикат в количестве 1-6 мас.% и минеральную кислоту для осаждения, по крайней мере, при рН 8 плотного аморфного диоксида кремния, при этом шлам непрерывно перемешивают и поддерживают температуру 60-100°C на протяжении всего процесса осаждения. Дополнительно к шламу добавляют водный раствор алюмината натрия и серную кислоту для осаждения гидроксида алюминия. Пигмент по изобретению обладает улучшенной прочностью, улучшенной устойчивостью к фотохимическому разложению.
Изобретение [13] относится к химической промышленности и может быть использовано при изготовлении красителей для красок, пластин, чернил и бумаги. Пигментный композит содержит основу из диоксида титана и слои оксидов циркония и алюминия. Частицы TiO2 диспергируют в воде, добавляют диспергатор (гексаметафосфат натрия). Полученную суспензию диоксида титана нагревают до 46,11-50°C, добавляют раствор H2SO4 для поддержания pH от 7 до 9. Вводят раствор сульфата циркония. Осаждают 0,1-2,5% гидроксида циркония от массы TiO2 в пересчете на ZrO2. Добавляют водный раствор NaOH для поддержания pH от 7 до 9. Вводят водный раствор алюмината натрия. Осаждают 3,5-4% гидроксида алюминия от массы TiO2 в пересчете на Al2O3. Полученный продукт отфильтровывают, промывают водой и сушат при 110°C и измельчают. Пигментный композит имеет улучшенные оптические свойства, такие, как рассеяние, блеск, яркость и цвет, а также стойкость.
Общим недостатком способов [11, 12, 13] является многоступенчатость химических реакций и большое число реагентов, необходимых для их осуществления, а также отсутствие данных по качеству наносимых слоев на поверхность зерен порошков диоксида титана, что не позволяет определить целесообразность нанесения последующих слоев, после нанесения предыдущих. Например, в способе [12] после нанесения слоя CeO2 фото- и радиационная стойкость полученной композиции не определялась, и не была доказана необходимость нанесение еще слоя SiO2, а в способе [13] после нанесения слоя ZrO2 фото- и радиационная стойкость полученной композиции не определялась, и не была доказана необходимость нанесение еще слоя Al2O3.
Также известны способы повышения светостойкости пигментов TiO2, основанные на других физических и химических процессах.
Разработана композиция [14] для получения светостойкого отражающего покрытия, включающая в качестве наполнителя механическую смесь оксидов металла ZrO2 (30-55 мас.%) и MgO (25-35 мас.%) с размером частиц 80-120 нм, в качестве связующего - жидкое стекло (20-25 мас.%). Недостатком данной композиции является то, что пигмент полностью на 100% состоит из наночастиц, стоимость которых во много раз превышает стоимость этих же соединений с частицами микронных размеров. Нанопорошки используются неэффективно с точки зрения повышения светостойкости, поскольку для этих целей достаточно несколько процентов наночастиц от массы пигмента, который они обволакивают, создавая слои, выступающие в качестве центров релаксации первичных дефектов, образованных квантами света.
Известен способ повышения светостойкости частиц диоксида титана путем нанесения на них частиц диоксида циркония гидролизом на поверхности полиэстерной пленки [15]. В этом способе для получения модифицированного пигмента используется полимерная пленка в качестве центров адсорбции, позволяющая без нагрева осуществлять осаждение частиц диоксида циркония на поверхности диоксида титана. Принцип повышения светостойкости заключается в том, что частицы диоксида циркония, поглощают часть квантов света и тем самым защищают частицы диоксида титана, т.е. они частично экранируют их от излучения. Однако при таком способе невозможно создание на поверхности зерен диоксида титана частиц диоксида циркония наноразмерного диапазона, выступающих в качестве центров релаксации первичных дефектов (электронов и дырок), образующихся при действии квантов света. Малые размеры и большая удельная поверхность наноразмерных частиц диоксида циркония являются необходимым условием увеличения светостойкости за счет гибели первичных дефектов, выходящих из микрочастиц диоксида титана на границу раздела этих соединений.
Способ [15] выбран в качестве прототипа, так как в нем, как и в предлагаемом способе на поверхность зерен и гранул TiO2 наносили слои ZrO2 для увеличения стойкости к действию ионизирующих излучений. Для достижения цели микропорошок диоксида титана квалификация «Р02» со средним размером зерен 0,2 мкм смешивали в различной пропорции с нанопорошком диоксида циркония со средним размером зерен 30-40 нм, полученным плазмохимическим способом [16] и диспергировали в дистиллированной воде при помощи магнитной мешалки ПЭ-6100, соответствующей требованиям ТУ 4321-009-23050963-98. Полученный раствор выпаривали в сушильном шкафу при 150°C в течение 6 часов, перетирали в агатовой ступке и прогревали в камерной электропечи СНОЛ-1,4.2,5.1,2/12,5-И1 при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчали.
К модифицированному пигменту добавляли поливиниловый спирт до получения пастообразного состояния, пасту наносили на металлические подложки и сушили в атмосфере 24 час при комнатной температуре. Исследовали спектры диффузного отражения приготовленных образцов, затем образцы облучали электронами (Е=30 кэВ, Ф=1·1016 см-2, Т=300 К, Р=10-4 Па) и регистрировали спектры диффузного отражения облученных образцов в установке имитаторе условий космического пространства «Спектр» [17]. Интегральный коэффициент поглощения солнечного излучения рассчитывали по спектрам диффузного отражения, а его изменение после облучения по разности значений коэффициента поглощения до (as0) и после облучения (a): Δas=as0-a [18]. Коэффициент поглощения as рассчитывали по формуле:
Figure 00000002
где Rs - среднеарифметическое значение коэффициента диффузного отражения, рассчитанное по 24 точкам на длинах волн, соответствующих равноэнергетическим участкам спектра излучения Солнца; Iλ - спектральная интенсивность излучения солнца; (λ12) - спектральный диапазон излучения Солнца; n - число точек на шкале длин волн, в которых рассчитывали значения коэффициента диффузного отражения.
Пример 1
Микропорошок диоксида титана перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученный порошок измельчают, добавляют поливиниловый спирт для получения пастообразного состояния, который не вносит искажений в результаты измерений, но повышает адгезию порошка к подложке, наносят на металлические подложки для исследования радиационной стойкости.
Пример 2
Смесь микропорошка диоксида циркония и нанопорошка оксида алюминия, содержащую 0,5 мас.% нанопорошка ZrO2 и 99,5 мас.% TiO2, перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчают, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.
Пример 3
Смесь микропорошка диоксида циркония и нанопорошка оксида алюминия, содержащую 1 мас.% нанопорошка ZrO2 и 99 мас.% TiO2, перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчают, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.
Пример 4
Смесь микропорошка диоксида циркония и нанопорошка оксида алюминия, содержащую 3 мас.% нанопорошка ZrO2 и 97 мас.% TiO2, перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчают, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.
Пример 5
Смесь микропорошка диоксида циркония и нанопорошка оксида алюминия, содержащую 5 мас.% нанопорошка ZrO2 и 95 мас.% TiO2, перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчают, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.
Пример 6
Смесь микропорошка диоксида циркония и нанопорошка оксида алюминия, содержащую 7 мас.% нанопорошка ZrO2 и 93 мас.% TiO2, перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчают, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.
Пример 7
Смесь микропорошка диоксида циркония и нанопорошка оксида алюминия, содержащую 10 мас.% нанопорошка ZrO2 и 90 мас.% TiO2, перемешивают в магнитной мешалке с добавлением дистиллированной воды, полученный раствор выпаривают в сушильном шкафу при 150°C в течение 6 часов, перетирают в агатовой ступке и прогревают при температуре 800°C в течение 2 час. После прогрева полученную смесь измельчают, добавляют поливиниловый спирт, наносят на металлические подложки для исследования радиационной стойкости.
Результаты расчетов изменений коэффициента поглощения Δas по экспериментально полученным спектрам диффузного отражения до и после облучения ускоренными электронами модифицированных порошков приведены в таблице.
Таблица
Зависимость изменений интегрального коэффициента поглощения Δas при облучении электронами модифицированных порошков TiO2 от концентрации наночастиц ZrO2
C, % 0 0.5 1 3 5 7 10
Δas 0.071 0.062 0.055 0.04 0.06 0.85 0.11
Значения Δas модифицированных порошков при концентрации диоксида циркония 0,5-5 мас.% существенно меньше, а при концентрации 7 и 10 мас.% больше по сравнению с немодифицированным микропорошком диоксида титана. Наибольшее увеличение радиационной стойкости, определяемое соотношением (Δas0-Δasc)/Δas0, составляющее 44% по сравнению с немодифицированным порошком, происходит при концентрации нанопорошка 3 мас.% (здесь Δas3 есть Δas при C=3 мас.%).
Полученное повышение радиационной стойкости определяются тем, что с увеличением концентрации наночастиц от 1 до 3 мас.% увеличивается число центров релаксации на поверхности зерен и гранул порошка диоксида титана. И такого количества наночастиц диоксида циркония (3 мас.%) на поверхности достаточно для образования необходимой плотности этих центров. Дальнейшее увеличение концентрации наночастиц от 5 до 7 и 10 мас.% приводит к диффузии катионов циркония в решетку диоксида титана, к созданию дефектов внедрения из-за меньшего радиуса ионов Ti3+(r=0,6
Figure 00000003
) по сравнению с ионами Zr3+(r=0,77
Figure 00000003
). Образованные во время прогрева смесей порошков дефекты внедрения при облучении превращаются в центры поглощения и увеличивают изменение интегрального коэффициента поглощения Δas.
Таким образом, предлагаемый способ повышения стойкости к действию излучений порошков диоксида титана отличается простотой исполнения, малыми материальными затратами при исполнении, высокой эффективность, не требует сложного и дорогостоящего оборудования.
Использованные источники
1. Михайлов М.М., Дворецкий М.И. Кинетика накопления центров окраски в рутиле при облучении электронами // Изв. вузов. Физика, 1983, №3, с.30-34.
2. Михайлов М.М., Гордиенко П.С., Сенько И.В. и др. Влияние технологии получения на спектры наведенного поглощения порошков TiO2 (анатаз) // Изв. вузов. Физика, 2002, №11, с.92-94.
3. Михайлов М.М., Гордиенко П.С., Сенько И.В. и др. Отражательная способность пигментов диоксида титана со структурой анатаза и рутила и ее изменение под действием электронного облучения и излучения, имитирующего солнечное // Перспективные материалы, 2002, №2, с.40-44.
4. Михайлов М.М., Дворецкий М.И. Изменение оптических свойств TiO2 (рутил) при облучении ионами Н2+ // Материалы всесоюзной конференции «Взаимодействие атомных частиц с твердым телом», Минск, 1981, стр.118-120.
5. Михайлов М.М., Власов В.А. О размерном эффекте оптических свойств порошков TiO2 // Изв. вузов. Физика, 1998, №12, с.52-58
6. Михайлов М.М. Зависимость оптических свойств от удельной поверхности и размеров зерен порошков диоксида титана. // Журнал прикладной спектроскопии, 2006, т.73, №1, с.73-77.
7. Михайлов М.М. О возможности повышения фото- и радиационной стойкости порошков TiO2 (рутил) прогревом в кислороде // РАН. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2007, №35, с.102-106.
8. Косицын Л.Г, Михайлов М.М., Дворецкий М.И. и др. Установка для исследования спектров диффузного отражения и катодолюминесценции твердых тел в вакууме. // Приборы и техника эксперимента, 1985, №4, с.175-180.
9. Михайлов М.М. О возможности повышения фото- и радиационной стойкости порошков TiO2. Обработка ультрафиолетом в кислороде // РАН. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2007, №8, с.82-88.
10. Михайлов М.М. О возможности повышения радиационной стойкости порошков TiO2 при обработке УФ-облучением на воздухе // РАН. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2007, №10, с.68-72.
11. Способ получения пигментного композита, пигментный композит. К.Э. Грин, Т.Я. Браунбридж. Патент РФ №2135536 (RU 2135536) от 27.08.1999 по заявке №93004951/25 от 09.04.1993.
12. Пигментная двуокись титана и способ ее получения. Д.Р. Брэнд, Р.А. Балдвин, Т.Я. Броунбридж. Патент РФ №2099372 (RU 2099372) от 20.12.1997 по заявке №94041191/25 от 23.11.1994.
13. Способ получения пигментного композита, пигментный композит. К.Э. Грин, Т.Я. Браунбридж. Патент РФ №2135536 (RU 2135536) от 27.08.1999 по заявке №93004951/25 от 09.04.1993.
14. Reflective coating composition. Application: 2008150546/15, 15.12.2008. Effective date for property rights: 19.12.2008. Inventor(s): Zhabrev V.A., Kuznetsova L.A., Efimenko L.P. et al. Proprietor(s): Uchrezhdenie Rossijskoj akademii nauk Institut khimiisilikatov imeni I.V. Grebenshchikova (IKhS RAN).
15. Titanium dioxide pigment for poyester film filling and film blended therewith (11-Aug-1998), Publication Number: JP 10-212423 A, Publish Date: 11-Aug-1998, Application Number: JP 09-29750, Japanese Application Publication Inventors: Yamamoto Kenji. Applicants: TEIKA CORP. International: C09C 1/36; C08J 5/18; C08K 3/20; C08K 9/02; C08L 67/03. Priority: JP (1997)-29750 A 28-Jan-1997.
16. Андриец С.П., Дедов H.B., Кутявин Э.М. и др. Структура и свойства плазмохимических порошков оксида алюминия // Изв. вузов. Цв. металлургия. 2008, №3, с.64-31.
17. Косицын Л.Г., Михайлов М.М., Кузнецов Н.Я., Дворецкий М.И. // ПТЭ. 1985, №4, с.176-180.

Claims (1)

  1. Пигмент для светоотражающих покрытий, содержащий смесь частиц диоксида титана микронных размеров с наночастицами диоксида циркония, отличающийся тем, что, с целью повышения стойкости к действию излучений, концентрацию наночастиц диоксида циркония выбирают в диапазоне от 0,5 до 5,0 мас.%, смесь перемешивают с добавлением дистиллированной воды, полученный раствор выпаривают 6 часов при 150°C, перетирают, прогревают 2 часа при 800°C, измельчают.
RU2012143246/04A 2012-10-09 2012-10-09 Пигмент на основе модифицированного порошка диоксида титана RU2527262C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012143246/04A RU2527262C2 (ru) 2012-10-09 2012-10-09 Пигмент на основе модифицированного порошка диоксида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012143246/04A RU2527262C2 (ru) 2012-10-09 2012-10-09 Пигмент на основе модифицированного порошка диоксида титана

Publications (2)

Publication Number Publication Date
RU2012143246A RU2012143246A (ru) 2014-04-20
RU2527262C2 true RU2527262C2 (ru) 2014-08-27

Family

ID=50480437

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012143246/04A RU2527262C2 (ru) 2012-10-09 2012-10-09 Пигмент на основе модифицированного порошка диоксида титана

Country Status (1)

Country Link
RU (1) RU2527262C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555484C2 (ru) * 2013-10-08 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" Пигмент на основе порошка диоксида титана, модифицированного наночастицами
RU2611866C2 (ru) * 2015-07-06 2017-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Осетинский государственный университет имени Коста Левановича Хетагурова" (СОГУ) Способ получения пленок и пластинок оксида титана IV ТiO2 -рутил
RU2620054C2 (ru) * 2014-11-19 2017-05-22 Михаил Михайлович Михайлов Способ получения светостойких пигментов
RU2688766C1 (ru) * 2018-07-06 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) СПОСОБ ОТБОРОЧНЫХ ИСПЫТАНИЙ НА РАДИАЦИОННУЮ СТОЙКОСТЬ ПИГМЕНТОВ BaSO4
RU2763729C2 (ru) * 2016-06-06 2021-12-30 Венатор Джермани Гмбх Содержащий диоксид титана золь, способ его получения и изготовленные из него продукты

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135536C1 (ru) * 1992-04-10 1999-08-27 Керр-Макджи Кемикал Ллс Способ получения пигментного композита, пигментный композит
US7704315B2 (en) * 2004-07-28 2010-04-27 Degussa Ag Highly-filled, aqueous metal oxide dispersion
RU2394055C1 (ru) * 2008-12-19 2010-07-10 Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова (ИХС РАН) Состав композиции для получения отражающего покрытия
RU2429264C2 (ru) * 2009-11-06 2011-09-20 Михаил Михайлович Михайлов Пигмент для светоотражающих термостабилизирующих покрытий

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135536C1 (ru) * 1992-04-10 1999-08-27 Керр-Макджи Кемикал Ллс Способ получения пигментного композита, пигментный композит
US7704315B2 (en) * 2004-07-28 2010-04-27 Degussa Ag Highly-filled, aqueous metal oxide dispersion
RU2394055C1 (ru) * 2008-12-19 2010-07-10 Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова (ИХС РАН) Состав композиции для получения отражающего покрытия
RU2429264C2 (ru) * 2009-11-06 2011-09-20 Михаил Михайлович Михайлов Пигмент для светоотражающих термостабилизирующих покрытий

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555484C2 (ru) * 2013-10-08 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" Пигмент на основе порошка диоксида титана, модифицированного наночастицами
RU2620054C2 (ru) * 2014-11-19 2017-05-22 Михаил Михайлович Михайлов Способ получения светостойких пигментов
RU2611866C2 (ru) * 2015-07-06 2017-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Осетинский государственный университет имени Коста Левановича Хетагурова" (СОГУ) Способ получения пленок и пластинок оксида титана IV ТiO2 -рутил
RU2763729C2 (ru) * 2016-06-06 2021-12-30 Венатор Джермани Гмбх Содержащий диоксид титана золь, способ его получения и изготовленные из него продукты
RU2688766C1 (ru) * 2018-07-06 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) СПОСОБ ОТБОРОЧНЫХ ИСПЫТАНИЙ НА РАДИАЦИОННУЮ СТОЙКОСТЬ ПИГМЕНТОВ BaSO4

Also Published As

Publication number Publication date
RU2012143246A (ru) 2014-04-20

Similar Documents

Publication Publication Date Title
RU2527262C2 (ru) Пигмент на основе модифицированного порошка диоксида титана
Veronovski et al. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection
Neshchimenko et al. Optical radiation stability of ZnO hollow particles
Scuderi et al. Rapid synthesis of photoactive hydrogenated TiO2 nanoplumes
Mikhailov et al. The effects of heating on BaSO4 powders' diffuse reflectance spectra and radiation stability
Yudasari et al. Pulse laser deposition (PLD) technique for ZnO photocatalyst fabrication
Tulli et al. Photocatalytic efficiency tuning by the surface roughness of TiO2 coatings on glass prepared by the doctor blade method
RU2677173C1 (ru) Пигмент на основе порошка BaSO4, модифицированного наночастицами SiO2
Mikhailov et al. On the radiation stability of BaSO4 pigment modified with SiO2 nanoparticles and applied for spacecraft thermal control coatings
Mikhailov et al. Optical properties degradation of wollastonite powders under the electron irradiation in vacuum
Chen et al. Synthesis of ZnO@ SiO2 core-shell structure-based thermal control coatings with enhanced UV irradiation stability
RU2555484C2 (ru) Пигмент на основе порошка диоксида титана, модифицированного наночастицами
Mikhailov et al. Effect of SiO2 nanoparticles sizes on the optical properties and radiation resistance of powder mixtures ZrO2 with micron sizes
RU2716436C1 (ru) ПИГМЕНТ ДЛЯ ТЕРМОРЕГУЛИРУЮЩИХ ПОКРЫТИЙ КОСМИЧЕСКИХ АППАРАТОВ НА ОСНОВЕ ПОРОШКА BaSO4, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ SiO2
RU2678272C1 (ru) ПИГМЕНТ ДЛЯ ТЕРМОРЕГУЛИРУЮЩИХ ПОКРЫТИЙ КОСМИЧЕСКИХ АППАРАТОВ НА ОСНОВЕ ПОРОШКА BaSO4, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ ZrO2
RU2656660C1 (ru) ТЕРМОСТАБИЛИЗИРУЮЩЕЕ РАДИАЦИОННОСТОЙКОЕ ПОКРЫТИЕ BaTiZrO3
Mikhailov et al. Effect of proton irradiation on the optical properties of coating based on ZnO powder and liquid K2SiO3
Al-Sagheer et al. Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations
Mikhailov et al. Optical properties and photostability of silicon dioxide powders modified with SiO2 hollow particles and nanoparticles of various oxides
RU2691328C1 (ru) Пигмент для терморегулирующих покрытий космических аппаратов
Klett et al. H2 production through oxide irradiation: Comparison of gamma rays and vacuum ultraviolet excitation
Mikhailov et al. Radiation stability of optical properties of Wollastonite powder with SiO2 nanoparticle addition
RU2620386C2 (ru) Способ получения светостойких эмалей и красок
RU2620054C2 (ru) Способ получения светостойких пигментов
Domaradzki et al. Photocatalytic properties of Ti–V oxides thin films

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161010