CN109261231A - 低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法 - Google Patents

低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法 Download PDF

Info

Publication number
CN109261231A
CN109261231A CN201811195643.0A CN201811195643A CN109261231A CN 109261231 A CN109261231 A CN 109261231A CN 201811195643 A CN201811195643 A CN 201811195643A CN 109261231 A CN109261231 A CN 109261231A
Authority
CN
China
Prior art keywords
graphene oxide
fluidic chip
integral post
micro
oxide doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811195643.0A
Other languages
English (en)
Other versions
CN109261231B (zh
Inventor
刘照胜
申艳凤
张雪
莫春娥
黄艳萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Medical University
Original Assignee
Tianjin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Medical University filed Critical Tianjin Medical University
Priority to CN201811195643.0A priority Critical patent/CN109261231B/zh
Publication of CN109261231A publication Critical patent/CN109261231A/zh
Application granted granted Critical
Publication of CN109261231B publication Critical patent/CN109261231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法。原料组成为:甲基丙烯酸12.00%‑18.67%,对氨基苯乙烯修饰的氧化石墨烯0.01%‑0.20%,二甲基丙烯酸乙二醇酯8.02%‑12.49%,氯化胆碱/乙二醇15.00%‑51.00%,正丙醇23.08%‑54.40%,偶氮二异丁腈0.20%‑0.31%。使用低共熔溶剂制备的氧化石墨烯掺杂的高比表面积的整体柱微流控芯片,并将其用于多环芳烃固相微萃取。与传统的固相微萃取相比,本发明的微流控芯片固相微萃取具有微型化,低成本,快速,高通量等优势。含有适量氧化石墨烯掺杂的整体柱微流控芯片对多环芳烃的回收率富集效率明显提高,达90%以上,RSD均小于3%。

Description

低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法
技术领域
本发明涉及一种低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法,使用低共熔溶剂制备的氧化石墨烯掺杂的高比表面积的整体柱微流控芯片,并将其用于多环芳烃固相微萃取。与传统的固相微萃取相比,本发明的微流控芯片固相微萃取具有微型化,低成本,快速,高通量等优势。含有适量氧化石墨烯掺杂的整体柱微流控芯片对多环芳烃的回收率富集效率明显提高,达90%以上,RSD均小于3%。
背景技术
微流控芯片是21世纪七大前沿科学技术之一,具有低成本、快速、高通量等优势。固相微萃取技术(solid phase extraction,SPE) 是一种基于分析物在固态基质上的吸附和解吸,而实现液态样品的纯化和富集的样品前处理技术。微流控芯片上的固相微萃取具有传统固相萃取技术不可比拟的优势,既能提高系统集成度,又能消除接口带来的死体积。
原位聚合法是制备微流控芯片整体柱较常用的一种方法,可以避免微流控芯片加工中高度精密的技术要求。采用光引发聚合整体柱,可以有效的掌握整体柱的位置,长度。但是,原位聚合得到的整体柱并不总能达到令人满意的富集效果或者特定的色谱分离需求,目前,主要通过采用后修饰的方法(例如,表面衍生、纳米材料改性、有机-无机杂化改性等手段)在柱表面生成功能团改善这一问题。但有些修饰的反应条件往往不够温和,用于聚二甲基硅氧烷(PDMS)等化学耐受性不够好的芯片材料时会受到限制。
氧化石墨烯(GO)拥有大量的含氧基团,具有超大的比表面积和离域的电子结构,因此,GO具有较高吸附容量和吸附含苯环结构化合物的潜力。目前,毛细管整体柱中掺杂GO已经有报道。因此,将GO掺杂进入固相微萃取整体柱微流控芯片,借助GO超强的比表面积,有望增加萃取过程中的接触位点,提高固相微萃取中富集效率。但是GO通常在的溶剂中容易发生不可逆团聚,从而影响合成的整体柱芯片的均匀性,因此不利于目标物的富集和洗脱。
低共熔溶剂(DES)是一种绿色溶剂,具备挥发性低、无毒、可生物降解、廉价等优于传统溶剂特点。DES本质上是由一种离子混合物,通过两种或多种不同熔点的固体化合物按一定比例混合后形成。其中一类DES是的形成在于不同比例的的氢键供体(例如醇,羧酸和酰胺等)和氢键受体(例如季铵盐)组合形成的一种低共熔混合物。最常见的氢键受体是氯化胆碱(ChCl),氢键供体是醇。该DES体系具有均匀透明、纯度高、粘度大的特点。
中国专利CN 20161026860公开了一种氧化石墨烯型在线净化固相萃取整体柱及制备方法和用途。由于氧化石墨烯超强的比表面积,其集成在整体柱内可增加萃取过程中的接触位点,提高固相微萃取富集效率。但氧化石墨烯在通常的溶剂中容易聚沉,导致获得的GO掺杂整体柱不均匀,直接影响其效果。
发明内容
本发明的目的是提供一种低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法。利用低共熔溶剂粘度高的特点,制备氧化石墨烯掺杂的整体柱微流控芯片的制备及固相微萃取应用。将氧化石墨烯分散于低共熔溶剂中,获得均匀的整体柱微流控芯片中,可以明显提高富集效率,增加使用寿命。含有适量氧化石墨烯掺杂的整体柱与对照比较,对多环芳香烃固相微萃取的回收率有明显提高。
本发明提供的低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片的原料质量配比为:
甲基丙烯酸 12.00%-18.67%
对氨基苯乙烯修饰的氧化石墨烯 0.01%-0.20%
二甲基丙烯酸乙二醇酯 8.02%-12.49%
氯化胆碱/乙二醇 15.00%-51.00%
正丙醇 23.08%-54.40%
偶氮二异丁腈 0.20%-0.31%
上述的各原料的质量组成之和为100 %。
本发明提供的低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片的制备方法,采用原位光引发聚合法制备,具体经过下列步骤:
1)首先用食人鱼溶液(V浓H2SO4:VH2O2 = 3:1)冲洗微流控芯片通道30秒,随后用水冲洗至pH = 7;然后用 1 mmol/L 的氢氧化钠溶液冲洗毛细管约 30 min;随后用水冲洗 30 min;再注入 50% γ-MPS/甲苯溶液冲洗 3 h,随后用水冲洗pH = 7后,用丙酮冲洗15 min;最后用氮气吹干。
2)称取20mg羧基化氧化石墨烯加入盛放50mL N,N’-二甲基甲酰胺的烧杯中,在150W的超声功率下超声20分钟。然后转入圆底烧瓶中,分别加入215μL对氨基苯乙烯和25mLN,N’-二异丙基碳化二亚胺,以1MPa/min通入N2 气5分钟除去溶液中的O2,再放入80℃水浴中,并以1000转/分钟转速磁力搅拌反应24h,随后以5000转/分钟离心5分钟弃去上清液。最后,分别用四氢呋喃,水,甲醇清洗三次,以5000转/分钟离心5分钟弃去上清液,自然风干。得到对氨基苯乙烯修饰的羧基化氧化石墨烯(pAS-COOH-GO)。
3)按计量将羧基化氧化石墨烯经对氨基苯乙烯(pAS)酰胺化得到对氨基苯乙烯修饰的羧基化氧化石墨烯(pAS-COOH-GO),分散在氯化胆碱/乙二醇中,即pAS-COOH-GO-氯化胆碱/乙二醇。
4)按计量分别单体甲基丙烯酸丁酯(BMA),交联剂二甲基丙烯酸乙二醇酯(EDMA),引发剂偶氮二异丁腈(AIBN),分散在二元致孔剂正丙醇和pAS-COOH-GO-氯化胆碱/乙二醇中。将上述混合液超声5 min,然后注入已经处理的微流控芯片通道中,使其完全填充预聚液并用胶带密封,芯片除了2 cm长窗口之外用锡箔纸箔覆盖。再把芯片放在装有两个365nm,8W UV管的反应器中,暴露于紫外灯下15 min。整体柱微流控芯片然后用乙腈冲洗去除整体柱内的致孔剂及未反应组分。
不含氧化石墨烯的基于低共熔溶剂的整体柱微流控芯片,除了不含氧化石墨烯外,其余步骤同上。
本发明得到的基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片可用于多环芳烃的富集。
通过微流控芯片固相微萃取技术,对多环芳烃进行富集。通过淋洗溶剂、洗脱溶剂、上样速率以及洗脱速率的考察,建立了较好的富集多环芳烃(以菲和蒽为研究对象)的方法。本发明中选用甲醇:水=5:5(v / v)作为淋洗溶剂,乙腈作为洗脱剂,上样流速为3 μl/ min,洗脱速率为3 μl / min,得到样品菲和蒽回收率分别为94.5%,97%,回收率的相对标准偏差(RSD)均小于3%。
本发明提供了以基于低共熔溶剂的氧化石墨烯掺杂制备整体柱微流控芯片,具体是先将对氨基苯乙烯修饰过的羧基化氧化石墨烯分散于低共熔溶剂中,然后以甲基丙烯酸丁酯为单体,二甲基丙烯酸乙二醇酯为交联剂,对氨基苯乙烯修饰的羧基化氧化石墨烯为掺杂剂,正丙醇和氯化胆碱/乙二醇为二元致孔剂,偶氮二异丁腈为引发剂,紫外光引发合成氧化石墨烯掺杂的整体柱芯片。该制备方法容易操作,制备过程简单,并通过调整氧化石墨烯的含量,正丙醇和DES的比例等获得富集效率高的整体柱芯片。本发明利用低共熔溶剂粘度高的特点,在预聚合液中有效分散了GO,获得均匀的GO掺杂整体柱微流控芯片。该方法合成的基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片与不含氧化石墨烯掺杂的整体柱微流控芯片相比,对多环芳烃回收率可达90%以上,RSD均小于3%,为多环芳烃的固相萃取提供了一种高效快速的方法。
附图说明
图1 为本发明制备的基于低共熔溶剂氧化石墨烯掺杂的整体柱微流控芯片与不含氧化石墨烯的微流控芯片对多环芳烃固相微萃取后的HPLC色谱图。
图2 为本发明制备的基于低共熔溶剂氧化石墨烯掺杂的整体柱微流控芯片考察氧化石墨烯含量对多环芳烃固相微萃取影响对比图。
图3 为本发明制备的基于低共熔溶剂的氧化石墨烯掺杂的整体柱与不含氧化石墨烯的整体柱微流控芯片的扫描电镜对比图。
图4 为本发明制备的基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片对湖水中多环芳烃固相微萃取后的HPLC色谱图。
具体实施方式
下面结合具体实施例,进一步详细阐述本发明。实施例中未注明具体条件的实验方法,通常按照常规条件以及手册中所述的条件,或按照制造厂商所建议的条件;所用的通用设备、材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
基于低共熔溶剂氧化石墨烯掺杂的整体柱微流控芯片与不含氧化石墨烯的微流控芯片对多环芳烃固相微萃取对比。具体操作步骤如下:
基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片的制备方法:
a. 首先用食人鱼溶液(V浓H2SO4:VH2O2 = 3:1)冲洗微流控芯片(聚二甲基硅氧烷-玻璃)通道30秒,随后用水冲洗至pH = 7;然后用 1 mmol/L 的氢氧化钠溶液冲洗毛细管约30 min;随后用水冲洗 30 min;再注入 50% γ-MPS/甲苯溶液冲洗 3 h,随后用水冲洗pH= 7后,用丙酮冲洗15 min;最后用氮气吹干。
b. 称取20mg羧基化氧化石墨烯(南京先丰纳米材料科技有限公司)加入盛放50mLN,N’-二甲基甲酰胺的烧杯中,在150W的超声功率下超声20分钟。然后转入圆底烧瓶中,分别加入215μL对氨基苯乙烯和25mL N,N’-二异丙基碳化二亚胺,以1MPa/min通入N2 5分钟除去溶液中的O2,再放入80℃水浴中,并以1000转/分钟转速磁力搅拌反应24h,随后以5000转/分钟离心5分钟弃去上清液。最后,分别用四氢呋喃,水,甲醇清洗三次,以5000转/分钟离心5分钟弃去上清液,自然风干。得到对氨基苯乙烯修饰的羧基化氧化石墨烯(pAS-COOH-GO)。
c. 将质量分数为0.05%的掺杂剂对氨基苯乙烯修饰的羧基化氧化石墨烯分散于49.43%的致孔剂氯化胆碱/乙二醇(1:3,w%/w%)中,再加入质量分数为30.3%的致孔剂正丙醇,12%的单体甲基丙烯酸丁酯,8.02%交联剂二甲基丙烯酸乙二醇酯为交联剂,0.2%的引发剂偶氮二异丁腈,然后,将混合液在150W的超声功率下超声5 min,注入已经处理的微流控芯片通道中,使其完全填充预聚液并用胶带密封,芯片除了2 cm长窗口之外用锡箔纸箔覆盖。再把芯片放在装有两个365 nm,8W UV管的反应器中,暴露于紫外灯下15 min。整体柱微流控芯片然后用乙腈冲洗去除整体柱内的致孔剂,未反应组分。
d. 将5mg菲和5mg蒽溶解在5mL甲醇中制备1mg/mL储备溶液。然后用甲醇和水混合物(50/50,v/v)稀释储备溶液,得到1μg/mL菲和蒽标品的混合液。
e. 上述得到整体柱微流控芯片固相微萃取菲和蒽标品的混合液,用3 μl/ min流速上样100μL,再用甲醇:水=5:5(v / v)以3 μl / min流速淋洗5 min,最后用乙腈以3 μl/ min流速洗脱10μL。取5 μl 洗脱液稀释10倍,通过高效液相色谱法进行检测分析。
无氧化石墨烯掺杂的整体柱微流控芯片,除不含氧化石墨烯外,为其余步骤同上。
结果表明,含氧化石墨烯掺杂剂的整体柱微流控芯片回收率明显提高(见图1)。
实施例2
为了明确基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片中氧化石墨烯的含量对多环芳烃固相微萃取回收率的影响,制备不同含量的氧化石墨烯整体柱进一步分析。具体操作步骤如下:
a.同上述方法(实施例1)合成含有不同含量氧化石墨烯的整体柱。除了掺杂剂在氯化胆碱/乙二醇中质量分数不同外,其余都相同。掺杂剂对氨基苯乙烯修饰的羧基化氧化石墨烯质量分数分别为0%,0.01%,0.05%,0.10%,0.15%。
b. 同上述方法(实施例1)用不同含量的氧化石墨烯整体柱对多环芳烃进行固相微萃取。
结果表明,随着氧化石墨烯含量不断增加,多环芳烃的回收率先升高后降低(见图2)。说明基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片,氧化石墨烯质量分数为0.05% 时,富集效率最高。
实施例3
扫描电镜表征。图3a和3b为氧化石墨烯掺杂的整体柱,图3c和3d为无氧化石墨烯掺杂的空白柱。
结果表明,氧化石墨烯掺杂的整体柱比无石墨烯掺杂的整体柱孔穴更多,背压更低(见图3a, 3c)。石墨烯成功的掺杂在整体柱中(见图 3b,3d)。
实施例4
基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片的应用。具体操作步骤如下:
a.同上述方法(实施例1)合成基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片。
b.上述得到基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片用于湖水(天津医科大学静怡湖)中多环芳烃的固相微萃取,同上述方法(实施例1)(见图4)。
结果表明,基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片成功的应用于实际样品中多环芳烃的固相微萃取。

Claims (4)

1. 一种基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片,其特征在于它的原料的质量组成:
甲基丙烯酸 12.00%-18.67%
对氨基苯乙烯修饰的氧化石墨烯 0.01%-0.20%
二甲基丙烯酸乙二醇酯 8.02%-12.49%
氯化胆碱/乙二醇 15.00%-51.00%
正丙醇 23.08%-54.40%
偶氮二异丁腈 0.20%-0.31%
上述的各原料的质量组成之和为100 %。
2.按照权利要求1所述的整体柱微流控芯片,其特征在于它的原料的质量组成:
甲基丙烯酸 12.00%
对氨基苯乙烯修饰的氧化石墨烯 0.05%
二甲基丙烯酸乙二醇酯 8.02%
氯化胆碱/乙二醇 49.43%
正丙醇 30.30%
偶氮二异丁腈 0.20%
上述的各原料的质量百分比组成之和为100 %。
3.权利要求1所述的基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片的制备方法,其特征在于经过下列步骤:
1)首先用食人鱼溶液,V浓H2SO4:VH2O2 = 3:1,冲洗微流控芯片通道30秒,随后用水冲洗至pH = 7;然后用 1 mmol/L 的氢氧化钠溶液冲洗毛细管约 30 min;随后用水冲洗 30 min;再注入 50% γ-MPS/甲苯溶液冲洗 3 h,随后用水冲洗pH = 7后,用丙酮冲洗15min;最后用氮气吹干;
2)按计量将掺杂剂对氨基苯乙基修饰的羧基化石墨烯分散于致孔剂氯化胆碱/乙二醇,然后按计量分别加入正丙醇,单体甲基丙烯酸丁酯,交联剂二甲基丙烯酸乙二醇酯,引发剂偶氮二异丁腈;将上述混合液超声5 min,然后注入已经处理的微流控芯片通道中,使其完全填充预聚液并用胶带密封,芯片除了2cm长窗口之外用锡箔纸箔覆盖;再把芯片放在装有两个365nm,8W UV管的反应器中,暴露于紫外灯下15 min,整体柱微流控芯片然后用乙腈冲洗去除整体柱内的致孔剂,未反应组分。
4.权利要求1所述的基于低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片用于富集多环芳烃的应用。
CN201811195643.0A 2018-10-15 2018-10-15 低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片在富集多环芳烃中的应用 Active CN109261231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811195643.0A CN109261231B (zh) 2018-10-15 2018-10-15 低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片在富集多环芳烃中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811195643.0A CN109261231B (zh) 2018-10-15 2018-10-15 低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片在富集多环芳烃中的应用

Publications (2)

Publication Number Publication Date
CN109261231A true CN109261231A (zh) 2019-01-25
CN109261231B CN109261231B (zh) 2021-02-02

Family

ID=65196727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811195643.0A Active CN109261231B (zh) 2018-10-15 2018-10-15 低共熔溶剂的氧化石墨烯掺杂的整体柱微流控芯片在富集多环芳烃中的应用

Country Status (1)

Country Link
CN (1) CN109261231B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124633A (zh) * 2019-04-29 2019-08-16 天津医科大学 组合低共熔溶剂单体和杂化单体的整体柱
CN111074074A (zh) * 2019-12-27 2020-04-28 中国矿业大学 一种基于低共熔溶剂纳米流体回收废旧锂离子电池正极材料的方法
CN112870763A (zh) * 2021-02-25 2021-06-01 福州大学 一种固相微萃取探头及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900145A (en) * 1997-08-22 1999-05-04 J & K Environmental Ltd. Liquid crystal stationary phases for chromatography
US5938930A (en) * 1997-09-29 1999-08-17 Bio-Rad Laboratories, Inc. Methods of improving peak resolution in reversed-phase electrochromatography
US7473367B2 (en) * 2002-06-26 2009-01-06 Dionex Corporation Monolithic column
CN102442635A (zh) * 2011-10-17 2012-05-09 南昌大学 一种手性选择性磁性功能化石墨烯修饰微流控芯片的方法
CN102725888A (zh) * 2009-12-24 2012-10-10 纳米技术仪器公司 用于电化学电池电极的传导性石墨烯聚合物粘合剂
CN103078095A (zh) * 2013-01-23 2013-05-01 浙江吉能电池科技有限公司 二氧化锡/石墨烯复合的锂离子电池负极材料的制备方法
CN103120864A (zh) * 2013-03-06 2013-05-29 苏州环球色谱有限责任公司 一种石墨烯修饰毛细管色谱柱的制备方法
CN103910354A (zh) * 2014-03-25 2014-07-09 复旦大学 一种规模化水相制备石墨烯的方法
CN104209104A (zh) * 2014-09-28 2014-12-17 天津医科大学 西替利嗪分子印迹整体柱及其制备方法
CN104475053A (zh) * 2014-11-19 2015-04-01 武汉大学 氧化石墨烯/聚乙二醇涂层搅拌棒及其制备方法与应用
CN105709707A (zh) * 2016-01-27 2016-06-29 杭州师范大学 氧化石墨烯键合的毛细管电色谱整体柱及其制备方法
US9546257B2 (en) * 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
CN106674996A (zh) * 2017-01-04 2017-05-17 华南理工大学 一种自修复氧化石墨烯/聚氨酯复合材料及其制备方法
CN108261801A (zh) * 2018-02-09 2018-07-10 长治学院 一种含低共熔溶剂的固定相及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900145A (en) * 1997-08-22 1999-05-04 J & K Environmental Ltd. Liquid crystal stationary phases for chromatography
US5938930A (en) * 1997-09-29 1999-08-17 Bio-Rad Laboratories, Inc. Methods of improving peak resolution in reversed-phase electrochromatography
US7473367B2 (en) * 2002-06-26 2009-01-06 Dionex Corporation Monolithic column
US9546257B2 (en) * 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
CN102725888A (zh) * 2009-12-24 2012-10-10 纳米技术仪器公司 用于电化学电池电极的传导性石墨烯聚合物粘合剂
CN102442635A (zh) * 2011-10-17 2012-05-09 南昌大学 一种手性选择性磁性功能化石墨烯修饰微流控芯片的方法
CN103078095A (zh) * 2013-01-23 2013-05-01 浙江吉能电池科技有限公司 二氧化锡/石墨烯复合的锂离子电池负极材料的制备方法
CN103120864A (zh) * 2013-03-06 2013-05-29 苏州环球色谱有限责任公司 一种石墨烯修饰毛细管色谱柱的制备方法
CN103910354A (zh) * 2014-03-25 2014-07-09 复旦大学 一种规模化水相制备石墨烯的方法
CN104209104A (zh) * 2014-09-28 2014-12-17 天津医科大学 西替利嗪分子印迹整体柱及其制备方法
CN104475053A (zh) * 2014-11-19 2015-04-01 武汉大学 氧化石墨烯/聚乙二醇涂层搅拌棒及其制备方法与应用
CN105709707A (zh) * 2016-01-27 2016-06-29 杭州师范大学 氧化石墨烯键合的毛细管电色谱整体柱及其制备方法
CN106674996A (zh) * 2017-01-04 2017-05-17 华南理工大学 一种自修复氧化石墨烯/聚氨酯复合材料及其制备方法
CN108261801A (zh) * 2018-02-09 2018-07-10 长治学院 一种含低共熔溶剂的固定相及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAN-MAN WANG,XIU-PING YAN: "Fabrication of Graphene Oxide Nanosheets Incorporated Monolithic Column via One-Step Room Temperature Polymerization for Capillary Electrochromatography", 《ANALYTICAL CHEMISTRY》 *
XX LI,LS ZHANG ET AL.: "Green synthesis of monolithic column incorporated with graphene oxide using room temperature ionic liquid and eutectic solvents for capillary electrochromatography", 《TALANTA》 *
刘威: "聚(甲基丙烯酸丁酯)整体柱的制备及其在多环芳烃分析中的应用", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
王恒玲,喻理,李培武,李敏,张奇,张文: "二氧化硅-氧化石墨烯复合物固相萃取-高效液相色谱法检测植物油中黄曲霉毒素B1、B2", 《分析化学( FENXI HUAXUE) 研究报告》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124633A (zh) * 2019-04-29 2019-08-16 天津医科大学 组合低共熔溶剂单体和杂化单体的整体柱
CN111074074A (zh) * 2019-12-27 2020-04-28 中国矿业大学 一种基于低共熔溶剂纳米流体回收废旧锂离子电池正极材料的方法
CN112870763A (zh) * 2021-02-25 2021-06-01 福州大学 一种固相微萃取探头及其制备方法

Also Published As

Publication number Publication date
CN109261231B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN109261231A (zh) 低共熔溶剂氧化石墨烯掺杂整体柱微流控芯片及其制备方法
CN104028007B (zh) 一种咪唑离子液体毛细管整体柱及其制备和应用
Feng et al. Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction
CN104549174B (zh) 苯硼酸修饰聚乙烯亚胺杂化磁性纳米粒子及其制备和应用
CN104084178B (zh) Poss杂化毛细管整体柱固定相及其制备方法
CN105312038B (zh) 一种甲酰基苯硼酸修饰磁性纳米粒子及其制备和应用
Ren et al. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk
Cai et al. Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography–tandem mass spectrometry
CN105709707A (zh) 氧化石墨烯键合的毛细管电色谱整体柱及其制备方法
Zheng et al. Preparation of poly (butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls
CN109865507B (zh) 一种硅胶基质表面修饰方法及其应用
Zhang et al. Chip-based monolithic microextraction combined with ICP-MS for the determination of bismuth in HepG2 cells
CN109400823B (zh) 八乙烯基-poss和二甲基丙烯酸乙二醇酯共交联的硼亲和整体柱及其制备方法
CN104122135A (zh) 一种浊点萃取分离富集孔雀石绿及拉曼检测方法
Gong et al. Enrichment and determination of octylphenol and nonylphenol in environmental water samples by solid-phase microextraction with carboxylated carbon nano-spheres coating prior to gas chromatography–mass spectrometry
Abedi Solid‐phase microextraction of methadone by using a chitosan nanocomposite incorporated with Polyoxomolibdate nanocluster/Graphene oxide
Ouyang et al. Hollow tube covalent organic framework for syringe filter-based extraction of ultraviolet stabilizer in food contact materials
CN107649105A (zh) 一种奎宁固定化离子液多模式毛细管整体柱及其制备方法
Duan et al. A multi-site recognition molecularly imprinted solid-phase microextraction fiber for selective enrichment of three cross-class environmental endocrine disruptors
CN107474254B (zh) 有机–无机亲水性杂化整体材料的制备及应用
CN104353441A (zh) 一种用于富集水体中超痕量甲基汞的离子印迹材料
CN107158748A (zh) 一种基于编织芳环聚合物的开管毛细管柱及其应用
CN108187367B (zh) 巯基衍生化l-脯氨酸型有机-无机杂化整体柱及其制备方法
CN108178810A (zh) 一种反相/阴离子交换混合模式聚合物的制备及其应用
CN110485165A (zh) 具有特异性富集作用的功能化多面体低聚倍半硅氧烷改性聚合物复合涂层的制备及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared