CN109233294B - 有机硅介微孔超低介电薄膜及其制备方法 - Google Patents

有机硅介微孔超低介电薄膜及其制备方法 Download PDF

Info

Publication number
CN109233294B
CN109233294B CN201810989493.4A CN201810989493A CN109233294B CN 109233294 B CN109233294 B CN 109233294B CN 201810989493 A CN201810989493 A CN 201810989493A CN 109233294 B CN109233294 B CN 109233294B
Authority
CN
China
Prior art keywords
dielectric film
ultralow dielectric
organic solvent
film
organic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810989493.4A
Other languages
English (en)
Other versions
CN109233294A (zh
Inventor
倪伶俐
刘永涛
谢涛
徐敏华
程至天
蔡鹏�
高晓燕
冯良东
张世忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201810989493.4A priority Critical patent/CN109233294B/zh
Priority to US16/771,158 priority patent/US11328926B2/en
Priority to PCT/CN2018/109446 priority patent/WO2020042284A1/zh
Publication of CN109233294A publication Critical patent/CN109233294A/zh
Application granted granted Critical
Publication of CN109233294B publication Critical patent/CN109233294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及化工领域,公开了一种有机硅介微孔超低介电薄膜及其制备方法,该薄膜中POSS类有机硅烷前躯体的结构式如下:
Figure 100004_DEST_PATH_IMAGE002
,其中,n为12、16、18、20或22,X为CH3或CH2CH3;制备方法如下:室温下,将一定量的POSS类前驱体溶解于有机溶剂中,加入适量光产酸剂,搅拌均匀后,在基底上喷涂成膜;待有机溶剂完全挥发后,置于发光二极管灯下照射预设时间,然后置于N、N二甲基甲酰胺中与氟代烷基醇进行酯交换反应24‑72h,洗涤干燥后得到有机硅介微孔超低介电薄膜。与现有超低介电薄膜相比,所得薄膜介电常数更低(1.89),在潮湿环境中介电稳定性更优,而且操作简单、聚合速度快。

Description

有机硅介微孔超低介电薄膜及其制备方法
技术领域
本发明涉及介电薄膜制备技术领域,特别涉及一种有机硅介微孔超低介电薄膜及其制备方法。
背景技术
超低介电常数(κ)薄膜是微电子产业发展迫切需要攻克的关键新材料。由于空气的介电常数(κ=1.01)非常低,大量不同的多孔超低介电薄膜被合成报道。但是,孔的引入,导致材料力学性能降低,膜机械强度下降,散热性能变差,而难以满足实际要求。
有机硅介孔分子筛不但具有较好的机械强度,而且具有超低的介电常数而备受关注。但是有机硅介孔分子筛从微观角度看,其孔壁结构依然是完全无序的。这种结构将降低材料的机械性能和热稳定性,而且其容易吸湿,导致其在湿度较高的环境中介电能力的显著下降,将严重阻碍其作为低κ材料的发展应用。
此外,对于有机硅介孔分子筛薄膜的制备,目前普遍采用的方法是溶剂挥发诱导自组装法(EISA)。该法将传统的溶胶凝胶法和分子模板自组装相结合,在非水溶剂中制备介孔材料。该方法操作方便且易于控制,尤其是对介孔材料的宏观形貌的控制有着得天独厚的优势。但是该法在制备过程中需要价格昂贵的模板剂,且可选的模板剂数量有限;在脱除模板剂的过程中易造成孔洞塌陷。薄膜制备条件、溶剂挥发速率和复杂的硅溶胶组成对自组装结构的影响难以控制。
发明内容
发明目的:针对现有技术中存在的问题,本发明提供了一种有机硅介微孔超低介电薄膜及其制备方法,所得有机硅介微孔聚硅氧烷薄膜不但具有优异的超低介电性能,而且具有很好的疏水性、热稳定性和机械强度,同时本方法操作简单、易于控制、聚合速度快、节能环保。
技术方案:本发明提供了一种有机硅介微孔超低介电薄膜,该薄膜中POSS类有机硅烷前躯体的结构式如下:
Figure RE-DEST_PATH_IMAGE001
,其中,n为12、16、18、20或22,X为CH3或CH2CH3
本发明还提供了一种上述有机硅介微孔超低介电薄膜的制备方法,包括以下步骤:室温下,将POSS类前驱体溶解于有机溶剂中,加入适量光产酸剂,搅拌均匀后,在基底上喷涂成膜;待有机溶剂完全挥发后,置于发光二极管灯下照射预设时间,然后置于N、N二甲基甲酰胺(DMF)中与短链氟代烷基醇进行酯交换反应24-72h,洗涤干燥后得到所述有机硅介微孔超低介电薄膜。
优选地,所述POSS类前驱体与光产酸剂的质量比为10:0.05~1。
优选地,所述短链氟代烷基醇的摩尔浓度为0.01~0.05mol/L。
优选地,所述发光二极管灯的特定波长为320nm、365nm或405nm,照射时间为30-60min。
优选地,所述的发光二极管灯的功率为0.1mW/cm2~20mW/cm2;优选0.5mW/cm2、2mW/cm2、5mW/cm2、10mW/cm2
优选地,所述预设时间为30-60min;优选30分钟、45分钟或60分钟。
优选地,所述的光产酸剂为4-异丁基苯基-4'-甲基苯基碘六氟磷酸盐(I250)、2-甲基-α-[2-[[丙磺酰基]亚胺]-3(2H)-噻吩亚甲基-苯乙腈(PAG103)或4-辛氧基二苯基碘鎓六氟锑酸盐(OPHA)。
优选地,所述的氟代烷基醇为2,2,2-三氟乙醇、3,3,3-三氟丙-1-醇、4,4,4-三氟丁-1-醇或1H,1H,2H,2H-全氟己-1-醇。
优选地,所述基底为导电玻璃或硅片。
有益效果:本发明利用POSS类有机硅烷前驱体把其本征纳米孔引入到薄膜中,利用笼状聚倍半硅氧烷[POSS]具有高的热稳定性、机械强度,较好的成膜性和极好的基底附着力,独特的纳米尺寸笼型结构(如n=8时,具有近似立方体型的T8结构,其孔直径为0. 53nm)等低介电常数材料所需的结构与组成的要求,结合光致溶胶凝胶法快速、简便的特点,同时通过酯交换反应,在POSS链上引入氟代烷基链,引入介孔结构的同时,使得薄膜具有更强的疏水性能,从而获得耐热、耐湿性能优异的有机硅介微孔超低介电薄膜。
本发明提供的制备方法与现有技术相比,只需简单将有机硅烷前驱体和光产酸剂混合在有机溶剂中,在没有光照的情况下,配方溶液非常稳定;涂层的制备只需简单光照30-60min,具有简单高效的优点;本发明中的超低介电薄膜具有耐热、耐湿性能优异,在CPU集成电路上具有良好的应用前景。
具体实施方式
下面结合具体实施例对本发明进行详细的介绍。
实施方式1:
室温下,将0.5g的POSS类前驱体(n=12,X=CH2CH3)溶解于5mL四氢呋喃溶剂中,加入4-异丁基苯基-4'-甲基苯基碘六氟磷酸盐(I250)0.005g,搅拌均匀后,在基底上喷涂成膜;待四氢呋喃完全挥发后,置于320nm、0.1mW/cm2的发光二极管灯下照射30分钟,然后置于10mL的0.05mol/L 的2,2,2-三氟乙醇的N、N二甲基甲酰胺(DMF)溶液中进行酯交换反应24h,水洗干燥后得到有机硅介微孔超低介电薄膜,结果见表 1。
实施方式2:
室温下,将0.5g的POSS类前驱体(n=16,X=CH3)溶解于7mL四氢呋喃溶剂中,加入4-辛氧基二苯基碘鎓六氟锑酸盐(OPHA)0.01g,搅拌均匀后,在基底上喷涂成膜;待四氢呋喃完全挥发后,置于365nm、0.5mW/cm2的发光二极管灯下照射30分钟,然后置于10mL的0.05mol/L 的2,2,2-三氟乙醇的N、N二甲基甲酰胺(DMF)溶液中进行酯交换反应24h,水洗干燥后得到有机硅介微孔超低介电薄膜,结果见表 1。
实施方式3:
室温下,将0.5g的POSS类前驱体(n=18,X=CH3)溶解于7mL四氢呋喃溶剂中,加入2-甲基-α-[2-[[丙磺酰基]亚胺]-3(2H)-噻吩亚甲基-苯乙腈(PAG103)0.0025g,搅拌均匀后,在基底上喷涂成膜;待四氢呋喃完全挥发后,置于405nm、2mW/cm2的发光二极管灯下照射30分钟,然后置于10mL的0.02mol/L 的4,4,4-三氟丁-1-醇的N、N二甲基甲酰胺(DMF)溶液中进行酯交换反应24h,水洗干燥后得到有机硅介微孔超低介电薄膜,结果见表 1。
实施方式4:
室温下,将0.5g的POSS类前驱体(n=18,X=CH3)溶解于7mL四氢呋喃溶剂中,加入2-甲基-α-[2-[[丙磺酰基]亚胺]-3(2H)-噻吩亚甲基-苯乙腈(PAG103)0.0025g,搅拌均匀后,在基底上喷涂成膜;待四氢呋喃完全挥发后,置于405nm、2mW/cm2的发光二极管灯下照射30分钟,然后置于10mL的0.01mol/L 的3,3,3-三氟丙-1-醇的N、N二甲基甲酰胺(DMF)溶液中进行酯交换反应48h,水洗干燥后得到有机硅介微孔超低介电薄膜,结果见表 1。
实施方式5:
室温下,将0.5g的POSS类前驱体(n=20,X=CH3)溶解于7mL四氢呋喃溶剂中,加入2-甲基-α-[2-[[丙磺酰基]亚胺]-3(2H)-噻吩亚甲基-苯乙腈(PAG103)0.02g,搅拌均匀后,在基底上喷涂成膜;待四氢呋喃完全挥发后,置于405nm、5mW/cm2的发光二极管灯下照射30分钟,然后置于10mL的0.01mol/L 的3,3,3-三氟丙-1-醇的N、N二甲基甲酰胺(DMF)溶液中进行酯交换反应48h,水洗干燥后得到有机硅介微孔超低介电薄膜,结果见表 1。
实施方式6:
室温下,将0.3g的POSS类前驱体(n=22,X=CH3)溶解于7mL四氢呋喃溶剂中,加入2-甲基-α-[2-[[丙磺酰基]亚胺]-3(2H)-噻吩亚甲基-苯乙腈(PAG103)0.03g,搅拌均匀后,在基底上喷涂成膜;待四氢呋喃完全挥发后,置于405nm、20mW/cm2的发光二极管灯下照射30分钟,然后置于6mL的0.05mol/L 的1H,1H,2H,2H-全氟己-1-醇的N、N二甲基甲酰胺(DMF)溶液中进行酯交换反应72h,水洗干燥后得到有机硅介微孔超低介电薄膜,结果见表 1。
表1有机聚硅氧烷超疏水涂层水接触角测试结果
样品 介电常数 水接触角(°) 拉伸模量(GPa)
实施例1 2.21 85 2.44
实施例2 2.07 89 2.47
实施例3 1.99 96 2.36
实施例4 1.89 94 2.38
实施例5 1.96 93 2.24
实施例6 2.02 106 2.18
注:介电常数测试采用HP4194A型介电频谱仪测定;水接触角测试采用德国 Krüss公司产 DSA25型全自动视频接触角测量仪,取平行测试三次的平均值;拉伸模量按照GB /T1040—92进行测试。
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种有机硅介微孔超低介电薄膜的制备方法,其特征在于,该制备方法为光致溶胶凝胶法,包括以下步骤:
室温下,将POSS类前驱体溶解于有机溶剂中,加入适量光产酸剂,搅拌均匀后,在基底上喷涂成膜;待有机溶剂完全挥发后,置于发光二极管灯下照射预设时间,然后置于N、N二甲基甲酰胺中与短链氟代烷基醇进行酯交换反应24-72h,洗涤干燥后得到所述有机硅介微孔超低介电薄膜;
其中,所述POSS类前驱体与光产酸剂的质量比为10:0.05~1;
所述短链氟代烷基醇的摩尔浓度为0.01~0.05mol/L;
所述有机硅介微孔超低介电薄膜中POSS类有机硅烷前躯体的结构式如下:
Figure DEST_PATH_IMAGE002
其中,n为12、16、18、20或22,X为CH3或CH2CH3
2.根据权利要求1所述的有机硅介微孔超低介电薄膜的制备方法,其特征在于,所述的发光二极管灯的特定波长为320nm、365nm或405nm。
3.根据权利要求1所述的有机硅介微孔超低介电薄膜的制备方法,其特征在于,所述的发光二极管灯的功率为0.1~20mW/cm2
4.根据权利要求1所述的有机硅介微孔超低介电薄膜的制备方法,其特征在于,所述预设时间为30-60min。
5.根据权利要求1至4中任一项所述的有机硅介微孔超低介电薄膜的制备方法,其特征在于,所述的光产酸剂为4-异丁基苯基-4'-甲基苯基碘六氟磷酸盐、2-甲基-α-[2-[[丙磺酰基]亚胺]-3(2H)-噻吩亚甲基-苯乙腈或4-辛氧基二苯基碘鎓六氟锑酸盐。
6.根据权利要求1至4中任一项所述的有机硅介微孔超低介电薄膜的制备方法,其特征在于,所述的氟代烷基醇为2,2,2-三氟乙醇、3,3,3-三氟丙-1-醇、4,4,4-三氟丁-1-醇或1H,1H,2H,2H-全氟己-1-醇。
7.根据权利要求1至4中任一项所述的有机硅介微孔超低介电薄膜的制备方法,其特征在于,所述基底为导电玻璃或硅片。
CN201810989493.4A 2018-08-28 2018-08-28 有机硅介微孔超低介电薄膜及其制备方法 Active CN109233294B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810989493.4A CN109233294B (zh) 2018-08-28 2018-08-28 有机硅介微孔超低介电薄膜及其制备方法
US16/771,158 US11328926B2 (en) 2018-08-28 2018-10-09 Ultralow dielectric mesoporous organosilicon film and preparation method thereof
PCT/CN2018/109446 WO2020042284A1 (zh) 2018-08-28 2018-10-09 一种有机硅介微孔超低介电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810989493.4A CN109233294B (zh) 2018-08-28 2018-08-28 有机硅介微孔超低介电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN109233294A CN109233294A (zh) 2019-01-18
CN109233294B true CN109233294B (zh) 2020-04-24

Family

ID=65068574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810989493.4A Active CN109233294B (zh) 2018-08-28 2018-08-28 有机硅介微孔超低介电薄膜及其制备方法

Country Status (3)

Country Link
US (1) US11328926B2 (zh)
CN (1) CN109233294B (zh)
WO (1) WO2020042284A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201565B (zh) * 2020-09-11 2022-07-26 上海交通大学 半导体表面共价接枝无氟纳米孔洞low k介电薄膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955843A (zh) * 2005-10-26 2007-05-02 东进世美肯株式会社 感光性树脂组合物
CN102482533A (zh) * 2009-08-31 2012-05-30 国际商业机器公司 可光图案化介电材料和配制剂及使用方法
WO2017027430A1 (en) * 2015-08-07 2017-02-16 Sba Materials, Inc. Plasma damage management
CN108699245A (zh) * 2016-02-19 2018-10-23 Ltc有限公司 聚倍半硅氧烷树脂组合物及包含其的遮光用黑色抗蚀剂组合物
CN110192272A (zh) * 2017-01-20 2019-08-30 霍尼韦尔国际公司 间隙填充介电材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576345B1 (en) * 2000-11-30 2003-06-10 Novellus Systems Inc Dielectric films with low dielectric constants
DE10330022A1 (de) * 2003-07-03 2005-01-20 Degussa Ag Verfahren zur Herstellung von Iow-k dielektrischen Filmen
TWI254057B (en) 2004-01-13 2006-05-01 Univ Nat Chiao Tung Covalently bonded polyhedral oligomeric silsesquioxane/polyimide nanocomposites and process for synthesizing the same
US7468330B2 (en) * 2006-04-05 2008-12-23 International Business Machines Corporation Imprint process using polyhedral oligomeric silsesquioxane based imprint materials
JP2008078557A (ja) * 2006-09-25 2008-04-03 Fujifilm Corp 組成物、膜、およびその製造方法
KR101416030B1 (ko) * 2006-12-22 2014-07-08 주식회사 동진쎄미켐 유기반사방지막 형성용 폴리머 및 이를 포함하는 조성물
CN101250196B (zh) 2008-03-25 2011-05-18 大连理工大学 多羧基笼型苯基倍半硅氧烷及其合成方法
CN101348385B (zh) * 2008-08-22 2010-09-08 东华大学 均匀纳米孔SiO2低介电薄膜的制备方法
CN101348568B (zh) * 2008-08-22 2013-01-02 东华大学 精确结构poss杂化低介电材料的制备方法
JP5401118B2 (ja) * 2008-12-10 2014-01-29 富士フイルム株式会社 組成物
JP6255182B2 (ja) * 2013-07-24 2017-12-27 東京応化工業株式会社 下地剤、相分離構造を含む構造体の製造方法
EP3346515A4 (en) * 2015-09-02 2018-10-17 FUJIFILM Corporation Organic thin-film transistor, organic thin-film transistor manufacturing method, organic semiconductor composition, organic semiconductor film, and organic semiconductor film manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955843A (zh) * 2005-10-26 2007-05-02 东进世美肯株式会社 感光性树脂组合物
CN102482533A (zh) * 2009-08-31 2012-05-30 国际商业机器公司 可光图案化介电材料和配制剂及使用方法
WO2017027430A1 (en) * 2015-08-07 2017-02-16 Sba Materials, Inc. Plasma damage management
CN108699245A (zh) * 2016-02-19 2018-10-23 Ltc有限公司 聚倍半硅氧烷树脂组合物及包含其的遮光用黑色抗蚀剂组合物
CN110192272A (zh) * 2017-01-20 2019-08-30 霍尼韦尔国际公司 间隙填充介电材料

Also Published As

Publication number Publication date
US20210175074A1 (en) 2021-06-10
CN109233294A (zh) 2019-01-18
US11328926B2 (en) 2022-05-10
WO2020042284A1 (zh) 2020-03-05

Similar Documents

Publication Publication Date Title
CN103380184B (zh) 涂覆热交换器结构的方法、涂覆的热交换器结构及其应用
US20210054185A1 (en) Superhydrophobic and self-cleaning radiative cooling film and preparation method thereof
Lin et al. Highly transparent and thermally stable superhydrophobic coatings from the deposition of silica aerogels
CN102978954B (zh) 一种具有良好稳定性超疏水织物的制备方法
CN103993423B (zh) 一种有机无机杂化纳米超疏水纤维膜的制备方法
CN110090557B (zh) 一种结构梯度变化的多孔超疏水膜制备方法
CN109266211B (zh) 有机聚硅氧烷超疏水涂料及其制备方法
CN101704957B (zh) 一种制备具有连续纳米孔道的聚合物薄膜的方法
CN111187444A (zh) 一种本征超疏水纳米纤维素气凝胶及其制备方法
CN109233294B (zh) 有机硅介微孔超低介电薄膜及其制备方法
CN107502875B (zh) 一种具有强化滴状冷凝效果的非均匀超疏水涂层及其制备方法
CN105420689B (zh) 一种取向碳纳米管-氧化铝杂化纤维及其制备方法
Fei et al. Transparent superhydrophobic films possessing high thermal stability and improved moisture resistance from the deposition of MTMS-based aerogels
CN103614915B (zh) 一种超疏水天然纤维织物及其制备方法
CN102153769B (zh) 一种超疏水聚甲基丙烯酸甲酯薄膜的制备方法
CN106892575A (zh) 一种多孔二氧化硅减反射膜的制备方法
CN107649346A (zh) Pdms燃烧法制备超疏水表面的方法及燃烧室
JP2023546896A (ja) 金属-有機フレーム材料分離膜及びその製造方法並びに応用
CN103585862B (zh) 除湿转轮及其制备方法
CN101481873B (zh) 一种织物的纳米金属氧化锌溶胶负氧离子的整理方法
CN109486335A (zh) 一种碳碳双键加成制备石墨烯/苯乙烯/丙烯酸酯防腐涂料的方法
CN111114040B (zh) 一种溶剂蒸汽驱动型超疏水薄膜及其制备方法
CN115010140B (zh) 一种超疏水氧化硅气凝胶的制备方法
CN106892576B (zh) 一种多层纳米空心阵列减反射膜及其制备方法
He et al. Wetting thresholds for long-lasting superwettability: From intrinsic wetting boundary to critical roughness value

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant