CN109216817A - 一种废旧镍钴锰酸锂电池正极材料的元素回收方法 - Google Patents

一种废旧镍钴锰酸锂电池正极材料的元素回收方法 Download PDF

Info

Publication number
CN109216817A
CN109216817A CN201710527903.9A CN201710527903A CN109216817A CN 109216817 A CN109216817 A CN 109216817A CN 201710527903 A CN201710527903 A CN 201710527903A CN 109216817 A CN109216817 A CN 109216817A
Authority
CN
China
Prior art keywords
cobalt
nickel
manganese
lithium
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710527903.9A
Other languages
English (en)
Inventor
许开华
张云河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEM Co Ltd China
Jingmen GEM New Material Co Ltd
Original Assignee
GEM Co Ltd China
Jingmen GEM New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEM Co Ltd China, Jingmen GEM New Material Co Ltd filed Critical GEM Co Ltd China
Priority to CN201710527903.9A priority Critical patent/CN109216817A/zh
Publication of CN109216817A publication Critical patent/CN109216817A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

本发明公开了一种废旧镍钴锰酸锂电池正极材料的元素回收方法,属于二次资源回收利用和循环经济技术领域,解决了现有技术中在对废旧镍钴锰酸锂电池正极材料进行浸出时,浸出效果不明显,且不能对废旧镍钴锰酸锂电池正极材料中的每一种有价元素进行分离和回收利用的问题。本发明采用柠檬酸对废旧的镍钴锰酸锂电池材料进行浸取,避免了在对废旧镍钴锰酸锂电池正极材料进行浸出时,浸出效果不明显,又避开了金属离子之间复杂的分离工艺,该回收方法具有工艺简单、成本低、回收率高和回收产物的纯度高等优点;同时本发明的回收方法实现了对镍、钴、锰、锂等有价金属一一得到了分离和回收,使得再次应用于电池正极材料的制备。

Description

一种废旧镍钴锰酸锂电池正极材料的元素回收方法
技术领域
本发明属于二次资源回收利用和循环经济技术领域,尤其涉及一种废旧镍钴锰酸锂电池正极材料的元素回收方法。
背景技术
锂离子电池具有能量密度高、自放电小、循环性能优越、充电效率高、无记忆效应等诸多优点,被广泛应用于各类消费类电子产品、军事、纯电动汽车和航空航天应用;随着电动汽车的发展,未来动力型锂离子电池将迎来巨大的市场,并出现大量动力锂离子电池退役的回收再利用问题;随着即将到来的动力电池报废高峰,废旧锂离子电池的回收规模将迅速增长,废旧电池回收市场价值将更加巨大。
目前,国内外研究人员对废旧废旧镍钴锰酸锂电池正极材料的处理和回收进行了大量的研究和探讨,其中基于湿法冶金的处理方法具有回收效率高、流程简单、工艺易控等优点,获得了较高的关注;但目前对钴锰酸锂电池正极材料的回收工艺方式多为协同回收,而分步回收的方式很少;如CN105331819A公布了从废旧钴酸锂电池正极材料回收Co3O4的方法,通过有机酸浸和有机萃取仅实现了对钴元素的分离和回收。如CN102676827A公布了从镍钴锰酸锂电池回收有价金属的方法,通过溶剂超声处理和过滤分离正极材料和电池粉末,然后使用酸浸氧化,碱液调整pH值等获得镍钴锰复合碳酸盐;CN102751549A利用含氟有机酸浸出的方法,实现了镍、钴、锰三元前驱体的制备和碳酸锂的回收。
从以上内容可以归纳出,现有的技术主要依靠酸碱浸出、有机酸浸出/萃取等方式通过协同回收的方法回收废旧电池中的部分有价元素;然而对其中的每一种有价元素未做到分离和回收,并且浸出剂选择性浸出效果不明显,浸出液往往含有大量的杂质元素,造成浸出剂大量消耗的同时,所获得的产品纯度差,特别是锂的回收和纯化相对比较困难、除杂步骤复杂、成本高;与此同时,浸出剂的循环回收利用也未见报道。
发明内容
有鉴于此,本发明的主要目的在于提供一种废旧镍钴锰酸锂电池正极材料的元素回收方法,解决了现有技术中在对废旧镍钴锰酸锂电池正极材料进行浸出时,浸出效果不明显,且不能对废旧镍钴锰酸锂电池正极材料中的每一种有价元素进行分离和回收利用的问题。
为达到上述目的,本发明的技术方案是这样实现的:一种废旧镍钴锰酸锂电池正极材料的元素回收方法,该方法通过以下步骤实现:
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为0~3.5,充分反应后过滤并保留第一滤液;
步骤7,向步骤6所述第一滤液中加入可溶性过硫酸盐,调节终点pH为2~6,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在50-80℃条件下反应3-5h,反应过程中控制pH值在5.0-5.5;反应结束后,固液分离,得到沉钴后液和沉钴渣;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
优选地,所述步骤4中,所述组分调控时需调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1。
优选地,所述调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合。
优选地,所述步骤4中,所述共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入碱性溶液,搅拌进行反应,反应的过程中调整含钴、镍、锰、锂余液的pH为7~12。
优选地,所述pH值优选为10~11;所述碱性溶液的浓度为2~4mol/L;所述搅拌速度为100~500rpm;所述搅拌时间为2~4h;所述反应温度为20~50℃。
优选地,所述碱性溶液为氢氧化钠、氨水中的一种或两种的混合。
优选地,所述步骤8中,所述氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,所述氧化剂过氧化氢的用量为沉淀钴所需理论量的4-7倍。
优选地,所述步骤8中,所述氧化增效剂包括以下重量份计的组分:三氯异氰尿酸5.5-8.5份、N-乙酰苯胺0.9-2.3份和聚丙烯酰胺0.15-0.25份,用量为加入氧化增效剂至终浓度1-5g/L。
与现有技术相比,本发明采用柠檬酸对废旧的镍钴锰酸锂电池材料进行浸取,避免了在对废旧镍钴锰酸锂电池正极材料进行浸出时,浸出效果不明显,又避开了金属离子之间复杂的分离工艺,该回收方法具有工艺简单、成本低、回收率高和回收产物的纯度高等优点;同时本发明的回收方法实现了对镍、钴、锰、锂等有价金属一一得到了分离和回收,使得再次应用于电池正极材料的制备。
附图说明
图1为本发明提供的一种废旧镍钴锰酸锂电池正极材料的元素回收方法工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,该方法通过以下步骤实现:
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用含有还原性的柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
其中,组分调控时需调节含钴、镍、锰、锂余液中Ni、Co和Mn的摩尔比符合分子式LiNixCoyMn1-x-yO2中镍、钴和锰的摩尔比,其中x>0,y>0,且x+y<1;调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合。
其中,共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入浓度为2~4mol/L碱性溶液,在搅拌速度为100~500rpm、反应温度为20~50℃的条件下反应2~4h,反应的过程中调整含钴、镍、锰、锂余液的pH为7~12,其中,碱性溶液为氢氧化钠、氨水中的一种或两种的混合;
进一步地,pH值优选为10~11;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为0~3.5,充分反应后过滤并保留第一滤液;
步骤7,向步骤6第一滤液中加入可溶性过硫酸盐,调节终点pH为2~6,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在50-80℃条件下反应3-5h,反应过程中控制pH值在5.0-5.5;反应结束后,固液分离,得到沉钴后液和沉钴渣;
其中,氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,氧化剂过氧化氢的用量为沉淀钴所需理论量的4-7倍;钴在正极材料中的所占比例最大,且较为贵重,最具回收价值,一般情况下+3价的钴离子很不稳定,氧化性强,而+2价的钴离子则较为稳定,因此这里选用过氧化氢和氧化增效剂作为氧化组合物,使+3价的钴离子通过过氧化氢变为+2价的钴离子;
其中,氧化增效剂包括以下重量份计的组分:三氯异氰尿酸5.5-8.5份、N-乙酰苯胺0.9-2.3份和聚丙烯酰胺0.15-0.25份,用量为加入氧化增效剂至终浓度1-5g/L;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
与现有技术相比,本发明采用柠檬酸对废旧的镍钴锰酸锂电池材料进行浸取,避免了在对废旧镍钴锰酸锂电池正极材料进行浸出时,浸出效果不明显,又避开了金属离子之间复杂的分离工艺,该回收方法具有工艺简单、成本低、回收率高和回收产物的纯度高等优点;同时本发明的回收方法实现了对镍、钴、锰、锂等有价金属一一得到了分离和回收,使得再次应用于电池正极材料的制备。
实施例1
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用含有还原剂的柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
其中,组分调控时需调节含钴、镍、锰、锂余液中Ni、Co和Mn的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1;调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合;
其中,共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入浓度为2~4mol/L氢氧化钠溶液,在搅拌速度为100~500rpm、反应温度为20℃的条件下反应2h,反应的过程中调整含钴、镍、锰、锂余液的pH为10;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为0,充分反应后过滤并保留第一滤液;
步骤7,向步骤6第一滤液中加入可溶性过硫酸盐,调节终点pH为2,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在50℃条件下反应3h,反应过程中控制pH值在5.0;反应结束后,固液分离,得到沉钴后液和沉钴渣;
其中,氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,氧化剂过氧化氢的用量为沉淀钴所需理论量的4倍;钴在正极材料中的所占比例最大,且较为贵重,最具回收价值,一般情况下+3价的钴离子很不稳定,氧化性强,而+2价的钴离子则较为稳定,因此这里选用过氧化氢和氧化增效剂作为氧化组合物,使+3价的钴离子通过过氧化氢变为+2价的钴离子;
其中,氧化增效剂包括以下重量份计的组分:三氯异氰尿酸5.8份、N-乙酰苯胺2.3份和聚丙烯酰胺0.15份,用量为加入氧化增效剂至终浓度1g/L。
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
本实施例中的钴、镍、锰、锂收率分别为99.3%、88.5%、92%、98%。
实施例2
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用含有还原剂的柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
其中,组分调控时需调节含钴、镍、锰、锂余液中Ni、Co和Mn的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1;调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合;
其中,共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入浓度为3mol/L氢氧化钠溶液,在搅拌速度为300rpm、反应温度为20~50℃的条件下反应3h,反应的过程中调整含钴、镍、锰、锂余液的pH为10.5,步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为2,充分反应后过滤并保留第一滤液;
步骤7,向步骤6第一滤液中加入可溶性过硫酸盐,调节终点pH为4,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在60℃条件下反应4h,反应过程中控制pH值在5.5;反应结束后,固液分离,得到沉钴后液和沉钴渣;
其中,氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,氧化剂过氧化氢的用量为沉淀钴所需理论量的6倍;钴在正极材料中的所占比例最大,且较为贵重,最具回收价值,一般情况下+3价的钴离子很不稳定,氧化性强,而+2价的钴离子则较为稳定,因此这里选用过氧化氢和氧化增效剂作为氧化组合物,使+3价的钴离子通过过氧化氢变为+2价的钴离子;
其中,氧化增效剂包括以下重量份计的组分:三氯异氰尿酸8.2份、N-乙酰苯胺1.0份和聚丙烯酰胺0.15份,用量为加入氧化增效剂至终浓度3g/L;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
本实施例中的钴、镍、锰、锂收率分别为99.5%、89.5%、95%、97%。
实施例3
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用含有还原剂的柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
其中,组分调控时需调节含钴、镍、锰、锂余液中Ni、Co和Mn的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1;调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合。
其中,共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入浓度为4mol/L氢氧化钠溶液,在搅拌速度为500rpm、反应温度为50℃的条件下反应4h,反应的过程中调整含钴、镍、锰、锂余液的pH为11;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为3.5,充分反应后过滤并保留第一滤液;
步骤7,向步骤6第一滤液中加入可溶性过硫酸盐,调节终点pH为6,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在80℃条件下反应5h,反应过程中控制pH值在5.5;反应结束后,固液分离,得到沉钴后液和沉钴渣;
其中,氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,氧化剂过氧化氢的用量为沉淀钴所需理论量的7倍;钴在正极材料中的所占比例最大,且较为贵重,最具回收价值,一般情况下+3价的钴离子很不稳定,氧化性强,而+2价的钴离子则较为稳定,因此这里选用过氧化氢和氧化增效剂作为氧化组合物,使+3价的钴离子通过过氧化氢变为+2价的钴离子;
其中,氧化增效剂包括以下重量份计的组分:三氯异氰尿酸7.5份、N-乙酰苯胺1.5份和聚丙烯酰胺0.23份,用量为加入氧化增效剂至终浓度5g/L;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
本实施例中的钴、镍、锰、锂收率分别为97.5%、87.5%、91%、95%。
实施例4
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用含有还原剂的柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
其中,组分调控时需调节含钴、镍、锰、锂余液中Ni、Co和Mn的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1;调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合;
其中,共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入浓度为2mol/L氨水溶液,在搅拌速度为100rpm、反应温度为20℃的条件下反应2h,反应的过程中调整含钴、镍、锰、锂余液的pH为10;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为2,充分反应后过滤并保留第一滤液;
步骤7,向步骤6第一滤液中加入可溶性过硫酸盐,调节终点pH为2~6,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在60℃条件下反应3-5h,反应过程中控制pH值在5.2;反应结束后,固液分离,得到沉钴后液和沉钴渣;
其中,氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,氧化剂过氧化氢的用量为沉淀钴所需理论量的5倍;钴在正极材料中的所占比例最大,且较为贵重,最具回收价值,一般情况下+3价的钴离子很不稳定,氧化性强,而+2价的钴离子则较为稳定,因此这里选用过氧化氢和氧化增效剂作为氧化组合物,使+3价的钴离子通过过氧化氢变为+2价的钴离子;
其中,氧化增效剂包括以下重量份计的组分:三氯异氰尿酸8.2份、N-乙酰苯胺1.0份和聚丙烯酰胺0.15份,用量为加入氧化增效剂至终浓度3g/L;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
本实施例中的钴、镍、锰、锂收率分别为99.5%、89.5%、93%、94%。
实施例5
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用含有还原剂的柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
其中,组分调控时需调节含钴、镍、锰、锂余液中Ni、Co和Mn的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1;调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合;
其中,共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入浓度为4mol/L氨水溶液,在搅拌速度为500rpm、反应温度为50℃的条件下反应3h,反应的过程中调整含钴、镍、锰、锂余液的pH为11;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为3,充分反应后过滤并保留第一滤液;
步骤7,向步骤6第一滤液中加入可溶性过硫酸盐,调节终点pH为6,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在80℃条件下反应5h,反应过程中控制pH值在5.5;反应结束后,固液分离,得到沉钴后液和沉钴渣;
其中,氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,氧化剂过氧化氢的用量为沉淀钴所需理论量的7倍;钴在正极材料中的所占比例最大,且较为贵重,最具回收价值,一般情况下+3价的钴离子很不稳定,氧化性强,而+2价的钴离子则较为稳定,因此这里选用过氧化氢和氧化增效剂作为氧化组合物,使+3价的钴离子通过过氧化氢变为+2价的钴离子;
其中,氧化增效剂包括以下重量份计的组分:三氯异氰尿酸8.2份、N-乙酰苯胺1.0份和聚丙烯酰胺0.15份,用量为加入氧化增效剂至终浓度3g/L;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
本实施例中的钴、镍、锰、锂收率分别为97.5%、89.6%、94.2%、96.1%。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (8)

1.一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,该方法通过以下步骤实现:
步骤1,对废旧的镍钴锰酸锂电池材料进行分级处理,得到镍钴锰酸锂正极材料,备用;
步骤2,用柠檬酸对步骤1所得的镍钴锰酸锂正极材料进行浸出,分离得到浸取液和浸取渣;
步骤3,对步骤2所得的浸取液进行浓缩精馏,得到含钴、镍、锰、锂余液;
步骤4,对步骤3所得的含钴、镍、锰、锂余液经组分调控后进行钴、镍、锰组分的共沉淀并进行固液分离,得到富锂溶液和含有钴、镍、锰的混料;
步骤5,向步骤4所得的富锂溶液加入饱和碳酸钠溶液,得到白色沉淀,再经过抽滤、洗涤、干燥后,得到高纯碳酸锂固体;
步骤6,将步骤4所得的含有钴、镍、锰的混料与稀硫酸和亚硫酸钠的混合液混合,调节终点pH为0~3.5,充分反应后过滤并保留第一滤液;
步骤7,向步骤6所述第一滤液中加入可溶性过硫酸盐,调节终点pH为2~6,充分反应后过滤得到锰的氧化物沉淀以及含有硫酸镍和硫酸钴的第二滤液;
步骤8,向步骤7所得的含有硫酸镍和硫酸钴的第二滤液中加入氧化剂组合物,机械搅拌并加热,在50-80℃条件下反应3-5h,反应过程中控制pH值在5.0-5.5;反应结束后,固液分离,得到沉钴后液和沉钴渣;
步骤9,对步骤8所得的沉钴后液进行旋流电积提取镍,沉钴渣送钴回收系统生产草酸钴或氧化钴。
2.根据权利要求1所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述步骤4中,所述组分调控时需调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比符合分子式LiNixCoyMn1-x-yO2中Ni、Co和Mn的摩尔比,其中x>0,y>0,且x+y<1。
3.根据权利要求2所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述调节含钴、镍、锰、锂余液中镍、钴和锰的摩尔比的具体方法为:向含钴、镍、锰、锂余液中添加水溶性镍盐、钴盐或者锰盐中一种或至少两种的组合。
4.根据权利要求3所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述步骤4中,所述共沉淀的具体方法为:向含钴、镍、锰、锂余液中加入碱性溶液,搅拌进行反应,反应的过程中调整含钴、镍、锰、锂余液的pH为7~12。
5.根据权利要求4所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述pH值优选为10~11;所述碱性溶液的浓度为2~4mol/L;所述搅拌速度为100~500rpm;所述搅拌时间为2~4h;所述反应温度为20~50℃。
6.根据权利要求5所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述碱性溶液为氢氧化钠、氨水中的一种或两种的混合。
7.根据权利要求6所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述步骤8中,所述氧化剂组合物包括氧化剂过氧化氢和氧化增效剂,所述氧化剂过氧化氢的用量为沉淀钴所需理论量的4-7倍。
8.根据权利要求1-7任一所述的一种废旧镍钴锰酸锂电池正极材料的元素回收方法,其特征在于,所述步骤8中,所述氧化增效剂包括以下重量份计的组分:三氯异氰尿酸5.5-8.5份、N-乙酰苯胺0.9-2.3份和聚丙烯酰胺0.15-0.25份,用量为加入氧化增效剂至终浓度1-5g/L。
CN201710527903.9A 2017-06-30 2017-06-30 一种废旧镍钴锰酸锂电池正极材料的元素回收方法 Pending CN109216817A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710527903.9A CN109216817A (zh) 2017-06-30 2017-06-30 一种废旧镍钴锰酸锂电池正极材料的元素回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710527903.9A CN109216817A (zh) 2017-06-30 2017-06-30 一种废旧镍钴锰酸锂电池正极材料的元素回收方法

Publications (1)

Publication Number Publication Date
CN109216817A true CN109216817A (zh) 2019-01-15

Family

ID=64991686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710527903.9A Pending CN109216817A (zh) 2017-06-30 2017-06-30 一种废旧镍钴锰酸锂电池正极材料的元素回收方法

Country Status (1)

Country Link
CN (1) CN109216817A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724818A (zh) * 2019-09-29 2020-01-24 湖南雅城新材料有限公司 一种废旧锂电池的全湿法回收工艺
CN111039312A (zh) * 2019-12-26 2020-04-21 甘肃睿思科新材料有限公司 一种镍钴锰酸锂正极材料的处理方法
CN111218568A (zh) * 2020-03-09 2020-06-02 上海电力大学 一种从废旧锂离子电池中分离回收镍钴的方法
CN112410565A (zh) * 2020-11-18 2021-02-26 上海第二工业大学 一种从废旧三元锂离子电池正极材料中回收有价金属元素的方法
CN115747495A (zh) * 2022-09-29 2023-03-07 沈阳工业大学 一种清洁浸出三元锂电池废料的方法
CN116240385A (zh) * 2023-05-08 2023-06-09 山东产研绿洲环境产业技术研究院有限公司 一种废旧锂电池有价金属的分离纯化方法
CN116706050A (zh) * 2023-08-07 2023-09-05 江门市科恒实业股份有限公司 中低镍单晶三元正极材料及其制备方法和电池
CN116730566A (zh) * 2023-08-15 2023-09-12 赣州吉锐新能源科技股份有限公司 一种用于电池回收的含氟废液除氟工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751549A (zh) * 2012-07-04 2012-10-24 中国科学院过程工程研究所 一种废旧锂离子电池正极材料全组分资源化回收方法
CN103088215A (zh) * 2012-10-16 2013-05-08 赣州市豪鹏科技有限公司 高锰钴比镍钴锰原料中镍钴与锰分离的方法
CN105779777A (zh) * 2016-02-29 2016-07-20 河南工信环保科技有限公司 一种从镍钴渣中分离回收镍、钴的方法
CN106848474A (zh) * 2017-04-18 2017-06-13 中科过程(北京)科技有限公司 一种从锂离子电池正极废料中高效回收正极材料前驱体和碳酸锂的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751549A (zh) * 2012-07-04 2012-10-24 中国科学院过程工程研究所 一种废旧锂离子电池正极材料全组分资源化回收方法
CN103088215A (zh) * 2012-10-16 2013-05-08 赣州市豪鹏科技有限公司 高锰钴比镍钴锰原料中镍钴与锰分离的方法
CN105779777A (zh) * 2016-02-29 2016-07-20 河南工信环保科技有限公司 一种从镍钴渣中分离回收镍、钴的方法
CN106848474A (zh) * 2017-04-18 2017-06-13 中科过程(北京)科技有限公司 一种从锂离子电池正极废料中高效回收正极材料前驱体和碳酸锂的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724818A (zh) * 2019-09-29 2020-01-24 湖南雅城新材料有限公司 一种废旧锂电池的全湿法回收工艺
CN110724818B (zh) * 2019-09-29 2021-05-18 湖南雅城新材料有限公司 一种废旧锂电池的全湿法回收工艺
CN111039312A (zh) * 2019-12-26 2020-04-21 甘肃睿思科新材料有限公司 一种镍钴锰酸锂正极材料的处理方法
CN111218568A (zh) * 2020-03-09 2020-06-02 上海电力大学 一种从废旧锂离子电池中分离回收镍钴的方法
CN112410565A (zh) * 2020-11-18 2021-02-26 上海第二工业大学 一种从废旧三元锂离子电池正极材料中回收有价金属元素的方法
CN115747495A (zh) * 2022-09-29 2023-03-07 沈阳工业大学 一种清洁浸出三元锂电池废料的方法
CN116240385A (zh) * 2023-05-08 2023-06-09 山东产研绿洲环境产业技术研究院有限公司 一种废旧锂电池有价金属的分离纯化方法
CN116706050A (zh) * 2023-08-07 2023-09-05 江门市科恒实业股份有限公司 中低镍单晶三元正极材料及其制备方法和电池
CN116706050B (zh) * 2023-08-07 2023-11-28 江门市科恒实业股份有限公司 中低镍单晶三元正极材料及其制备方法和电池
CN116730566A (zh) * 2023-08-15 2023-09-12 赣州吉锐新能源科技股份有限公司 一种用于电池回收的含氟废液除氟工艺
CN116730566B (zh) * 2023-08-15 2023-10-27 赣州吉锐新能源科技股份有限公司 一种用于电池回收的含氟废液除氟工艺

Similar Documents

Publication Publication Date Title
CN109216817A (zh) 一种废旧镍钴锰酸锂电池正极材料的元素回收方法
CN106848474A (zh) 一种从锂离子电池正极废料中高效回收正极材料前驱体和碳酸锂的方法
CN107666022A (zh) 一种废弃三元正极材料中锂、镍钴锰的回收方法
Zou et al. A novel method to recycle mixed cathode materials for lithium ion batteries
CN107994288A (zh) 废旧镍钴锰酸锂三元电池正极材料中有价金属回收方法
CN112158894A (zh) 一种废旧锂电池正极材料的回收方法
CN109052492B (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN110240207A (zh) 一种废旧锂电池回收制备三元正极材料的方法
CN106916955A (zh) 一种选择性回收锂离子电池正极废料中有价金属的方法
CN109449434A (zh) 一种利用废旧锂离子电池制备三元锂电池正极材料前驱体的方法
CN109082522A (zh) 一种废旧三元锂电池正极粉料的回收方法
CN112723330B (zh) 一种异磷锰铁矿型磷酸铁的制备方法及其应用
CN114421045A (zh) 一种低粘度绿色溶剂闭环回收退役动力电池的方法
CN106848473A (zh) 一种废旧磷酸铁锂电池中锂的选择性回收方法
CN112095000A (zh) 一种从废旧钴酸锂电池中回收钴、锂金属的方法
CN109473691A (zh) 废旧三元锂电池选择性浸提回收方法
CN103259063B (zh) 从废旧的含Co和Mn中至少一种的锂离子电池正极材料或其前驱体回收过渡金属的方法
CN108910965A (zh) 一种制备三元氢氧化物前驱体的方法
CN113584589A (zh) 一种报废锂电池极片制备单晶三元正极材料的方法
CN111129488A (zh) 一种锂离子电池镍钴二元氧化物正极材料前驱体的制备方法
CN115084697A (zh) 一种三元锂电池正极材料再生方法及三元锂电池正极材料
CN115275415A (zh) 一种从退役锂电池中回收锂并再生正极材料的方法
CN115652077A (zh) 一种废旧锰酸锂电池选择性分离回收锂和锰的方法
Zhou et al. The critical role of H 2 reduction roasting for enhancing the recycling of spent Li-ion battery cathodes in the subsequent neutral water electrolysis
CN104701524A (zh) 一种利用镍电解液直接制备镍钴锰三元正极材料前驱体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190115

RJ01 Rejection of invention patent application after publication