CN109121441A - 离子传导性高分子电解质膜铸造过程中根据提高极性溶剂的相分离的效果使离子通道的大小得到调节的离子传导性高分子电解质膜及其制备方法 - Google Patents

离子传导性高分子电解质膜铸造过程中根据提高极性溶剂的相分离的效果使离子通道的大小得到调节的离子传导性高分子电解质膜及其制备方法 Download PDF

Info

Publication number
CN109121441A
CN109121441A CN201780021024.7A CN201780021024A CN109121441A CN 109121441 A CN109121441 A CN 109121441A CN 201780021024 A CN201780021024 A CN 201780021024A CN 109121441 A CN109121441 A CN 109121441A
Authority
CN
China
Prior art keywords
polyelectrolyte membrane
polyelectrolyte
hydrophilic
mentioned
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780021024.7A
Other languages
English (en)
Other versions
CN109121441B (zh
Inventor
李熙又
金想优
尹泰雄
崔乘荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDUSTRY UNIVERSITY COOPERATION
Sogang University Research Foundation
Original Assignee
INDUSTRY UNIVERSITY COOPERATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDUSTRY UNIVERSITY COOPERATION filed Critical INDUSTRY UNIVERSITY COOPERATION
Publication of CN109121441A publication Critical patent/CN109121441A/zh
Application granted granted Critical
Publication of CN109121441B publication Critical patent/CN109121441B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及离子传导性高分子电解质膜铸造过程中通过提高极性溶剂的相分离的效果来调节离子通道的大小及离子传导率的离子传导性高分子电解质膜及其制备方法。

Description

离子传导性高分子电解质膜铸造过程中根据提高极性溶剂的 相分离的效果使离子通道的大小得到调节的离子传导性高分 子电解质膜及其制备方法
技术领域
本发明涉及通过将极性有机溶剂与亲水性溶剂以特定比率混合来调节或扩张离子传导性高分子电解质膜的离子通道的大小的方法。
背景技术
已广泛作为现有代表性阳离子传导性高分子电解质膜使用的代表性物质为由杜邦公司开发的Nafion。Nafion为氟类聚四氟乙烯(PTFE)主链与磺酸基末端的亲水性支链相结合的结构,由于亲水性、疏水性之间的相分离清晰,其离子通道形成得大且清晰。因此,具有在加湿条件下基于磺酸基的解离的高阳离子传导率(0.1S/cm)高的优点。
与氟类高分子电解质膜(例如,Nafion)相比,非氟类高分子电解质膜(例如,磺化聚醚醚酮(sPEEK)、磺化聚芳醚砜(sPAES))的主链(芳香族、疏水性)与支链(磺酸基、亲水性)之间的相分离小,因此具有较小的通道结合性及大小。然而,由于离子传导率通过离子通道,因而存在如下的问题,即,与氟类高分子电解质膜相比,具有更小的离子通道的非氟类高分子电解质膜的离子传导率更低。
除了阳离子传导性高分子电解质膜以外,在碱性环境中传导阴离子的电解质膜像上述高分子电解质膜一样,也按照主链的种类分为氟类、非氟类,支链具有胺类阳离子组(例如,季铵、苄基三甲基铵(benzyl trimethyl ammonium)、甲基咪唑鎓(methylimidazolium)、烷基铵(alkyl ammonium)、共振稳定胍盐(resonance stabilizedguanidinium)等)。
离子传导性高分子电解质膜的离子传导率是由离子交换能力及离子通道的大小决定。离子交换能力越高,离子传导率越高,但是由于高离子交换容量(IEC,ion exchangecapacity),因而存在因吸水膨胀(water swelling)急剧增加而导致溶解在水中的缺点。因此,若可以在不调节离子交换容量的情况下调节离子通道的大小,则可以容易地调节离子传导性高分子电解质膜的离子传导率,而没有吸水膨胀的问题。
发明内容
技术问题
本发明提供离子传导性高分子膜,上述离子传导性高分子膜可在无需调节离子传导性高分子电解质自身的离子交换容量或无需添加亲水性无机粒子的情况下,调节离子传导性高分子电解质的离子通道的大小,从而可调节离子传导率,而不降低物理性质。
解决问题的手段
本发明的一实施方式涉及通过将包含离子传导性非氟类或氟类高分子电解质和有机溶剂的溶液与亲水性溶剂以规定比率混合来调节高分子电解质膜的离子通道的大小的方法。
本发明的再一实施方式涉及通过在离子传导性非氟类或氟类高分子电解质和第一亲水性溶剂的混合溶液中以规定比率添加与上述非氟类或氟类高分子电解质的亲水性官能团兼容性突出的第二亲水性溶剂来调节高分子电解质膜的离子通道的大小的方法。
在本发明的另一实施方式中,本发明涉及由上述的方法制备而成的离子传导性高分子电解质膜,与不包含亲水性溶剂的高分子电解质膜相比,离子传导性高分子电解质膜的离子通道的大小得以扩张。
发明的效果
本发明可通过在由上述有机溶剂和上述高分子电解质形成的溶液内添加亲水性溶剂或者在上述高分子与亲水性溶剂以特定比率混合的溶剂内添加与亲水性官能团兼容性突出的极性亲水性溶剂来调节或扩张离子传导性高分子电解质膜的离子通道的大小。
附图说明
图1示出干燥步骤中的时间与加热温度的例。
图2为示出通过混合亲水性溶剂来调节高分子电解质膜的离子通道的大小的结构的概念图。
图3示出本发明的离子传导性高分子电解质膜相比于不具有极性溶剂效果的高分子电解质膜具有增加的离子传导率。
图4示出在实验2中获取的小角散射曲线。
具体实施方式
以下,对本发明进行详细说明。
本发明涉及调节离子传导性高分子电解质膜的离子通道的大小的方法。
本发明的调节离子传导性高分子电解质膜的离子通道的大小的方法包括在由有机溶剂和高分子电解质形成的溶液内以特定比率混合极性溶剂的步骤。更具体地,调节离子传导性高分子电解质膜的离子通道的大小的方法包括将包含离子传导性非氟类或氟类高分子电解质和有机溶剂的溶液与亲水性溶剂以规定比率混合的步骤。
并且,本发明的调节离子传导性高分子电解质膜的离子通道的大小的方法包括在上述高分子与亲水性溶剂以特定比率混合的溶剂内添加与亲水性官能团兼容性突出的极性亲水性溶剂并进行混合的步骤。更具体地,调节离子传导性高分子电解质膜的离子通道的大小的方法包括在离子传导性非氟类或氟类高分子电解质和第一亲水性溶剂的混合溶液中以规定比率添加与上述非氟类或氟类高分子电解质的亲水性官能团兼容性突出的第二亲水性溶剂的步骤。上述第一亲水性溶剂与第二亲水性溶剂可以是相同或互不相同的溶剂。
上述混合步骤为将由有机溶剂和非氟类高分子电解质或氟类高分子电解质形成的离子传导性高分子电解质溶液与极性溶剂混合的步骤。
上述离子传导性高分子电解质膜可以无限制地用作燃料电池用离子传导性膜。
上述非氟类高分子电解质或氟类高分子电解质为与作为磺酸基(SO3H)、胺基(NH3)或磷酸基(-PO3H2)中的至少一种基团的亲水性阳离子交换官能团相结合而成的结构或具有胺类亲水性阴离子交换官能团(例如,季铵、苄基三甲基铵、甲基咪唑鎓、烷基铵、共振稳定胍盐等)的结构。
根据制备方法,可将上述非氟类高分子电解质膜分为交联烃(cross-linkedhydrocarbons)、接枝聚合物(grafted polymer)、聚合物共混物(polymer blends),根据结合有亲水性官能团的结构可分为官能团直接与主链(main chain)相结合的结构、接枝有包含官能团的支链(side chain)的结构、由疏水性嵌段和亲水性嵌段组成的嵌段共聚物。
上述非氟类高分子电解质膜的主链由疏水性芳香族烃组成,官能团包含阳离子源和阴离子源,并呈现亲水性。
上述非氟类高分子电解质可以是聚芳撑类、聚醚酮及聚醚醚酮中的一种非氟类高分子或者可以是上述非氟类高分子与如下的亲水性离子交换官能团相结合而成的结构:上述亲水性离子交换官能团为磺酸基(SO3H)、胺基(NH3)、磷酸基(-PO3H2)的亲水性阳离子交换官能团及胺类亲水性阴离子交换官能团中的至少一种。
上述非氟类高分子电解质可以是磺化聚醚醚酮(sulfonatedpolyetheretherketone(sPEEK))、磺化聚醚酮(sulfonated polyetherketone(sPEK))、磺化聚醚砜(sulfonated polyethersulfone(sPES))、磺化聚芳醚砜(sulfonatedpolyarylethersulfone(sPAES))的阳离子传导性高分子膜或Neosepta、AR204SZRA、IPA、Selemion AMV或FAS的阴离子传导性高分子膜。
上述氟类高分子电解质为由疏水性的氟类主链(backbone)和亲水性支链(sidechain)形成的高分子电解质,根据主链的结构分为全氟类、半氟类,根据支链的官能团种类分为磺酸基、磷酸基、胺基等,根据支链的长度分为长支链(long side chain)或短支链(short sidechain)。
上述氟类高分子电解质可以为如下的氟类高分子与亲水性离子交换官能团相结合而成的结构(例如,季铵、苄基三甲基铵、甲基咪唑鎓、烷基铵、共振稳定胍盐等):上述氟类高分子为聚四氟乙烯(Polytetrafluoroethrylene,PTFE)、聚氟乙烯(Polyvinylfluoride,PVF)、聚偏氟乙烯(Polyvinylidine fluoride,PVDF)、聚四氟乙烯(Polyethylenetetrafluoroethylene,ETFE)的氟类基团中的至少一种,上述亲水性离子交换官能团为具有磺酸基(SO3H)、胺基(NH3)、磷酸基(-PO3H2)的亲水性阳离子交换官能团及胺类亲水性阴离子交换官能团的结构中的至少一种。
上述氟类高分子电解质可以为Nafion、Aquivion、Flemion、Gore、Aciplex、R-1030、Aciplex A-192或Morgane ADP。
上述有机溶剂为用作高分子溶解溶剂的极性非质子性溶剂,上述亲水性溶剂可以是与上述有机溶剂相比极性高的极性质子性溶剂。
用作高分子溶解溶剂的代表性的极性非质子性溶剂可以是选自由N,N-二甲基乙酰胺(N,N-dimethylacetamide,DMAc)、N-甲基吡咯烷酮(N-methyl pyrrolidone,NMP)、二甲亚砜(imethyl sulfoxide,DMSO)以及N,N-二甲基甲酰胺(N,N-dimethylformamide,DMF)组成的组中的至少一种。
优选的,上述亲水性溶剂使用具有高偶极矩并且能够与通道形成氢键的极性质子性溶剂。代表性的上述亲水性溶剂可以为选自由叔丁醇(t-butanol)、正丙醇(n-propanol)、乙醇(ethanol)、甲醇(methanol)、氨(ammonia)、乙酸(acetic acid)、水组成的组中的至少一种。
在上述方法中,相对于有机溶剂,可混合1~100重量百分比的亲水性溶剂。上述有机溶剂中可以以1~30重量百分比,优选地,以1~20重量百分比,更优选地,以1~10重量百分比溶解非氟类或氟类高分子电解质。
上述方法可通过调节高分子电解质膜的离子通道的大小来提高燃料电池用高分子电解质膜的离子传导率。
本发明涉及离子传导率得到提高的高分子电解质膜的制备方法。
上述高分子电解质膜的制备方法包括:将包含离子传导性非氟类或氟类高分子电解质和有机溶剂的溶液与亲水性溶剂以规定比率混合的步骤;以及将混合的上述溶液涂敷在基材上并进行干燥的步骤。
并且,上述高分子电解质膜的制备方法包括:在离子传导性非氟类或氟类高分子电解质和第一亲水性溶剂的混合溶液中以规定比率添加与上述非氟类或氟类高分子电解质的亲水性官能团兼容性突出的第二亲水性溶剂的步骤;以及将混合的上述溶液涂敷在基材上并进行干燥的步骤。
上述第一亲水性溶剂与第二亲水性溶剂可以为相同或互不相同的溶剂。
可通过上述方法调节或扩张离子通道的大小。更具体地,与不包含亲水性溶剂的高分子电解质膜相比,本申请的离子传导性高分子电解质膜的离子通道的大小得以扩张。与不包含亲水性溶剂的高分子电解质膜(即,不具有极性溶剂效果的高分子电解质膜)相比,离子传导性高分子电解质膜的离子通道的大小可增加至150%。
上述混合步骤可参照上文。
上述涂敷步骤可使用任何公知的膜形成方法。
上述干燥步骤为蒸发亲水性溶剂和有机溶剂的步骤。上述干燥步骤可使用任何公知的方法。
图1示出干燥步骤中的时间与加热温度的例。参照图1,在亲水性溶剂为水的情况下,上述干燥步骤在80℃的温度下将水蒸发规定时间,接着将温度提升到100℃来完全去除水,再可将温度提升到120℃来去除有机溶剂。
图2为示出通过混合亲水性溶剂(蓝色粒子)来调节高分子电解质膜的离子通道的大小的结构的概念图。磺化高分子电解质由疏水性主链和亲水性支链的相分离形成离子通道,非氟类烃类高分子电解质膜的相分离程度小于氟类高分子电解质膜,因此形成大小更小的离子通道,并且由于端点(dead-end)数量多,降低通道的连接性。
在另一实施方式中,本发明涉及由上述方法制备而成的燃料电池用高分子电解质膜。
与不具有亲水性溶剂效果的高分子电解质膜相比,本发明的高分子电解质膜由于极性亲水性溶剂而可调节离子通道的大小。
本发明的实施方式
以下,参照实施例进一步对本发明进行详细说明,但本发明并不局限于此。
实施例1
将包含二甲基乙酰胺(DMAc)的磺化聚醚醚酮(sulfonated polyetheretherketone,sPEEK)溶液(5重量百分比的磺化聚醚醚酮)与水混合并搅拌一天。相对于二甲基乙酰胺的重量,分别添加1~100%的水。
将完成搅拌的混合溶液在80℃的烤箱中铸造过夜。完成铸造后,将蒸馏水倒入玻璃器皿,并小心地从玻璃器皿剥开膜。接着,为了去除残留在电解质膜中的有机溶剂,在1M的硫酸溶液中并在80℃的条件下煮沸1小时,接着在100℃的水中煮沸1小时。
比较例1
除了不添加水以外,以与实施例1相同的方法执行。
实验1:测量离子传导率
测量在实施例1和比较例1制备的高分子电解质膜的厚度后,将Bekktech公司的四探针电导率电池(4probe conductivity cell)与交流阻抗(AC impedance)相连接后,在80℃/100%的相对湿度(RH)条件下,测量离子传导率。
实验2:小角散射法
利用浦项粒子加速器中心的4C SAXS2光束示出小角散射曲线。
图3和表1示出在80℃/100%的加湿条件下,在实验1中测量的离子传导率。
表1
水/二甲基乙酰胺(%) 离子传导率增加率(%)
0~100 100~150
参照图3和表1,当在80℃的条件下,相对于有机溶剂,添加0~100重量百分比的水时,与比较例1相比,实施例1增加了100~150%的离子传导率。
图4示出在实验2中获取的小角散射曲线。表2示出利用图4的数据导出的离子通道的上升率。
表2
水/二甲基乙酰胺(%) 离子通道大小的上升率(%)
0~100 100~150
参照表2可确认,与比较例1相比,实施例1(当相对于有机溶剂,添加0~100重量百分比的水时)的离子通道的大小增加至100~150%。
以上,说明了本发明的具体实施例。本发明所属领域普通技术人员可以理解,在不脱离本质上的特性的范围内,本发明可以以变形的形态体现。本发明的范围由发明要求保护范围示出,而非上述说明,并且在其等同范围内的所有差异点应被解释为包括在本发明中。
产业上的可利用性
本发明可用作离子传导性高分子电解质膜。

Claims (16)

1.一种调节高分子电解质膜的离子通道的大小的方法,其特征在于,将包含离子传导性非氟类或氟类高分子电解质和有机溶剂的溶液与亲水性溶剂以规定比率混合。
2.一种调节高分子电解质膜的离子通道的大小的方法,其特征在于,在离子传导性非氟类或氟类高分子电解质和第一亲水性溶剂的混合溶液中以规定比率添加与上述非氟类或氟类高分子电解质的亲水性官能团兼容性突出的第二亲水性溶剂。
3.根据权利要求2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,上述第一亲水性溶剂与第二亲水性溶剂为相同或互不相同的溶剂。
4.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,上述有机溶剂为用作用于溶解高分子的溶剂的极性非质子性溶剂,上述亲水性溶剂为极性高于上述有机溶剂的极性的极性质子性溶剂。
5.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,极性有机溶剂为选自由N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲亚砜以及N,N-二甲基甲酰胺组成的组中的一种,上述亲水性溶剂为选自由叔丁醇、正丙醇、乙醇、甲醇、氨、乙酸、水组成的组中的至少一种。
6.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,上述氟类高分子电解质为如下的氟类高分子与亲水性离子交换官能团相结合而成的结构:上述氟类高分子为聚四氟乙烯、聚氟乙烯、聚偏氟乙烯、聚四氟乙烯的氟类基团中的至少一种,上述亲水性离子交换官能团为具有磺酸基、胺基、磷酸基的亲水性阳离子交换官能团及胺类亲水性阴离子交换官能团的结构中的至少一种。
7.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,上述氟类高分子电解质为Nafion、Aquivio n、Flemion、Gore、Aciplex、R-1030、AciplexA-192或Morgane AD P。
8.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,上述非氟类高分子电解质为聚芳撑类、聚醚酮及聚醚醚酮中的一种非氟类高分子或者为上述非氟类高分子与如下的亲水性离子交换官能团相结合而成的结构:上述亲水性离子交换官能团为磺酸基、胺基、磷酸基的亲水性阳离子交换官能团及胺类亲水性阴离子交换官能团中的至少一种。
9.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,上述非氟类高分子电解质为磺化聚醚醚酮、磺化聚醚酮、磺化聚醚砜、磺化聚芳醚砜的阳离子传导性高分子膜或阴离子传导性高分子膜。
10.根据权利要求1或2所述的调节高分子电解质膜的离子通道的大小的方法,其特征在于,在上述调节高分子电解质膜的离子通道的大小的方法中,相对于上述有机溶剂,混合1~100重量百分比的亲水性溶剂。
11.一种通过调节权利要求1或2所述的高分子电解质膜的离子通道的大小来提高燃料电池用高分子电解质膜的离子传导率的方法。
12.一种离子传导性高分子电解质膜的制备方法,其特征在于,包括:
将包含离子传导性非氟类或氟类高分子电解质和有机溶剂的溶液与亲水性溶剂以规定比率混合的步骤;以及
将混合的上述溶液涂敷在基材上并进行干燥的步骤。
13.一种离子传导性高分子电解质膜的制备方法,其特征在于,包括:
在离子传导性非氟类或氟类高分子电解质和第一亲水性溶剂的混合溶液中以规定比率添加与上述非氟类或氟类高分子电解质的亲水性官能团兼容性突出的第二亲水性溶剂的步骤;以及
将混合的上述溶液涂敷在基材上并进行干燥的步骤,
上述第一亲水性溶剂与第二亲水性溶剂为相同或互不相同的溶剂。
14.一种离子传导性高分子电解质膜,其特征在于,由权利要求12或13所述的离子传导性高分子电解质膜的制备方法制备而成,与不包含亲水性溶剂的高分子电解质膜相比,离子传导性高分子电解质膜的离子通道的大小得以扩张。
15.根据权利要求14所述的离子传导性高分子电解质膜,其特征在于,与不具有极性溶剂效果的高分子电解质膜相比,离子传导性高分子电解质膜的离子通道的大小增加至150%。
16.一种高分子燃料电池,其特征在于,包括权利要求14所述的离子传导性高分子电解质膜。
CN201780021024.7A 2016-04-07 2017-01-31 离子传导性高分子电解质膜及其制备方法 Active CN109121441B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0042906 2016-04-07
KR1020160042906A KR101931411B1 (ko) 2016-04-07 2016-04-07 이온전도성 고분자전해질막 캐스팅 과정 중 극성 용매의 상분리 향상 효과에 따른 이온채널의 크기가 조절된 이온전도성 고분자전해질막 및 이의 제조방법
PCT/KR2017/001000 WO2017175959A1 (ko) 2016-04-07 2017-01-31 이온전도성 고분자전해질막 캐스팅 과정 중 극성 용매의 상분리 향상 효과에 따른 이온채널의 크기가 조절된 이온전도성 고분자전해질막 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN109121441A true CN109121441A (zh) 2019-01-01
CN109121441B CN109121441B (zh) 2022-02-22

Family

ID=60001316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780021024.7A Active CN109121441B (zh) 2016-04-07 2017-01-31 离子传导性高分子电解质膜及其制备方法

Country Status (4)

Country Link
US (1) US10797334B2 (zh)
KR (1) KR101931411B1 (zh)
CN (1) CN109121441B (zh)
WO (1) WO2017175959A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922135B1 (ko) 2018-01-26 2019-02-20 인천대학교 산학협력단 고분자 전해질 막 및 이의 제조방법
KR102308461B1 (ko) 2018-05-25 2021-10-01 주식회사 엘지화학 분리막 제조용 수지 조성물, 이의 제조방법 및 이를 포함하는 전지
KR20220039451A (ko) 2020-09-22 2022-03-29 현대자동차주식회사 연료전지용 복합 전해질막 및 이를 포함하는 막/전극 접합체
KR20230090577A (ko) * 2021-12-15 2023-06-22 코오롱인더스트리 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118885A1 (en) * 2001-12-20 2003-06-26 Sumitomo Chemical Company, Limited Process of producing a polymer electrolyte membrane
CN1947293A (zh) * 2004-04-09 2007-04-11 丰田自动车株式会社 粉末催化剂材料、它的制备方法及使用它的固体聚合物燃料电池
JP2007186608A (ja) * 2006-01-13 2007-07-26 Jsr Corp 高分子電解質を含む混合溶液、架橋構造を有する重合体を含む高分子電解質組成物および高分子電解質膜
JP2008034163A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp 炭化水素系高分子電解質膜の製造方法
WO2009096574A1 (ja) * 2008-02-01 2009-08-06 Sumitomo Chemical Company, Limited 高分子電解質組成物及びその製造方法、並びに燃料電池
KR20120042422A (ko) * 2010-10-25 2012-05-03 경희대학교 산학협력단 황산화 실세스키옥세인을 포함하는 직접메탄올 연료전지용 고분자 전해질 복합막 및 그 제조방법
CN102983357A (zh) * 2012-12-17 2013-03-20 天津工业大学 一种聚烯烃无纺布增强凝胶聚合物电解质膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833056B1 (ko) 2006-03-31 2008-05-27 주식회사 엘지화학 연료전지용 강화-복합 전해질막
TW200847513A (en) * 2006-11-27 2008-12-01 Sumitomo Chemical Co Method for manufacturing polyelectrolyte membrane, and polyelectrolyte membrane
KR100963747B1 (ko) 2007-03-13 2010-06-14 주식회사 엘지화학 전기장을 이용한 고분자 필름 제조 방법
KR20100028625A (ko) * 2007-06-15 2010-03-12 스미또모 가가꾸 가부시끼가이샤 막-전극 접합체 및 그 제조 방법, 그리고 고체 고분자형 연료 전지
US11127964B2 (en) * 2010-07-28 2021-09-21 Nanyang Technological University Method for preparing a porous polyimide film and a composite membrane comprising the same
JP5742457B2 (ja) * 2011-05-17 2015-07-01 トヨタ自動車株式会社 燃料電池用電解質膜の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118885A1 (en) * 2001-12-20 2003-06-26 Sumitomo Chemical Company, Limited Process of producing a polymer electrolyte membrane
CN1947293A (zh) * 2004-04-09 2007-04-11 丰田自动车株式会社 粉末催化剂材料、它的制备方法及使用它的固体聚合物燃料电池
JP2007186608A (ja) * 2006-01-13 2007-07-26 Jsr Corp 高分子電解質を含む混合溶液、架橋構造を有する重合体を含む高分子電解質組成物および高分子電解質膜
JP2008034163A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp 炭化水素系高分子電解質膜の製造方法
WO2009096574A1 (ja) * 2008-02-01 2009-08-06 Sumitomo Chemical Company, Limited 高分子電解質組成物及びその製造方法、並びに燃料電池
KR20120042422A (ko) * 2010-10-25 2012-05-03 경희대학교 산학협력단 황산화 실세스키옥세인을 포함하는 직접메탄올 연료전지용 고분자 전해질 복합막 및 그 제조방법
CN102983357A (zh) * 2012-12-17 2013-03-20 天津工业大学 一种聚烯烃无纺布增强凝胶聚合物电解质膜及其制备方法

Also Published As

Publication number Publication date
US20190123373A1 (en) 2019-04-25
WO2017175959A1 (ko) 2017-10-12
KR101931411B1 (ko) 2018-12-20
KR20170115354A (ko) 2017-10-17
US10797334B2 (en) 2020-10-06
CN109121441B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN108346765B (zh) 一种复合锂离子电池隔膜及其制备方法
US7740967B2 (en) Highly conductive ordered ion exchange membranes
Ye et al. Ionic liquid polymer electrolytes
CN109121441A (zh) 离子传导性高分子电解质膜铸造过程中根据提高极性溶剂的相分离的效果使离子通道的大小得到调节的离子传导性高分子电解质膜及其制备方法
US6248469B1 (en) Composite solid polymer electrolyte membranes
JP2013505825A (ja) 陰イオン交換高分子電解質
Cheng et al. Preparation and characterization of sulfonated poly (arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes
US20170114196A1 (en) Combined material system for ion exchange membranes and their use in electrochemical processes
WO2011066674A1 (zh) 聚合物共混质子交换膜及其制备方法
CN101240079B (zh) 多孔质子交换膜材料及其制备方法
JP2002512285A (ja) 酸−塩基ポリマーブレンド及び膜処理におけるそれらの使用法
Wong et al. Protic ionic liquids as next-generation proton exchange membrane materials: Current status & future perspectives
JP2003528212A (ja) イオン交換材料
Yu et al. Preparation of sulfonated polyimide/polyvinyl alcohol composite membrane for vanadium redox flow battery applications
Wang et al. Preparation of proton-conducting composite membranes from sulfonated poly (ether ether ketone) and polyacrylonitrile
WO2008004643A1 (fr) Procédé de production d'une émulsion d'électrolyte polymère
KR101017649B1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
US10270115B2 (en) Membrane for a proton exchange membrane fuel cell
KR20180100079A (ko) 이온전도성 고분자전해질막 캐스팅 과정 중 극성 용매의 상분리 향상 효과에 따른 이온채널의 크기가 조절된 이온전도성 고분자전해질막 및 이의 제조방법
US11241848B2 (en) Post-processing method for polymer electrolyte membrane
JP2008031466A (ja) 高分子電解質エマルションの製造方法、および高分子電解質エマルション
TWI404751B (zh) 改質超分歧高分子、和應用此改質超分歧高分子所製成之質子交換膜及其製法
CN110975944B (zh) 一种聚合物阴离子交换膜的制备方法
JP2009252480A (ja) イオン伝導性高分子電解質膜およびその製造方法
JP2017188460A (ja) 高分子電解質組成物の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant