CN109115818A - 一种评价玻璃微珠表面预负载纳米二氧化钛量的方法 - Google Patents

一种评价玻璃微珠表面预负载纳米二氧化钛量的方法 Download PDF

Info

Publication number
CN109115818A
CN109115818A CN201811003273.6A CN201811003273A CN109115818A CN 109115818 A CN109115818 A CN 109115818A CN 201811003273 A CN201811003273 A CN 201811003273A CN 109115818 A CN109115818 A CN 109115818A
Authority
CN
China
Prior art keywords
titanium dioxide
glass microballoon
nano
solution
preload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811003273.6A
Other languages
English (en)
Other versions
CN109115818B (zh
Inventor
王洋洋
迟凤霞
严守靖
金小平
谢林林
丁敏
王晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Scientific Research Institute of Transport
Original Assignee
Zhejiang Scientific Research Institute of Transport
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Scientific Research Institute of Transport filed Critical Zhejiang Scientific Research Institute of Transport
Priority to CN201811003273.6A priority Critical patent/CN109115818B/zh
Publication of CN109115818A publication Critical patent/CN109115818A/zh
Application granted granted Critical
Publication of CN109115818B publication Critical patent/CN109115818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种玻璃微珠表面预负载纳米二氧化钛的试验方法。用于冷腐蚀处理过的玻璃微珠表面预负载纳米二氧化钛颗粒,并计算纳米二氧化钛的负载量。该方法包含以下步骤:(1)在烧杯中配置100g的纳米二氧化钛溶液,浓度为0.5%,倒入激光粒度分析仪的超声水槽中,利用超声波震荡来分散纳米二氧化钛颗粒,频率设置为40KHZ,震荡的时间设置为5分钟;(2)将冷腐蚀处理过的玻璃微珠浸泡到纳米二氧化钛溶液中,设置超声波的频率为20KHZ,震荡的时间设置为15分钟;(3)用200目筛网(0.075mm)进行过滤,然后在105℃的烘箱中烘干;(4)用电镜扫描仪观察玻璃微珠表面预纳米二氧化钛的附着效果。试验结果表明采用超声波震荡来分散纳米二氧化钛颗粒,具有良好的分散效果,电镜扫描结果显示纳米二氧化钛颗粒在玻璃微珠表面负载较均匀。

Description

一种评价玻璃微珠表面预负载纳米二氧化钛量的方法
技术领域
本发明属于道路领域,具体涉及一种评价玻璃微珠表面预负载纳米二氧化钛的试验方法。
背景技术
玻璃微珠是一种没有固定熔点和晶相的复合物,由氧化钠(Na2O)、三氧化二硼(B2O3)和二氧化硅(SiO2)三种物质组成。由于氧化钠和三氧化二硼是碱性氧化物,二氧化硅是酸性氧化物,在碱性环境下,只有二氧化硅参与了反应。因此,玻璃微珠表面会产生被腐蚀的痕迹,充满沟壑和细孔等微观构造。
发明内容
为了计算玻璃微珠表面腐蚀层能负载的纳米二氧化钛颗粒含量,从二氧化硅与碱性溶液的反应式出发,计算出腐蚀层的体积,根据纳米二氧化钛颗粒的密度计算玻璃微珠表面所能负载的纳米二氧化钛颗粒质量。最后得出玻璃微珠浸泡到纳米二氧化钛溶液中各成分的比例。
本发明涉及一种玻璃微珠表面预负载纳米二氧化钛的试验方法,具体为一种评价玻璃微珠表面预负载纳米二氧化钛量的试验方法及玻璃微珠表面预负载纳米二氧化钛的试验方法的计算过程。
玻璃微珠表面预负载纳米二氧化钛的试验方法,包括以下实验材料:玻璃微珠(Na2O-B2O3-SiO2)、纳米二氧化钛(Nano-TiO2)
评价玻璃微珠表面预负载纳米二氧化钛量的试验方法,包括以下实验步骤:
(1)在容器中配制纳米二氧化钛溶液,倒入激光粒度分析仪的超声水槽中,超声波震荡分散得到纳米二氧化钛溶液;
(2)将冷腐蚀处理过的玻璃微珠浸泡到纳米二氧化钛溶液中,超声波震荡分散;
(3)分散均匀后筛网过滤,烘干,用电镜扫描仪观察玻璃微珠表面预纳米二氧化钛的附着效果。
所述的纳米二氧化钛溶液,浓度为0.35-0.6%;玻璃微珠浸泡到纳米二氧化钛溶液中,其质量比为纳米二氧化钛:水:玻璃微珠=0.35-0.5:90-100:900-1100。进一步优选为,所述的纳米二氧化钛溶液,浓度为0.5%;玻璃微珠浸泡到纳米二氧化钛溶液中,其质量比为纳米二氧化钛:水:玻璃微珠=0.5:99.5:1006。所述步骤(1)中超声震荡频率设置为35-50KHZ,震荡的时间设置为3-8分钟;步骤(2)中超声波的频率为18-25KHZ,震荡的时间设置为10-20分钟。
进一步优选步骤(1)中超声震荡频率设置为40KHZ,震荡的时间设置为5分钟;步骤(2)中超声波的频率为20KHZ,震荡的时间设置为15分钟。
所述的步骤(3)中筛网至少为200目筛网,烘干温度为105℃。
所述的冷腐蚀处理过的玻璃微珠为采用Ca(OH)2饱和溶液腐蚀的玻璃微珠,具体步骤为:
(1)配制Ca(OH)2饱和溶液;
(2)将玻璃微珠浸泡到Ca(OH)2饱和溶液中,搅拌均匀后在恒温水溶液中保温12-14h;
(3)对步骤(2)的溶液过滤、洗涤后烘干即可得到自组装玻璃微珠表层微孔结构。
所述的Ca(OH)2饱和溶液在18-22℃下进行配制,将玻璃微珠浸泡到Ca(OH)2饱和溶液中,在1500-2500r/min下高速剪切搅拌均匀后在恒温水溶液中,以20℃下保温12-14h,对步骤(2)中的溶液经至少200目网筛过滤,去离子水洗涤后在100-110℃下干燥即可。
所述的玻璃微珠(Na2O-B2O3-SiO2)、氢氧化钙(Ca(OH)2)、水的质量比为1000-1200:0.1-0.25:90-100,优选为玻璃微珠(Na2O-B2O3-SiO2)、氢氧化钙(Ca(OH)2)、水的质量比为1167.54:0.16:99.84。
所述的玻璃微珠Na2O-B2O3-SiO2中Na2O、B2O3、SiO2质量分数分别为10-15%、3-5%、68-72%。
一种玻璃微珠表面预负载纳米二氧化钛的试验方法,包括以下计算过程:
(1)计算一颗预处理过的玻璃微珠表面能裹覆的纳米二氧化钛量
考虑到纳米二氧化钛只需要负载到玻璃微珠表面,本次实验玻璃微珠的粒径为15-150μm,平均粒径为75μm,壁厚1-2μm,而实验所用的锐钛矿纳米TiO2的粒径为(10nm)。现假设硼硅酸钠中主要成分硼硅酸钠(Na2O-B2O3-SiO2)均匀分布,那么只需在玻璃微珠表面腐蚀掉10-30nm的厚度即可负载纳米二氧化钛。为保证纳米二氧化钛层包覆的效果,现考虑玻璃微珠表面的腐蚀层厚度为30nm。
考虑玻璃微珠表面的腐蚀层厚度为30nm,腐蚀层的体积与整体玻璃微珠的体积比采用式(1)来计算,
式中:η——腐蚀层与玻璃微珠的体积比;
R——玻璃微珠的半径(μm);
r——腐蚀后玻璃微珠的半径(μm)。
计算得腐蚀层与玻璃微珠的体积比为1:1000,又因硼硅酸钠摩尔质量为180g.mol-1,SiO2摩尔质量为60g.mol-1,因此,腐蚀层中被腐蚀的体积占腐蚀层的1/3,计算得腐蚀层中,SiO2被腐蚀掉的体积为168.68μm3
现假设被腐蚀的空隙中都能裹覆纳米二氧化钛,由现有的纳米二氧化钛包覆技术显示,使用Ca(OH)2饱和溶液进行处理,裹覆率为20%-30%,本次实验中所选用的锐钛矿纳米二氧化钛的密度为0.3g/cm3,因此一颗预处理过的玻璃微珠表面能裹覆的纳米二氧化钛量为5.06×10-5g。
(2)计算一定浓度的纳米二氧化钛水溶液能裹覆多少玻璃微珠
本次实验中配制了0.5%的纳米二氧化钛水溶液,现取100g该溶液,则水溶液中包含0.5克纳米二氧化钛,于是玻璃微珠的数量采用式(2)进行计算。
式中:N——玻璃微珠是数量;
m0——溶液中纳米二氧化钛的质量(g);
v——玻璃微珠表面腐蚀层被腐蚀的体积(μm3);
ρ1——锐钛矿纳米二氧化钛的密度(g/cm3);
μ——纳米二氧化钛裹覆率,%。
计算得,100g的0.5%纳米二氧化钛水溶液能裹覆36596颗预处理过的玻璃微珠。
(3)计算预处理过的玻璃微珠需要量
由式(2)中计算出100g的0.5%纳米二氧化钛水溶液能裹覆9881颗预处理过的玻璃微珠,本次使用的玻璃微珠的平均粒径为75μm,壁厚2μm,密度为0.2g/cm3,于是预处理过的玻璃微珠需要量采用式(3)进行计算。
式中:m2——预处理过的玻璃微珠需要量(g);
R1——预处理过的玻璃微珠粒径(μm);
R2——预处理过的玻璃微珠内部空心粒径(μm),R2=R1-δ;
δ——玻璃微珠的壁厚(μm);
ρ0——预处理过的玻璃微珠密度(g/cm3);
N——预处理过的玻璃微珠数量。
最后计算得,100g的0.5%纳米二氧化钛水溶液能裹覆36596颗预处理过的玻璃微珠,质量为1005.63g,玻璃微珠表面预负载纳米二氧化钛后的效果如图1所示。
(4)结论
100g的0.5%纳米二氧化钛水溶液能裹覆36596颗预处理过的玻璃微珠,质量为1005.63g,各成分的比例为TiO2:H2O:Na2O-B2O3-SiO2=0.5:99.5:1005.63。
附图说明
图1为一种玻璃微珠在预负载纳米二氧化钛后的电镜扫描图。
图2机械分散的纳米二氧化钛颗粒预负载效果图。
图3超声波分散的纳米二氧化钛颗粒预负载效果图。
图4不同震荡频率下的纳米二氧化钛颗粒在玻璃微珠表面负载效果图。
图5不同震荡时间下的纳米二氧化钛颗粒在玻璃微珠表面负载效果图。
具体实施方式
实施例1(不同分散方式下纳米二氧化钛的预负载效果)
传统的溶液分散方式一般为机械分散,采用高速剪切机搅拌。然而纳米二氧化钛颗粒具有超亲水性和吸附性,纳米二氧化钛颗粒能迅速溶于水,但其颗粒之间有较强的吸附引力,溶于水后会重新聚团。而高速剪切机的搅拌和剪切属于强制性解团,无法打破纳米二氧化钛颗粒之间的吸引力,并且机械分散的效果维持的时间很短,纳米二氧化钛颗粒会迅速聚团,从而导致纳米二氧化钛颗粒在玻璃微珠表面呈现团状分布,影响了负载效果。采用机械分散的纳米二氧化钛颗粒预负载效果如图2所示。
超声波震荡分散是利用超声波在液体中的空化作用和加速作用,使液体收到高频的积压和放松,并使粒子产生加速运动,从而溶液被分散达到乳化和均匀的状态。声波的频率越高,溶液受到的积压和放松时间就越短促,粒子运动的速率就越快,分散的速度就越快。本发明中分散纳米二氧化钛颗粒,频率设置为40KHZ,震荡的时间设置为5分钟,而玻璃微珠浸泡到纳米二氧化钛溶液中,设置超声波的频率为20KHZ,震荡的时间设置为15分钟。采用超声波分散的纳米二氧化钛颗粒预负载效果如图3所示。
实施例2
一种评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,包括如下步骤:
预处理过的玻璃微珠浸泡的步骤如下:
(1)在配置Ca(OH)2饱和溶液;对于Ca(OH)2饱和溶液,本发明选择20℃下的氢氧化钙溶解度,并配制了相应的饱和溶液,其质量比为Ca(OH)2:H2O=0.16:99.84,并用玻璃棒进行搅拌溶解成饱和溶液,用过200目筛网滤掉多余的氢氧化钙固体颗粒。
(2)将玻璃微珠浸泡到Ca(OH)2饱和溶液中,并用高速搅拌剪切机搅拌均匀;玻璃微珠浸泡到Ca(OH)2饱和溶液中,其质量比为Ca(OH)2:H2O:Na2O-B2O3-SiO2为0.16:99.84:1167.54。
(3)将整个烧杯在恒温水箱中保温12h,温度为20℃;
(4)用200目筛网(0.075mm)进行过滤和洗涤,并在105℃的烘箱中烘干即可。负载二氧化钛方法如下:
(1)在烧杯中配置100g的纳米二氧化钛溶液,浓度为0.5%,超声震荡频率设置为35-50KHZ,震荡的时间设置为3-8分钟;
(2)将预处理过的玻璃微珠浸泡到纳米二氧化钛溶液中,并用高速搅拌剪切机搅拌均匀,超声波的频率为18-25KHZ,震荡的时间设置为10-20分钟
(3)用200目筛网(0.075mm)进行过滤,然后在105℃的烘箱中烘干;
(4)用电镜扫描仪观察玻璃微珠表面纳米二氧化钛的黏附效果。
玻璃微珠在纳米二氧化钛水溶液中的最佳震荡频率
利用超声波分散溶液需要选择一定的频率,若频率过低,则空化作用越小,纳米二氧化钛颗粒收到的积压和放松的频率越少,则无法打破颗粒之间的吸引力,颗粒之间聚团严重,最终会影响分散效果。若频率过高,则空化作用越大,纳米二氧化钛颗粒收到的积压和放松的频率越多,粒子的运动速度越快,由于玻璃微珠的壁厚较薄,平均壁厚为2-3μm,运动过快可能会造成玻璃微珠破碎。超声波的频率一般都在20kHZ以上,而实验中分散液体的频率控制在20-40kHZ,因此设置20kHZ、30kHZ和40kHZ三个频率,初步设置震荡的时间为10min。试验如图4所示。
由图4可以看出当超声波震荡的频率控制在20-30kHZ时,玻璃微珠几乎保持完整的形状,破碎的个数很少。当超声波震荡的频率控制在40kHZ时,玻璃微珠几乎都完全破碎,纳米二氧化钛颗粒与玻璃微珠碎片混合在一起,无法负载。因此,超声波的最佳频率应控制在20-30kHZ之间。
玻璃微珠在纳米二氧化钛水溶液中的最佳震荡时间
玻璃微珠在纳米二氧化钛水溶液中的最佳震荡频率为20-30kHZ之间,初步设置震荡的时间为10min。在这个条件下玻璃微珠仍然存在少量的破碎,为此试验对震荡的时间进行了调整,在20kHZ的震荡频率下,分别震荡5min、10min和15min。试验的结果如5所示。
由图5可以看出,在20kHZ的震荡频率下,震荡的时间设置为5-15min,玻璃微珠均没有出现大规模的破碎现象,但设置震荡达到15min时,玻璃微珠破裂的数量明显增多。因此,最佳的震荡时间为5-10分钟。
一种玻璃微珠表面预负载纳米二氧化钛的试验方法,包括以下计算过程:
(1)计算一颗预处理过的玻璃微珠表面能裹覆的纳米二氧化钛量
考虑到纳米二氧化钛只需要负载到玻璃微珠表面,本次实验玻璃微珠的粒径为15-150μm,平均粒径为75μm,壁厚1-2μm,而实验所用的锐钛矿纳米TiO2的粒径为(10nm)。现假设硼硅酸钠中主要成分硼硅酸钠(Na2O-B2O3-SiO2)均匀分布,那么只需在玻璃微珠表面腐蚀掉10-30nm的厚度即可负载纳米二氧化钛。为保证纳米二氧化钛层包覆的效果,现考虑玻璃微珠表面的腐蚀层厚度为30nm。
考虑玻璃微珠表面的腐蚀层厚度为30nm,腐蚀层的体积与整体玻璃微珠的体积比采用式(1)来计算,
式中:η——腐蚀层与玻璃微珠的体积比;
R——玻璃微珠的半径(μm);
r——腐蚀后玻璃微珠的半径(μm)。
计算得腐蚀层与玻璃微珠的体积比为1:1000,又因硼硅酸钠摩尔质量为180g.mol-1,SiO2摩尔质量为60g.mol-1,因此,腐蚀层中被腐蚀的体积占腐蚀层的1/3,计算得腐蚀层中,SiO2被腐蚀掉的体积为168.68μm3
现假设被腐蚀的空隙中都能裹覆纳米二氧化钛,由现有的纳米二氧化钛包覆技术,使用Ca(OH)2饱和溶液进行处理,裹覆率大约为20%-30%,本次实验中所选用的锐钛矿纳米二氧化钛的密度为0.3g/cm3,因此一颗预处理过的玻璃微珠表面能裹覆的纳米二氧化钛量为5.06×10-5g。
(2)计算一定浓度的纳米二氧化钛水溶液能裹覆多少玻璃微珠
本次实验中配制了0.5%的纳米二氧化钛水溶液,现取100g该溶液,则水溶液中包含0.5克纳米二氧化钛,于是玻璃微珠的数量采用式(2)进行计算。
式中:N——玻璃微珠是数量;
m0——溶液中纳米二氧化钛的质量(g);
v——玻璃微珠表面腐蚀层被腐蚀的体积(μm3);
ρ1——锐钛矿纳米二氧化钛的密度(g/cm3);
μ——纳米二氧化钛裹覆率,%。
计算得,100g的0.5%纳米二氧化钛水溶液能裹覆36596颗预处理过的玻璃微珠。
(3)计算预处理过的玻璃微珠需要量
由式(2)中计算出100g的0.5%纳米二氧化钛水溶液能裹覆9881颗预处理过的玻璃微珠,本次使用的玻璃微珠的平均粒径为75μm,壁厚2μm,密度为0.2g/cm3,于是预处理过的玻璃微珠需要量采用式(3)进行计算。
式中:m2——预处理过的玻璃微珠需要量(g);
R1——预处理过的玻璃微珠粒径(μm);
R2——预处理过的玻璃微珠内部空心粒径(μm),R2=R1-δ;
δ——玻璃微珠的壁厚(μm);
ρ0——预处理过的玻璃微珠密度(g/cm3);
N——预处理过的玻璃微珠数量。
最后计算得,100g的0.5%纳米二氧化钛水溶液能裹覆36596颗预处理过的玻璃微珠,质量为1005.63g,玻璃微珠表面预负载纳米二氧化钛后的效果如图1所示。
(4)结论
100g的0.5%纳米二氧化钛水溶液能裹覆36596颗预处理过的玻璃微珠,质量为1005.63g,各成分的比例为TiO2:H2O:Na2O-B2O3-SiO2=0.5:99.5:1005.63。

Claims (10)

1.一种评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,包括如下步骤:
(1)在容器中配制纳米二氧化钛溶液,倒入激光粒度分析仪的超声水槽中,超声波震荡分散得到纳米二氧化钛溶液;
(2)将冷腐蚀处理过的玻璃微珠浸泡到纳米二氧化钛溶液中,超声波震荡分散;
(3)分散均匀后筛网过滤,烘干,用电镜扫描仪观察玻璃微珠表面预纳米二氧化钛的附着效果。
2.权利要求1所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,纳米二氧化钛溶液,浓度为0.35-0.6%;玻璃微珠浸泡到纳米二氧化钛溶液中,其质量比为纳米二氧化钛:水:玻璃微珠=0.35-0.5:90-100:900-1100。
3.权利要求1所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,纳米二氧化钛溶液,浓度为0.5%;玻璃微珠浸泡到纳米二氧化钛溶液中,其质量比为纳米二氧化钛:水:玻璃微珠=0.5:99.5:1006。
4.权利要求1所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,步骤(1)中超声震荡频率设置为35-50KHZ,震荡的时间设置为3-8分钟;步骤(2)中超声波的频率为18-25KHZ,震荡的时间设置为10-20分钟。
5.权利要求1所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,步骤(1)中超声震荡频率设置为40KHZ,震荡的时间设置为5分钟;步骤(2)中超声波的频率为20KHZ,震荡的时间设置为15分钟。
6.权利要求1所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,步骤(3)中筛网至少为200目筛网,烘干温度为105℃。
7.权利要求1所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,所述的冷腐蚀处理过的玻璃微珠为采用Ca(OH)2饱和溶液腐蚀的玻璃微珠,具体步骤为:
(1)配制Ca(OH)2饱和溶液;
(2)将玻璃微珠浸泡到Ca(OH)2饱和溶液中,搅拌均匀后在恒温水溶液中保温12-14h;
(3)对步骤(2)的溶液过滤、洗涤后烘干即可得到自组装玻璃微珠表层微孔结构。
8.权利要求7所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,Ca(OH)2饱和溶液在18-22℃下进行配制,将玻璃微珠浸泡到Ca(OH)2饱和溶液中,在1500-2500r/min下高速剪切搅拌均匀后在恒温水溶液中,以20℃下保温12-14h,对步骤(2)中的溶液经至少200目网筛过滤,去离子水洗涤后在100-110℃下干燥即可。
9.权利要求7所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,玻璃微珠(Na2O-B2O3-SiO2)、氢氧化钙(Ca(OH)2)、水的质量比为1000-1200:0.1-0.25:90-100,优选为玻璃微珠(Na2O-B2O3-SiO2)、氢氧化钙(Ca(OH)2)、水的质量比为1167.54:0.16:99.84。
10.权利要求7所述的评价玻璃微珠表面预负载纳米二氧化钛量的方法,其特征在于,所述的玻璃微珠Na2O-B2O3-SiO2中Na2O、B2O3、SiO2质量分数分别为10-15%、3-5%、68-72%。
CN201811003273.6A 2018-08-30 2018-08-30 一种评价玻璃微珠表面预负载纳米二氧化钛量的方法 Active CN109115818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811003273.6A CN109115818B (zh) 2018-08-30 2018-08-30 一种评价玻璃微珠表面预负载纳米二氧化钛量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811003273.6A CN109115818B (zh) 2018-08-30 2018-08-30 一种评价玻璃微珠表面预负载纳米二氧化钛量的方法

Publications (2)

Publication Number Publication Date
CN109115818A true CN109115818A (zh) 2019-01-01
CN109115818B CN109115818B (zh) 2021-03-02

Family

ID=64860589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811003273.6A Active CN109115818B (zh) 2018-08-30 2018-08-30 一种评价玻璃微珠表面预负载纳米二氧化钛量的方法

Country Status (1)

Country Link
CN (1) CN109115818B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487684A (zh) * 2019-08-19 2019-11-22 常州市第二人民医院 一种带自动震荡功能的液体颗粒质量扫描仪

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148069A (zh) * 1995-10-13 1997-04-23 北京大康技术发展公司 一种反光涂料
CN101190828A (zh) * 2006-11-22 2008-06-04 中国科学院理化技术研究所 在玻璃表面形成金属复合二氧化钛纳米粒子膜的方法
CN101721986A (zh) * 2008-10-10 2010-06-09 北京化工大学 一种玻璃负载二氧化钛光催化剂的制备方法
WO2010069997A1 (en) * 2008-12-16 2010-06-24 Dyrup A/S Self-cleaning coating composition
CN102872846A (zh) * 2012-10-12 2013-01-16 合肥工业大学 一种粉煤灰微珠负载一维纳米二氧化钛复合光催化剂及其制备方法
CN103007931A (zh) * 2012-11-22 2013-04-03 嘉兴学院 在空心玻璃微珠表面制备纳米银和二氧化钛薄膜的方法
CN106238025A (zh) * 2016-08-02 2016-12-21 梅州淦源建材科技有限公司 玻璃微珠负载改性Nano‑TiO2光催化物及其在除醛玻镁板中的应用和除醛玻镁板
CN106380977A (zh) * 2016-08-31 2017-02-08 广东慧信环保有限公司 一种疏水隔热涂料及其制备方法
CN107325495A (zh) * 2017-07-07 2017-11-07 砀山润龙公共交通有限公司 一种防冻耐低温交通标线材料及其制备方法
CN107540239A (zh) * 2017-10-26 2018-01-05 深圳大学 氧化石墨烯包覆中空玻璃微珠的制备方法
CN108264236A (zh) * 2017-12-29 2018-07-10 安徽凤阳亚欧玻璃工艺品有限公司 一种保温隔热性能优异的改性空心玻璃微珠

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148069A (zh) * 1995-10-13 1997-04-23 北京大康技术发展公司 一种反光涂料
CN101190828A (zh) * 2006-11-22 2008-06-04 中国科学院理化技术研究所 在玻璃表面形成金属复合二氧化钛纳米粒子膜的方法
CN101721986A (zh) * 2008-10-10 2010-06-09 北京化工大学 一种玻璃负载二氧化钛光催化剂的制备方法
WO2010069997A1 (en) * 2008-12-16 2010-06-24 Dyrup A/S Self-cleaning coating composition
CN102872846A (zh) * 2012-10-12 2013-01-16 合肥工业大学 一种粉煤灰微珠负载一维纳米二氧化钛复合光催化剂及其制备方法
CN103007931A (zh) * 2012-11-22 2013-04-03 嘉兴学院 在空心玻璃微珠表面制备纳米银和二氧化钛薄膜的方法
CN106238025A (zh) * 2016-08-02 2016-12-21 梅州淦源建材科技有限公司 玻璃微珠负载改性Nano‑TiO2光催化物及其在除醛玻镁板中的应用和除醛玻镁板
CN106380977A (zh) * 2016-08-31 2017-02-08 广东慧信环保有限公司 一种疏水隔热涂料及其制备方法
CN107325495A (zh) * 2017-07-07 2017-11-07 砀山润龙公共交通有限公司 一种防冻耐低温交通标线材料及其制备方法
CN107540239A (zh) * 2017-10-26 2018-01-05 深圳大学 氧化石墨烯包覆中空玻璃微珠的制备方法
CN108264236A (zh) * 2017-12-29 2018-07-10 安徽凤阳亚欧玻璃工艺品有限公司 一种保温隔热性能优异的改性空心玻璃微珠

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
向卫东 等: "Na2O-B2O3-SiO2玻璃的制备及其三阶非线性的研究", 《功能材料》 *
向卫东 等: "掺杂金微粒Na2O-B2O3-SiO2系统玻璃的溶胶-凝胶方法制备及其光学性质的表征", 《光学学报》 *
夏志伟: "玻璃微珠表面纳米二氧化钛薄膜包覆及其隔热性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
李文丹 等: "二氧化钛包覆空心玻璃微珠隔热涂料", 《涂料工业》 *
李越湘 等: "空心玻璃微球负载TiO2光催化回收银", 《分子催化》 *
杜仕国 等: "纳米TiO2/玻璃微珠复合颗粒的制备和光催化性能", 《稀有金属材料与工程》 *
石继飞 等: "超声波特性", 《全国普通高等医学院校五年制临床医学专业"十三五"规划教材 医用物理学》 *
肖绍展: "Na2O-B2O3-SiO2玻璃结构的反应序列模型", 《硅酸盐学报》 *
郑昭科 等: "玻璃微珠/Ag/TiO2可见光催化剂的制备与表征", 《无机化学学报》 *
马乘银 等: "二氧化钛包覆中空玻璃微珠制备近红外反射材料", 《中南大学学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487684A (zh) * 2019-08-19 2019-11-22 常州市第二人民医院 一种带自动震荡功能的液体颗粒质量扫描仪

Also Published As

Publication number Publication date
CN109115818B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2017047768A1 (ja) 微細繊維状セルロース含有物
US20200140574A1 (en) Process for the production of a nanocellulose material technical field
CN110446722A (zh) 硫酸酯化修饰纤维素纳米纤维和纤维素纳米纤维的制造方法
US9163095B2 (en) Cellulose powder and processes for its production
Roso et al. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles
JP6907489B2 (ja) 微細繊維状セルロース含有物
CN107108946A (zh) 具有阴离子表面活性剂的cnf多孔固体材料
JP6350500B2 (ja) 造粒体の製造装置および製造方法
US10676869B2 (en) Composition, material comprising ultrafine cellulose fibers, and method for producing material comprising ultrafine cellulose fibers
CN111533954B (zh) 纤维素纤维干燥体、纤维素纤维树脂复合体、成型体
Li et al. Morphological control of BaSO 4 microstructures by double hydrophilic block copolymer mixtures
CN110559956A (zh) 一种中空多孔纤维素微球及其制备方法和应用
Liu et al. Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC
WO2013143351A1 (zh) 抗菌涂料的生产工艺、抗菌纸的生产工艺及抗菌纸
JP5995239B2 (ja) 水晶振動子微量天秤用バイオセンサー及びその製造方法
CN109115818A (zh) 一种评价玻璃微珠表面预负载纳米二氧化钛量的方法
JP7269239B2 (ja) 多孔質セルロース粒子とその製造方法、および化粧料
WO2017025961A1 (en) Process and system for homogenously distributing an additive within a matrix
Greca et al. Chitin–amyloid synergism and their use as sustainable structural adhesives
JP6507962B2 (ja) 微細繊維状セルロース含有組成物
Longkaew et al. Using sucrose to prepare submicrometric CaCO3 vaterite particles stable in natural rubber
JP2024028346A (ja) セルロース粒子及びセルロース粒子分散液
CN1292831C (zh) 高性能变压吸附5a分子筛及其制备方法
CN1235912C (zh) 一种在氧化胺水溶液中的纤维素悬浮液的连续制备方法及装置
JP3444817B2 (ja) 洗剤粒子群の製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant