CN109112616A - 一种毫米级长方形单层单晶石墨烯的制备方法 - Google Patents

一种毫米级长方形单层单晶石墨烯的制备方法 Download PDF

Info

Publication number
CN109112616A
CN109112616A CN201811273995.3A CN201811273995A CN109112616A CN 109112616 A CN109112616 A CN 109112616A CN 201811273995 A CN201811273995 A CN 201811273995A CN 109112616 A CN109112616 A CN 109112616A
Authority
CN
China
Prior art keywords
copper foil
single crystal
graphene
crystal graphene
single layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811273995.3A
Other languages
English (en)
Inventor
窦卫东
施碧云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201811273995.3A priority Critical patent/CN109112616A/zh
Publication of CN109112616A publication Critical patent/CN109112616A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种毫米级长方形单层单晶石墨烯的制备方法,属于薄膜石墨烯材料技术领域。本发明在氩气的气氛下,对铜箔进行加热,当加热至所需温度时,氩气停止,然后维持铜箔温度,通入氢气,并通过控制氢气流量,使铜箔表面的多晶结构转变为单晶结构。在制备过程中,通过控制通入甲烷的持续时间来调控单晶石墨烯的尺寸,且制得的单晶石墨烯呈长方形,并在单晶生长过程中,这形貌一直保持。本发明通过将铜箔剪切成矩形膜片,矩形膜片折叠成封闭的矩形盒子,矩形盒子的内部提供了准静态的环境,便于单晶石墨烯的均匀且匀速生长。

Description

一种毫米级长方形单层单晶石墨烯的制备方法
技术领域
本发明属于薄膜石墨烯材料的制备技术领域,具体是涉及一种毫米级长方形单层单晶石墨烯的制备方法。
背景技术
石墨烯是碳原子通过SP2杂化形成的具有蜂窝结构的二维材料。这种材料具有优异的导电、传热、透光及柔韧属性,因而广泛应用于以光电器件为典型的众多应用领域。我国目前在石墨烯粉体材料生产、超级电容器、锂离子电池、导电油墨、防腐涂料、散热、透明电极等领域的研究和投入较多。但对于石墨烯在高端信息领域,包括石墨烯射频器件、石墨烯光电器件、石墨烯集成电路芯片、石墨烯光电集成芯片等领域的研究和投入较少。石墨烯大单晶的可控生长技术仍不完善也是制约这一领域发展的重要原因。因此,实现石墨烯大单晶的可控制备是实现其在集成芯片等高端信息领域应用的前提。
化学气相沉积(CVD)是制备单晶石墨烯的主要方法。该方法通常以甲烷为碳的前驱体,在高温以及催化基底(通常为铜箔)的辅助下使甲烷分解为游离的碳原子,碳原子在催化基底表面上沉积形成石墨烯。单晶石墨烯的最终尺寸通常由单晶的成核密度决定。单晶石墨烯的成核密度由催化基底的结晶性、表面属性以及石墨烯的生长条件等因素共同决定。出于成本考虑,单晶石墨烯的大规模制备通常选择成本较低的多晶铜箔作为生长基底。但在多晶石墨烯上制备的石墨烯膜大多为由尺寸很小单晶晶畴组合而成,晶畴边界存在很多结构和拓扑缺陷,这样的石墨烯虽然可认为是连续的二维薄膜,但并非真正的大尺寸单晶。通常意义上的单晶石墨烯是指具有单一结构且具有宏观尺度的石墨烯晶畴。为了获得高质量的大单晶石墨烯,科研人员提出了很多种制备途径。这些途径大体上可以分为两个方面,其一是对铜箔表面或体结构进行调控,使之转变而更适合与单层石墨烯生长的(111)结构,其二是通过预氧化铜箔或在石墨烯制备过程中引入适量的氧气,在氧的辅助下降低单晶石墨烯成核密度并提高其生长速度。上述两类方法都可以获得大尺寸的单晶石墨烯,但其单晶形貌多为六边形,且晶畴的边界大多为树突状,表明其边界类型是随机的,有可能是锯齿型,也可能是扶手椅型。可以预见,随着晶体逐渐长大,相邻晶体最终将发生融合,但由于晶畴边界类型是随机的,所以在两个晶畴的连接处会存在大量的拓扑缺陷。这些缺陷的存在对于单晶的应用是不利因素。
发明内容
本发明主要是解决上述现有技术所存在的技术问题,提供一种毫米级长方形单层单晶石墨烯的制备方法,该方法制得的单层单晶石墨烯为长方形单层单晶石墨烯,其长宽之比为2-4:1,且其长边为平滑的边界,无树突状的缺陷。
本发明的上述技术问题主要是通过下述技术方案得以解决的:一种毫米级长方形单层单晶石墨烯的制备方法,所述制备方法的步骤为:
(1)铜箔的预处理:用剪刀将铜箔剪切成所需尺寸的矩形膜片,将其折叠成封闭的矩形盒子后装载到石英管中,然后将石英管置于CVD反应腔体中,CVD反应腔体抽至0.05Pa以下的近似真空状态;
(2)铜箔的升温:向CVD反应腔体中持续通入300sccm氩气,并在氩气的气氛下,对CVD反应腔体进行加热,使铜箔在1h内由室温加热到1030℃-1050℃;
(3)铜箔的退火:维持铜箔1030℃-1050℃的温度,停止通入氩气,向CVD反应腔体中持续通入100sccm氢气,并在氢气的气氛下,进行铜箔的退火处理,退火处理时间为1h,铜箔表面由多晶结构转变为晶面为(100)取向的单晶结构;
(4)石墨烯的生长:铜箔退火处理后,继续维持铜箔1030℃-1050℃的温度,向CVD反应腔体中同步持续通入800sccm氩气、100sccm氢气、0.06sccm氧气和0.5sccm甲烷,利用高温下甲烷在铜箔表面的催化裂解,在矩形盒子的内壁上生长形成大尺寸的单层单晶石墨烯;
(5)石墨烯的降温:石墨烯生长结束后,停止通入甲烷,停止加热,在氩气、氢气和氧气的气氛下,将单层单晶石墨烯自然降温至室温。
作为优选,步骤(1)中的铜箔在剪切之前,还包括如下对所述铜箔处理的步骤:在室温环境下,用无水乙醇对所述铜箔表面进行清洁,再用干燥氮气吹干。
作为优选,步骤(1)中的CVD反应腔体具备用于加热铜箔的加热炉,所述CVD反应腔体上设有四个气体流量控制阀,四个气体流量控制阀分别连接甲烷储气瓶、氩气储气瓶、氢气储气瓶和氧气储气瓶,所述各储气瓶内装有相应的气体,所述甲烷、氩气、氢气和氧气均为高纯气体,纯度均为99.999%。
作为优选,步骤(1)中铜箔采用多晶铜箔,铜箔厚度为0.025mm,纯度为99.8%。
作为优选,步骤(1)中的石英管为耐高温的石英管。
作为优选,步骤(4)中的甲烷通入时间为2h,在矩形盒子的内壁上生长形成1mm-2mm的单层单晶石墨烯。
作为优选,所述单层单晶石墨烯为长方形单层单晶石墨烯,其长宽之比为2-4:1,且长方形单层单晶石墨烯的长边为平滑的边界,无树突状的缺陷。
本发明具有的有益效果:
(1)本发明中,通过维持铜箔温度不变,并控制氢气的流量,使铜箔表面由多晶结构转变为晶面为(100)取向的单晶结构,这为形成长方形单层单晶石墨烯提供了基础。
(2)本发明制备流程简单,可制备出毫米级长方形单层单晶石墨烯,且其产率可达90%,在石墨烯的制备过程中,通过控制通入甲烷的持续时间来调控单晶石墨烯的尺寸,且制得的单晶石墨烯呈长方形,并在单晶生长过程中,这形貌一直保持。
(4)本发明中,通过将铜箔剪切成矩形膜片,矩形膜片折叠成封闭的矩形盒子,矩形盒子的内部提供了准静态的环境,便于单晶石墨烯的均匀且匀速生长。
附图说明
图1是本发明制备毫米级长方形单层单晶石墨烯的一种流程示意图;
图2是本发明矩形盒子的一种制作流程示意图;
图3是本发明铜箔重构前后的X射线衍射对比图;
图4是使用本发明在铜箔上生长的单晶石墨烯的电子显微镜图;
图5是使用本发明制得的单晶石墨烯的两种形貌的统计结果;
图6a是使用本发明在铜箔上生长的两片单晶石墨烯的50倍光学显微镜图;
图6b是使用本发明生长的两片单晶石墨烯的典型拉曼光谱图;
图6c是使用本发明生长的两片单晶石墨烯的拉曼光谱中D峰的强度成像图;
图6d是使用本发明生长的两片单晶石墨烯的拉曼光谱中G峰的强度成像图;
图6e是使用本发明生长的两片单晶石墨烯的拉曼光谱中2D峰的强度成像图;
图6f是使用本发明生长的两片单晶石墨烯的拉曼光谱中2D峰峰宽的成像图;
图7a是使用本发明在铜箔上生长的单片单晶石墨烯的光学显微镜图;
图7b是使用本发明生长的单片单晶石墨烯转移到SiO2基底上之后测得的光学显微镜图;
图7c是使用本发明生长的单片单晶石墨烯的同位素标定的拉曼光谱成像图。
图中:1、膜片A;2、膜片B;3、中心线;4、短边A;5、长边A;6、短边B;7、长边B;8、折叠边A;9、折叠边B。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:一种毫米级长方形单层单晶石墨烯的制备方法,如图1-图7所示,具体步骤为:
(1)铜箔的预处理:
采用厚度为0.025mm,纯度为99.8%的多晶铜箔,在室温环境下,用无水乙醇对铜箔表面进行清洁,再用干燥氮气吹干;用剪刀将铜箔剪切成6.0cm*5.5cm的矩形膜片,将其折叠成封闭的矩形盒子;然后将矩形盒子装载到耐高温的石英管中,石英管置于CVD反应腔体中,CVD反应腔体抽至0.05Pa以下的近似真空状态;
(2)铜箔的升温:
向CVD反应腔体中持续通入纯度为99.999%、流量为300sccm的氩气,并在氩气的气氛下,对CVD反应腔体进行加热,使铜箔在1h内由室温加热到1035℃;
(3)铜箔的退火:
维持铜箔1035℃的温度,停止通入氩气,向CVD反应腔体中持续通入纯度为99.999%、流量为100sccm氢气,并在氢气的气氛下,进行铜箔的退火处理,退火处理时间为1h,铜箔表面由多晶结构转变为晶面为(100)取向的单晶结构,图3为铜箔重构前后的X射线衍射对比图,图中的上层曲线为铜箔退火前的X射线衍射谱线,该曲线表明铜箔表面为多晶结构,包含晶面为(111)取向的单晶结构(即峰α)和晶面为(100)或(200)取向的单晶结构(即峰β),其中,晶面(100)和晶面(200)为等效晶面,图中的下层曲线为铜箔退火后的X射线衍射谱线,该曲线表明铜箔表面已重构成为单晶面为(100)取向的单晶结构,这是形成长方形单层单晶石墨烯的主要原因;
(4)石墨烯的生长:
铜箔退火处理后,继续维持铜箔1035℃的温度,向CVD反应腔体中同步持续通入800sccm氩气、100sccm氢气、0.06sccm氧气和0.5sccm甲烷,其中氩气、氢气、氧气和甲烷的纯度均为99.999%,甲烷的通入时间为2h,利用高温下甲烷在铜箔表面的催化裂解,在矩形盒子的内壁上生长形成2mm的单层单晶石墨烯;该过程中,甲烷的持续通入时间决定了单晶石墨烯的最终尺寸,通常制备1mm-2mm左右的单晶石墨烯需要2小时;在上述实验参数条件下,若增加甲烷的持续通入时间,虽会近一步增大单晶石墨烯的尺寸,但通常会导致相邻单晶个体间相互融合,成为连续或局部连续地单层石墨烯薄膜;
(5)石墨烯的降温:
石墨烯生长结束后,停止通入甲烷,停止加热,在氩气、氢气和氧气的气氛下,将单层单晶石墨烯自然降温至室温,即可得到毫米级长方形的单层单晶石墨烯。
图1为本发明制备毫米级长方形单层单晶石墨烯的一种流程示意图,如图所示,区域a表示铜箔的升温阶段,区域b表示铜箔的退火阶段,区域c表示石墨烯的生长阶段,区域d表示石墨烯的降温阶段;在制备石墨烯的整个过程中,升温阶段只持续通入氩气,退火阶段只持续通入氢气,生长阶段持续通入氩气、氢气、氧气和甲烷,降温阶段持续通入氩气、氢气和氧气。
图2为本发明矩形盒子的一种制作流程示意图,具体制作过程如下:首先对矩形膜片沿其中心线进行对折,对折后,中心线左侧的膜片称为膜片A,中心线右侧的膜片称为膜片B;然后将膜片A和膜片B相贴拢,此时,膜片A上的两条短边A与膜片B上的两条短边B相贴拢,膜片A上的长边A与膜片B上的长边B相贴拢,最后将膜片A上的短边A和膜片B上的短边B一起折叠并压紧,形成折叠边A,将膜片A上的长边A和膜片B上的长边B一起折叠并压紧,形成折叠边B。通过上述操作将矩形膜片折叠成一个封闭的矩形盒子。
图4是使用本发明在铜箔上生长的单晶石墨烯的电子显微镜图,其中石墨烯的生长时间为1.5h,由图可知,单晶石墨烯的形貌为长方形。图5是使用本发明制得的单晶石墨烯的两种形貌的统计结果,其中G_t代表长方形单晶石墨烯,G_h代表六角形单晶石墨烯,由图可知,长方形单晶石墨烯的数量占压倒性,长方形单晶石墨烯和六角形单晶石墨烯的比例约为10:1。
图6a-图6f所展示的两片单晶石墨烯的生长时间均为2h,且已转移至通用硅片基底[SiO2(300nm)/Si]上。其中,图6f所示的2D峰峰宽为FWHM,即在谱峰强度为极大值一半对应的峰宽。由图6a-图6f可知,图6a中展示的两片长方形单晶石墨烯均为单层,且缺陷极少。
图7a是使用本发明在铜箔上生长的单片单晶石墨烯的光学显微镜图,所展示的单晶石墨烯的生长时间为30min;图7b是使用本发明生长的单片单晶石墨烯转移到SiO2基底上之后测得的光学显微镜图,所展示的单晶石墨烯的生长时间为45min;图7c是使用本发明生长的单片单晶石墨烯的同位素标定的拉曼光谱成像图,该图所示的区域与图7b矩形框所示区域相对应。由图7a-图7c可知,长方形单晶石墨烯的长边为平滑的边界,且在单晶生长过程中,这形貌一直保持。
最后,应当指出,以上实施例仅是本发明较有代表性的例子。显然,本发明不限于上述实施例,还可以有许多变形。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均应认为属于本发明的保护范围。

Claims (7)

1.一种毫米级长方形单层单晶石墨烯的制备方法,其特征在于,所述制备方法的步骤为:
(1)铜箔的预处理:用剪刀将铜箔剪切成所需尺寸的矩形膜片,将其折叠成封闭的矩形盒子后装载到石英管中,然后将石英管置于CVD反应腔体中,CVD反应腔体抽至0.05Pa以下的近似真空状态;
(2)铜箔的升温:向CVD反应腔体中持续通入300sccm氩气,并在氩气的气氛下,对CVD反应腔体进行加热,使铜箔在1h内由室温加热到1030℃-1050℃;
(3)铜箔的退火:维持铜箔1030℃-1050℃的温度,停止通入氩气,向CVD反应腔体中持续通入100sccm氢气,并在氢气的气氛下,进行铜箔的退火处理,退火处理时间为1h,铜箔表面由多晶结构转变为晶面为(100)取向的单晶结构;
(4)石墨烯的生长:铜箔退火处理后,继续维持铜箔1030℃-1050℃的温度,向CVD反应腔体中同步持续通入800sccm氩气、100sccm氢气、0.06sccm氧气和0.5sccm甲烷,利用高温下甲烷在铜箔表面的催化裂解,在矩形盒子的内壁上生长形成大尺寸的单层单晶石墨烯;
(5)石墨烯的降温:石墨烯生长结束后,停止通入甲烷,停止加热,在氩气、氢气和氧气的气氛下,将单层单晶石墨烯自然降温至室温。
2.根据权利要求1所述一种毫米级长方形单层单晶石墨烯的制备方法,其特征在于,步骤(1)中的铜箔在剪切之前,还包括如下对所述铜箔处理的步骤:在室温环境下,用无水乙醇对所述铜箔表面进行清洁,再用干燥氮气吹干。
3.根据权利要求1所述一种毫米级长方形单层单晶石墨烯的制备方法,其特征在于,步骤(1)中的CVD反应腔体具备用于加热铜箔的加热炉,所述CVD反应腔体上设有四个气体流量控制阀,四个气体流量控制阀分别连接甲烷储气瓶、氩气储气瓶、氢气储气瓶和氧气储气瓶,所述各储气瓶内装有相应的气体,所述甲烷、氩气、氢气和氧气均为高纯气体,纯度均为99.999%。
4.根据权利要求1所述一种毫米级长方形单层单晶石墨烯的制备方法,其特征在于,步骤(1)中铜箔采用多晶铜箔,铜箔厚度为0.025mm,纯度为99.8%。
5.根据权利要求1所述一种毫米级长方形单层单晶石墨烯的制备方法,其特征在于,步骤(1)中的石英管为耐高温的石英管。
6.根据权利要求1所述一种毫米级长方形单层单晶石墨烯的制备方法,其特征在于,步骤(4)中的甲烷通入时间为2h,在矩形盒子的内壁上生长形成1mm-2mm的单层单晶石墨烯。
7.根据权利要求1-6中任一项所述的方法制备得到的单层单晶石墨烯,其中,所述单层单晶石墨烯为长方形单层单晶石墨烯,其长宽之比为2-4:1,且长方形单层单晶石墨烯的长边为平滑的边界。
CN201811273995.3A 2018-10-30 2018-10-30 一种毫米级长方形单层单晶石墨烯的制备方法 Withdrawn CN109112616A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811273995.3A CN109112616A (zh) 2018-10-30 2018-10-30 一种毫米级长方形单层单晶石墨烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811273995.3A CN109112616A (zh) 2018-10-30 2018-10-30 一种毫米级长方形单层单晶石墨烯的制备方法

Publications (1)

Publication Number Publication Date
CN109112616A true CN109112616A (zh) 2019-01-01

Family

ID=64854680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811273995.3A Withdrawn CN109112616A (zh) 2018-10-30 2018-10-30 一种毫米级长方形单层单晶石墨烯的制备方法

Country Status (1)

Country Link
CN (1) CN109112616A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904502A (zh) * 2019-12-13 2020-03-24 北京石墨烯研究院 石墨烯单晶及其生长方法
CN111690983A (zh) * 2019-03-11 2020-09-22 北京大学 一种米级大单晶高指数面铜箔的制备方法
CN112522775A (zh) * 2020-11-26 2021-03-19 深圳大学 一种晶圆级单晶铜箔的制备方法及规整石墨烯的制备方法
CN112920645A (zh) * 2021-01-22 2021-06-08 河南奇营石墨烯及装备制造有限公司 一种单晶石墨烯导电油墨的制备方法及单晶石墨烯导电油墨
CN115125524A (zh) * 2022-07-05 2022-09-30 常州第六元素半导体有限公司 一种分段式卷对卷cvd石墨烯连续生长设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275907A (zh) * 2011-06-09 2011-12-14 无锡第六元素高科技发展有限公司 一种基于化学气相沉积的高温原子透析制备石墨烯的方法
CN103643288A (zh) * 2013-11-29 2014-03-19 中国科学院金属研究所 一种高质量大尺寸单晶石墨烯的制备方法
CN105986315A (zh) * 2015-03-06 2016-10-05 兰州空间技术物理研究所 一种大尺寸单晶石墨烯的制备方法
CN108423659A (zh) * 2018-05-30 2018-08-21 绍兴文理学院 一种基于多晶铜箔的毫米级单层单晶石墨烯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275907A (zh) * 2011-06-09 2011-12-14 无锡第六元素高科技发展有限公司 一种基于化学气相沉积的高温原子透析制备石墨烯的方法
CN103643288A (zh) * 2013-11-29 2014-03-19 中国科学院金属研究所 一种高质量大尺寸单晶石墨烯的制备方法
CN105986315A (zh) * 2015-03-06 2016-10-05 兰州空间技术物理研究所 一种大尺寸单晶石墨烯的制备方法
CN108423659A (zh) * 2018-05-30 2018-08-21 绍兴文理学院 一种基于多晶铜箔的毫米级单层单晶石墨烯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAN WANG ET AL.: ""Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow"", 《ADVANCED MATERIALS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690983A (zh) * 2019-03-11 2020-09-22 北京大学 一种米级大单晶高指数面铜箔的制备方法
CN111690983B (zh) * 2019-03-11 2021-04-30 北京大学 一种米级大单晶高指数面铜箔的制备方法
CN110904502A (zh) * 2019-12-13 2020-03-24 北京石墨烯研究院 石墨烯单晶及其生长方法
CN112522775A (zh) * 2020-11-26 2021-03-19 深圳大学 一种晶圆级单晶铜箔的制备方法及规整石墨烯的制备方法
CN112522775B (zh) * 2020-11-26 2021-09-28 深圳大学 一种晶圆级单晶铜箔的制备方法及规整石墨烯的制备方法
CN112920645A (zh) * 2021-01-22 2021-06-08 河南奇营石墨烯及装备制造有限公司 一种单晶石墨烯导电油墨的制备方法及单晶石墨烯导电油墨
CN115125524A (zh) * 2022-07-05 2022-09-30 常州第六元素半导体有限公司 一种分段式卷对卷cvd石墨烯连续生长设备

Similar Documents

Publication Publication Date Title
CN109112616A (zh) 一种毫米级长方形单层单晶石墨烯的制备方法
CN108423659B (zh) 一种基于多晶铜箔的毫米级单层单晶石墨烯的制备方法
CN107287578B (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN110416065B (zh) 二硫化钼/二硒化钨垂直异质结的制备方法
CN109650354B (zh) 一种二维碲化铅纳米片的制备方法、应用和一种纳米材料
CN104746144B (zh) 一种二硫化锡单晶纳米片的制备方法
CN102424375B (zh) 一种制备碳纳米管垂直阵列的方法
Chaudhari et al. Heteroepitaxial silicon film growth at 600° C from an Al–Si eutectic melt
CN112359421B (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
Xing et al. Solid–liquid–solid (SLS) growth of coaxial nanocables: silicon carbide sheathed with silicon oxide
CN103193224A (zh) 在非金属基底上低温制备石墨烯薄膜的方法
CN103400760A (zh) 一种在硅衬底上生长硒化铋单晶薄膜的方法及装置
US20220081300A1 (en) Method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition
Cao et al. Template-catalyst-free growth of highly ordered boron nanowire arrays
Liu et al. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process
CN113278948A (zh) 一种硫化锡/二硫化锡异质结材料及其制备方法
CN111392685B (zh) 二维自组装的m1/m2-vo2同质结纳米片及其制备方法
CN103060907B (zh) 一种在绝缘材料上制备单晶石墨烯的方法
CN109023296A (zh) 一种在氟金云母衬底上化学气相沉积生长钼钨硒合金的方法
CN113755820A (zh) 一种大面积单层半导体二维ws2薄膜材料及其制备方法和应用
CN114959635A (zh) 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法
Thiandoume et al. Morphology transition of one-dimensional ZnO grown by metal organic vapour phase epitaxy on (0 0 0 1)-ZnO substrate
JPH02263789A (ja) ダイヤモンド単結晶膜を有するシリコン基板とその製造方法
CN111519186A (zh) 一种铁磁/石墨烯外延界面及其低温制备方法
Wang et al. Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190101

WW01 Invention patent application withdrawn after publication