CN109107609A - 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用 - Google Patents

一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用 Download PDF

Info

Publication number
CN109107609A
CN109107609A CN201810997712.3A CN201810997712A CN109107609A CN 109107609 A CN109107609 A CN 109107609A CN 201810997712 A CN201810997712 A CN 201810997712A CN 109107609 A CN109107609 A CN 109107609A
Authority
CN
China
Prior art keywords
nickel
gluconic acid
catalytic activity
catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810997712.3A
Other languages
English (en)
Other versions
CN109107609B (zh
Inventor
赵璐
王志玲
李辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810997712.3A priority Critical patent/CN109107609B/zh
Publication of CN109107609A publication Critical patent/CN109107609A/zh
Application granted granted Critical
Publication of CN109107609B publication Critical patent/CN109107609B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种葡萄糖酸增强催化活性的MOF催化剂的制备方法以及基于该催化剂电解水析氧的应用,属于纳米催化、纳米材料、金属有机框架物材料技术领域。其主要步骤是将间苯三甲酸溶液与硝酸镍溶液室温共混后,加入配制好的葡萄糖酸溶液,利用混合溶液作为电解液沉积到泡沫镍上,活化之后即得葡萄糖酸镍‑间苯三甲酸镍复合催化剂,即葡萄糖酸增强催化活性的MOF催化剂。该催化剂制备所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。该催化剂用于高效催化电解水析氧,具有良好的析氧电催化活性与电化学稳定性。

Description

一种葡萄糖酸增强催化活性的MOF催化剂的制备方法和应用
技术领域
本发明涉及一种葡萄糖酸增强催化活性的MOF催化剂的制备方法以及基于该催化剂电解水析氧的应用,属于纳米催化、纳米材料、金属有机框架物材料技术领域。
背景技术
现代社会的飞速发展引起了对环保可再生能源氢气的巨大需求,它作为一种理想能源,被提议变成未来世界的主要利用能源,属于二次能源。如今,氢气的产生主要通过天然气的蒸汽甲烷重整(即水和甲烷之间反应形成H2和CO2)。因此,现在生产氢气伴随着一系列的温室效应,这样既没做到再生也不能进行碳中和。相对于现在应用广泛的重整制氢,利用水的电解生产氢可再生又环保。电催化直接分解水制备氢气被认为实现该过程有效的方式。电催化分解水反应包括析氢(hydrogen evolution reaction,HER)和析氧(oxygenevolution reaction,OER)两个半反应,来自电阻、反应以及传输三个方面系统本征的能量损耗以及现有催化剂的价格、活性和稳定性方面的因素,都极大地限制了其推广和广泛应用。尽管析氧仅是一个副反应,但是为了驱动析氧反应给系统运行带来的功耗损失却最大,成为提高整体效率的瓶颈。寻找廉价易得且性能稳定的新型析氧电催化剂,对长远发展氢能、减小环境污染乃至缓解世界范围内的能源问题,具有广泛且重要的现实意义。
在众多的析氧催化剂中,对于MOF的研究越来越广泛和深入。金属-有机骨架材料(Metal-OrganicFrameworks)是指过渡金属离子与有机配体通过自组装形成的具有周期性网络结构的晶体多孔材料。它具有高孔隙率、低密度、大比表面积、孔道规则、孔径可调以及拓扑结构多样性和可裁剪性等优点,使得MOF在气体储存、分离、催化、识别和药物传输等领域获得了广泛的应用。
二氧化铱(IrO2)和二氧化钌(RuO2)是目前析氧催化剂中性能很好的组成部分,但是成本较高,因此开发高效、价廉且地球含量丰富的非贵金属析氧催化剂,降低析氧电消耗成为一个机遇和挑战。间苯三甲酸与硝酸镍形成的MOF已被许多实验及文献证实在电化学方面有着优异的性能,例如2018年孙旭平的团队用间苯三甲酸与硝酸镍合成了Ni3(BTC)2,并用来检测析氧性能,检测结果证明Ni3(BTC)2能够达到很好的析氧效果。提高析氧性能的途径一是使用更加稳定且性能更好的前驱体MOF以及基底如碳布、泡沫镍等,再者就是进行掺杂,常用的掺杂物质有石墨烯、含氮或含磷化合物、葡萄糖等等,早在1994年,ChebroluP. Rao就证实了糖类衍生物可以通过降低溶液pKa值来合成,并在文章中提及糖类衍生物的电化学使用价值[Chebrolu P. Rao等,Polyhedron, 1994, 13, 1895-1906],
目前,据我们所知,在此基础上掺杂葡萄糖酸进行析氧性能的研究未见报道。葡萄糖酸成本低,制备简易,价格低廉,本开发首先制备了间苯三甲酸-硝酸镍溶液,加入葡萄糖酸之后采用电化学沉积法,活化后制备了葡萄糖酸镍-间苯三甲酸镍复合催化剂,即一种葡萄糖酸增强催化活性的MOF催化剂。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种葡萄糖酸增强催化活性的MOF催化剂,即葡萄糖酸镍-间苯三甲酸镍复合催化剂的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述一种葡萄糖酸增强催化活性的MOF催化剂的用途,即将该葡萄糖酸镍-间苯三甲酸镍复合催化剂用于高效催化电解水析氧,该催化剂具有良好的析氧电催化活性与电化学稳定性。
为实现上述目的,本发明采用的技术方案如下:
1. 一种葡萄糖酸增强催化活性的MOF催化剂的制备方法,步骤如下:
将0.16-0.28 g葡萄糖酸钠与4.0-6.0 mL水共混,搅拌后在混合溶液中加入0.05-0.15mL硝酸,搅拌均匀后得葡萄糖酸溶液;
将0.20-0.22 g间苯三甲酸、0.35-0.37 g硝酸镍与4.0-6.0 mL N,N-二甲基甲酰胺共混,超声1min后,得绿色澄清溶液;
将两溶液混合,超声2-3 min;在该溶液中,以面积为1 cm×1 cm的活化泡沫镍NiF为工作电极,铂片为对电极,甘汞电极为参比电极,采用恒电位沉积法,合成葡萄糖酸镍-间苯三甲酸镍/NiF复合材料;将获得的复合材料,85℃活化4h,制得了活化的葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,即葡萄糖酸增强催化活性的MOF催化剂。
所述活化泡沫镍,是将泡沫镍依次在丙酮、无水乙醇及蒸馏水下超声2-4 min,洗涤除去表面杂物,再将泡沫镍浸渍在质量分数为10 %的盐酸中超声1 min制得。
所述恒电位沉积法,电位为-1.6~-2.0V,沉积时间为5-15 min。
所述葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,是掺杂了葡萄糖酸镍的间苯三甲酸镍Ni3(BTC)2负载在泡沫镍上的纳米复合材料;
所述负载在泡沫镍上的纳米复合材料,由宽小于100 nm、长为4-5 μm的纳米棒阵列构成。
2. 如上所述的制备方法制备的一种葡萄糖酸增强催化活性的MOF催化剂作为电解水析氧催化剂的应用,步骤如下:
将活化的葡萄糖酸镍-间苯三甲酸镍/NiF复合材料作为工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,甘汞电极为参比电极,使用三电极电化学工作站,在电解液为 1.0 MKOH的水溶液中测试电催化分解水性能;
上述葡萄糖酸增强催化活性的MOF催化剂电解水析氧,当电流密度J=5 mA/cm2时,电位小于1.25 V vs RHE;当电流密度J=10 mA/cm2时,电位小于1.38V vs RHE,均说明该材料高效的析氧催化活性;循环 1000 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。
本发明的有益的技术效果:
1.本发明制得的一种葡萄糖酸增强催化活性的MOF催化剂是由金属有机框架物Ni3(BTC)2与葡萄糖酸镍配合物复合生成,制备过程工艺简单,简单易控,产物制备效率高,易于工业化。
2. 本发明制得的一种葡萄糖酸增强催化活性的MOF催化剂,即葡萄糖酸镍-间苯三甲酸镍/NiF催化剂,是掺杂了葡萄糖酸镍的Ni3(BTC)2 负载在泡沫镍上的纳米复合材料。由于该材料由负载在泡沫镍上的纳米棒阵列构成,比表面积大,MOF特有的微孔以及纳米棒阵列构成的介孔和大孔,有利于电荷的传递;葡萄糖酸镍掺杂在间苯三甲酸镍的复合材料中,协同增强了导电及析氧催化性能,催化效率高且稳定性好。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种葡萄糖酸增强催化活性的MOF催化剂制备方法
将0.16 g葡萄糖酸钠与4.0 mL水共混,搅拌后在混合溶液中加入0.05 mL硝酸,搅拌均匀后得葡萄糖酸溶液;
将0.20 g间苯三甲酸、0.35 g硝酸镍与4.0 mL N,N-二甲基甲酰胺共混,超声1min后,得绿色澄清溶液;
将两溶液混合,超声2 min;在该溶液中,以面积为1 cm×1 cm的活化泡沫镍NiF为工作电极,铂片为对电极,甘汞电极为参比电极,采用恒电位沉积法,合成葡萄糖酸镍-间苯三甲酸镍/NiF复合材料;将获得的复合材料,85℃活化4h,制得了葡萄糖酸增强催化活性的MOF催化剂;
所述活化泡沫镍,是将泡沫镍依次在丙酮、无水乙醇及蒸馏水下超声2 min,洗涤除去表面杂物,再将泡沫镍浸渍在质量分数为10 %的盐酸中超声1 min制得。
所述恒电位沉积法,电位为-1.6V,沉积时间为5 min;
所述葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,是掺杂了葡萄糖酸镍的Ni3(BTC)2 负载在泡沫镍上的纳米复合材料。
实施例2 一种葡萄糖酸增强催化活性的MOF催化剂制备方法
将0.22 g葡萄糖酸钠与5.0 mL水共混,搅拌后在混合溶液中加入0.10 mL硝酸,搅拌均匀后得葡萄糖酸溶液;
将0.21 g间苯三甲酸、0.36 g硝酸镍与5.0 mL N,N-二甲基甲酰胺共混,超声1min后,得绿色澄清溶液;
将两溶液混合,超声2.5 min;在该溶液中,以面积为1 cm×1 cm的活化泡沫镍NiF为工作电极,铂片为对电极,甘汞电极为参比电极,采用恒电位沉积法,合成葡萄糖酸镍-间苯三甲酸镍/NiF复合材料;将获得的复合材料,85℃活化4h,制得了葡萄糖酸增强催化活性的MOF催化剂;
所述活化泡沫镍,制备同实施例1;
所述恒电位沉积法,电位为-1.8V,沉积时间为10 min;
所述葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,是掺杂了葡萄糖酸镍的Ni3(BTC)2 负载在泡沫镍上的纳米复合材料。
实施例3 一种葡萄糖酸增强催化活性的MOF催化剂制备方法
将0.28 g葡萄糖酸钠与6.0 mL水共混,搅拌后在混合溶液中加入0.15 mL硝酸,搅拌均匀后得葡萄糖酸溶液;
将0.22 g间苯三甲酸、0.37 g硝酸镍与6.0 mL N,N-二甲基甲酰胺共混,超声1min后,得绿色澄清溶液;
将两溶液混合,超声3 min;在该溶液中,以面积为1 cm×1 cm的活化泡沫镍NiF为工作电极,铂片为对电极,甘汞电极为参比电极,采用恒电位沉积法,合成葡萄糖酸镍-间苯三甲酸镍/NiF复合材料;将获得的复合材料,85℃活化4h,制得了葡萄糖酸增强催化活性的MOF催化剂。
所述活化泡沫镍,制备同实施例1;
所述恒电位沉积法,电位为-1.8V,沉积时间为15 min。
所述葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,是掺杂了葡萄糖酸镍的Ni3(BTC)2负载在泡沫镍上的纳米复合材料。
实施例4 实施例1-3所述的一种葡萄糖酸增强催化活性的MOF催化剂制备方法,所述间苯三甲酸镍,化学式为Ni3(BTC)2
实施例5 葡萄糖酸增强催化活性的MOF催化剂作为电解水析氧催化剂的应用
将实施例1、实施例2和实施例3制得的活化葡萄糖酸镍-间苯三甲酸镍/NiF复合材料分别作为工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,甘汞电极为参比电极,使用三电极电化学工作站,在电解液为 1.0 M KOH的水溶液中,采用线性扫描伏安法,测试电催化水分解析氧极化曲线;
三种活化葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,当电流密度J=5 mA/cm2时,电位均小于1.25 V(vs RHE);当电流密度J=10 mA/cm2时,电位小于1.38V(vs RHE),均说明该材料高效的析氧催化活性;循环1000 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。

Claims (6)

1.一种葡萄糖酸增强催化活性的MOF催化剂的制备方法,其特征在于,步骤如下:
将0.16-0.28 g葡萄糖酸钠与4.0-6.0 mL水共混,搅拌后在混合溶液中加入0.05-0.15mL质量分数为97 %的硝酸,搅拌均匀后得葡萄糖酸溶液;
将0.20-0.22 g间苯三甲酸、0.35-0.37 g硝酸镍与4.0-6.0 mL N,N-二甲基甲酰胺共混,超声1min后,得绿色澄清溶液;
将两溶液混合,超声2-3 min;在该溶液中,以面积为1 cm×1 cm的活化泡沫镍NiF为工作电极,铂片为对电极,甘汞电极为参比电极,采用恒电位沉积法,合成葡萄糖酸镍-间苯三甲酸镍/NiF复合材料;将获得的复合材料,85℃活化4h,制得了活化的葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,即葡萄糖酸增强催化活性的MOF催化剂。
2.如权利要求1所述的一种葡萄糖酸增强催化活性的MOF催化剂的制备方法,其特征在于,所述活化泡沫镍,是将泡沫镍依次在丙酮、无水乙醇及蒸馏水下超声2-4 min,洗涤除去表面杂物,再将泡沫镍浸渍在质量分数为10%的盐酸中超声1 min制得。
3.如权利要求1所述的一种葡萄糖酸增强催化活性的MOF催化剂的制备方法,其特征在于,所述恒电位沉积法,电位为-1.6~-2.0V,沉积时间为5-15 min。
4.如权利要求1所述的一种葡萄糖酸增强催化活性的MOF催化剂的制备方法,其特征在于,所述间苯三甲酸镍,化学式为Ni3(BTC)2
5.如权利要求1所述的一种葡萄糖酸增强催化活性的MOF催化剂的制备方法,其特征在于,所述葡萄糖酸镍-间苯三甲酸镍/NiF复合材料,是掺杂了葡萄糖酸镍的间苯三甲酸镍Ni3(BTC)2负载在泡沫镍上的纳米复合材料。
6.如权利要求1所述的制备方法制备的一种葡萄糖酸增强催化活性的MOF催化剂作为电解水析氧催化剂的应用。
CN201810997712.3A 2018-08-29 2018-08-29 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用 Expired - Fee Related CN109107609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810997712.3A CN109107609B (zh) 2018-08-29 2018-08-29 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810997712.3A CN109107609B (zh) 2018-08-29 2018-08-29 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN109107609A true CN109107609A (zh) 2019-01-01
CN109107609B CN109107609B (zh) 2021-04-20

Family

ID=64861260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810997712.3A Expired - Fee Related CN109107609B (zh) 2018-08-29 2018-08-29 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN109107609B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675639A (zh) * 2019-02-12 2019-04-26 济南大学 一种同时制备氢气和葡萄糖二酸的Ni-MOF/NiF双功能催化剂的制备方法和应用
CN111413379A (zh) * 2020-03-12 2020-07-14 济南大学 一种手性Ni-MOF/NiSR核壳复合材料的制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60119770D1 (de) * 2000-12-14 2006-06-22 Univ Hong Kong Verfahren und vorrichtung zur oxidation von glucosemolekülen
CN101153007A (zh) * 2006-09-27 2008-04-02 栾广胜 葡萄糖酸镍及其生产方法
CN101585561A (zh) * 2008-05-19 2009-11-25 浙江师范大学 葡萄糖二酸金属配合物掺杂β-Ni(OH)2制备的镍氢电池正极材料及其方法
CN105622693A (zh) * 2016-01-08 2016-06-01 南京工业大学 一种氧化型辅酶nad(p)+的化学再生方法
CN105854911A (zh) * 2016-06-23 2016-08-17 中国石油大学(华东) 一种用于析氢/析氧双功能的微米磷化镍电催化材料及其制备方法
CN106582887A (zh) * 2016-12-12 2017-04-26 南京工业大学 一种基于金属有机框架材料的新型催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60119770D1 (de) * 2000-12-14 2006-06-22 Univ Hong Kong Verfahren und vorrichtung zur oxidation von glucosemolekülen
CN101153007A (zh) * 2006-09-27 2008-04-02 栾广胜 葡萄糖酸镍及其生产方法
CN101585561A (zh) * 2008-05-19 2009-11-25 浙江师范大学 葡萄糖二酸金属配合物掺杂β-Ni(OH)2制备的镍氢电池正极材料及其方法
CN105622693A (zh) * 2016-01-08 2016-06-01 南京工业大学 一种氧化型辅酶nad(p)+的化学再生方法
CN105854911A (zh) * 2016-06-23 2016-08-17 中国石油大学(华东) 一种用于析氢/析氧双功能的微米磷化镍电催化材料及其制备方法
CN106582887A (zh) * 2016-12-12 2017-04-26 南京工业大学 一种基于金属有机框架材料的新型催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIBO SHI ETAL.: "Significantly Improved Electrocatalytic Activity of Copper-Based Structures that Evolve from a Metal-Organic Framework Induced by Cathodization Treatment", 《CHEMELECTROCHEM》 *
梅天庆: "从葡萄糖酸盐渡液中电镀枪色镍锡合金", 《材料保护》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675639A (zh) * 2019-02-12 2019-04-26 济南大学 一种同时制备氢气和葡萄糖二酸的Ni-MOF/NiF双功能催化剂的制备方法和应用
CN109675639B (zh) * 2019-02-12 2021-07-30 济南大学 一种同时制备氢气和葡萄糖二酸的Ni-MOF/NiF双功能催化剂的制备方法和应用
CN111413379A (zh) * 2020-03-12 2020-07-14 济南大学 一种手性Ni-MOF/NiSR核壳复合材料的制备方法与应用

Also Published As

Publication number Publication date
CN109107609B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN109518220B (zh) 以泡沫铜为基底构筑二维金属有机框架纳米水解电催化剂的制备方法及其应用于电解水析氢
CN110331414B (zh) 一种mof复合的铜基纳米棒阵列@泡沫铜基复合电极材料及其制备方法和用途
CN108716008B (zh) 三维镍铁层状双氢氧化物阵列及其室温制备方法与应用
CN108970640B (zh) 一种具备酸性全解水功能的金属有机框架物催化剂制备方法和应用
CN107486233B (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN108080034A (zh) 一种基于镍基三维金属有机框架物催化剂制备方法和应用
CN109806879A (zh) 一种CeO2-NiCo2O4/NF复合电催化材料及其制备方法和应用
CN113828300B (zh) 金属掺杂铋层状氧化物的制备方法及其在电催化还原co2中的应用
CN109321933A (zh) 一种mof/碳点纳米复合材料催化剂的制备方法和应用
CN113737215B (zh) 一种镍铁基纳米片/泡沫镍析氧反应电极材料的制备方法
CN109731586B (zh) 基于含铜金属有机框架衍生的分级多孔磷化铜/碳水解电催化剂的制备方法及其应用
CN107999079A (zh) 一种基于Cu(II)-MOF/Ni复合材料的制备方法和应用
CN109675639A (zh) 一种同时制备氢气和葡萄糖二酸的Ni-MOF/NiF双功能催化剂的制备方法和应用
CN112663087A (zh) 一种铁、氮掺杂硒化钴电催化剂的制备方法及其应用
CN110197909A (zh) 镍铁催化材料、其制备方法及在电解水制氢气、制备液态太阳燃料中的应用
CN109267145A (zh) 一种萘四酸酐Zn-MOF晶体材料及其制备方法和应用
CN112808274A (zh) 室温方法制备高性能的铁掺杂镍或钴基非晶态羟基氧化物催化剂及其高效电解水制氢研究
CN105177621A (zh) 一种钼氧簇修饰的二硫化三镍微米空心球催化剂及其应用
CN107570166B (zh) 一种复合碳和过渡元素氧化物纳米催化剂制备方法和应用
CN109301249B (zh) 一种泡沫镍原位负载SnO2纳米粒子掺杂石墨碳复合材料制备方法和应用
CN112647092A (zh) 一种负载型镍基复合物析氢催化剂及其制备方法和应用
Li et al. Recent advances in hybrid water electrolysis for energy-saving hydrogen production
CN109876846B (zh) 一种三维自支撑的Cu3PNW@CoFeP复合材料的制备方法
CN109107609A (zh) 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用
CN110629248A (zh) 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210420

Termination date: 20210829

CF01 Termination of patent right due to non-payment of annual fee