CN109103107A - 具有锗硅源漏的mos晶体管的制造方法 - Google Patents

具有锗硅源漏的mos晶体管的制造方法 Download PDF

Info

Publication number
CN109103107A
CN109103107A CN201810927566.7A CN201810927566A CN109103107A CN 109103107 A CN109103107 A CN 109103107A CN 201810927566 A CN201810927566 A CN 201810927566A CN 109103107 A CN109103107 A CN 109103107A
Authority
CN
China
Prior art keywords
mos transistor
germanium silicon
groove
leakage
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810927566.7A
Other languages
English (en)
Inventor
刘厥扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Original Assignee
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Integrated Circuit Manufacturing Co Ltd filed Critical Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority to CN201810927566.7A priority Critical patent/CN109103107A/zh
Publication of CN109103107A publication Critical patent/CN109103107A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种具有锗硅源漏的MOS晶体管的制造方法,包括步骤:步骤一、提供一硅衬底,在硅衬底的表面形成栅极结构。步骤二、在栅极结构的两侧形成侧面具有∑形状的凹槽,包括分步骤:步骤21、形成硬掩膜层;步骤22、光刻定义出凹槽的形成区域,进行硬掩膜层的刻蚀;进行硅衬底的第一次干法刻蚀并形成具有第一体积的凹槽;步骤23、采用第一离子注入工艺对凹槽的周侧的硅进行预处理;步骤24、进行第二次湿法刻蚀将凹槽扩展到第二体积;步骤三、在凹槽中填充锗硅外延层形成嵌入式锗硅层。步骤四、进行源漏注入形成源区和漏区。本发明能扩大凹槽的体积从而扩大嵌入式锗硅层的体积,从而改善MOS晶体管特别是PMOS管的电学性能。

Description

具有锗硅源漏的MOS晶体管的制造方法
技术领域
本发明涉及一种半导体集成电路制造方法,特别是涉及一种具有锗硅源漏的MOS晶体管的制造方法。
背景技术
MOS晶体管特别是PMOS管的源漏区往往需要形成嵌入式锗硅外延层,嵌入式锗硅外延层能够对PMOS管的沟道区的应力进行调制从而有利于提高PMOS的载流子迁移率,从而提高PMOS管的电学性能。MOS晶体管也通常简称为FET组成,PMOS管简称为pFET组件,NMOS管简称为nFET组件。
发明内容
本发明所要解决的技术问题是提供一种具有锗硅源漏的MOS晶体管的制造方法,能增加嵌入式锗硅外延层的体积,从而提高器件的电学性能。
为解决上述技术问题,本发明提供的具有锗硅源漏的MOS晶体管的制造方法包括如下步骤:
步骤一、提供一硅衬底,在所述硅衬底的表面形成栅极结构,所述栅极结构的侧面形成有侧墙。
步骤二、在所述栅极结构的两侧形成侧面具有∑(sigma)形状的凹槽,包括如下分步骤:
步骤21、形成硬掩膜层。
步骤22、采用光刻工艺在所述栅极结构的两侧定义出所述凹槽的形成区域,采用刻蚀工艺将所述凹槽形成区域的所述硬掩膜层去除;对所述凹槽形成区域的的所述硅衬底进行第一次干法刻蚀并形成具有第一体积的所述凹槽。
步骤23、采用第一离子注入工艺对第一体积的所述凹槽的周侧的硅进行预处理,所述预处理用于增加后续第二次湿法刻蚀的效率。
步骤24、进行第二次湿法刻蚀将所述凹槽由第一体积扩展到第二体积,通过所述预处理增加所述第二次湿法刻蚀形成的所述第二体积。
步骤三、在所述凹槽中填充锗硅外延层形成嵌入式锗硅外延层,通过增加所述第二体积增加所述嵌入式锗硅外延层并提高MOS晶体管的电学性能。
步骤四、在形成有所述嵌入式锗硅外延层的所述栅极结构的两侧进行源漏注入形成源区和漏区。
进一步的改进是,具有锗硅源漏的MOS晶体管为PMOS管。
进一步的改进是,步骤一中所述栅极结构由栅介质层和多晶硅栅叠加而成。
进一步的改进是,所述栅极结构作为伪栅,在所述步骤四的所述源区和所述漏区形成之后所述伪栅被去除,之后在所述伪栅去除的区域中形成金属栅结构。
进一步的改进是,所述金属栅结构为HKMG。
进一步的改进是,步骤一中在所述硅衬底表面形成有浅沟槽场氧,由所述浅沟槽场氧隔离出有源区,MOS晶体管形成于有源区中。
进一步的改进是,步骤一中所述侧墙的材料为氮化硅。
进一步的改进是,所述硬掩膜层的材料为氮化硅。
进一步的改进是,所述第一离子注入工艺的注入杂质包括硅,砷,氮,氩气,注入剂量为3E13cm-2~2E14cm-2
进一步的改进是,步骤三中形成嵌入式锗硅外延层的分步骤包括:
步骤31、形成由锗硅材料组成的缓冲层。
步骤32、形成由锗硅材料组成的主体层,所述主体层的锗浓度大于所述缓冲层的锗浓度。
步骤33、形成由硅材料组成的盖帽层。
进一步的改进是,所述缓冲层由第一缓冲子层和第二缓冲子层叠加而成。
进一步的改进是,所述第一缓冲子层的锗浓度为25%,所述第二缓冲子层的锗浓度为25%~30%。
进一步的改进是,所述主体层的锗浓度为30%~40%。
进一步的改进是,在同一所述硅衬底上还同时形成有NMOS管,在步骤二和三中所述NMOS管被保护而不形成所述凹槽以及所述嵌入式锗硅外延层。
进一步的改进是,所述NMOS管形成于P阱上,所述PMOS管形成于N阱上。
本发明对∑形状的凹槽的形成工艺做了精心的设计,主要是对凹槽的刻蚀工艺进行了改进,将凹槽的刻蚀工艺分成了第一次干法刻蚀和第二次湿法刻蚀,且在第二次湿法刻蚀之前增加了一次采用第一次离子注入工艺进行的预处理,通过预处理增加第二次湿法刻蚀的效率,如通过使凹槽周侧的硅在经过第一次离子注入后使晶格结构改变,晶格结构改变后的硅中非晶结构会增加,从而有利用湿法刻蚀,从而使得第二次湿法刻蚀完成后使凹槽的体积扩展的更大,即第二体积的值会得到增加,由于最后嵌入式锗硅外延层是形成于第二体积的凹槽中,故能增加嵌入式锗硅外延层的体积,本发明利用到嵌入式锗硅外延层的体积越大MOS晶体管的电学性能越好的特征,实现对MOS晶体管特别是PMOS管的电学性能的改善。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是本发明实施例方法的流程图;
图2A-图2E是本发明实施例方法各步骤中的器件结构图。
具体实施方式
如图1所示,是本发明实施例方法的流程图;如图2A至图2E所示,是本发明实施例方法各步骤中的器件结构图,本发明实施例具有锗硅源漏的MOS晶体管的制造方法包括如下步骤:
步骤一、如图2A所示,提供一硅衬底101,在所述硅衬底101的表面形成栅极结构105,所述栅极结构105的侧面形成有侧墙106,该侧墙106也同时延伸到所述栅极结构105的表面。
所述栅极结构105由栅介质层和多晶硅栅叠加而成。所述栅极结构105作为伪栅,在所述步骤四的所述源区和所述漏区形成之后所述伪栅去除,之后在所述伪栅去除的区域中形成金属栅结构。所述金属栅结构为HKMG。
在所述硅衬底101表面形成有浅沟槽场氧,由所述浅沟槽场氧隔离出有源区,MOS晶体管形成于有源区中。
所述侧墙106的材料为氮化硅。
本发明实施例中,具有锗硅源漏的MOS晶体管为PMOS管。在同一所述硅衬底101上还同时形成有NMOS管,在形成步骤二和三中所述NMOS管被保护而不形成凹槽以及嵌入式锗硅外延层。所述NMOS管形成于P阱104上,所述PMOS管形成于N阱103上。
步骤二、在所述栅极结构105的两侧形成侧面具有∑形状的凹槽,包括如下分步骤:
步骤21、如图2B所示,形成硬掩膜层107。
步骤22、如图2C所示,采用光刻工艺在所述栅极结构105的两侧定义出所述凹槽的形成区域,采用刻蚀工艺将所述凹槽形成区域的所述硬掩膜层107去除;对所述凹槽形成区域的的所述硅衬底101进行第一次干法刻蚀并形成具有第一体积的所述凹槽,图2C用标记108a标出了具有第一体积的所述凹槽。
步骤23、如图2D所示,采用第一离子注入工艺对第一体积的所述凹槽的周侧的硅进行预处理,所述预处理用于增加后续第二次湿法刻蚀的效率。第一离子注入工艺如标记201所示。
所述第一离子注入工艺的注入杂质包括硅,砷,氮,氩气,注入剂量为3E13cm-2~2E14cm-2。本发明实施例中,所述第一离子注入工艺能使凹槽周侧的硅的晶格结构改变,晶格结构改变后的硅中非晶结构会增加,从而有利用后续的湿法刻蚀。
步骤24、如图2E所示,进行第二次湿法刻蚀将所述凹槽由第一体积扩展到第二体积,通过所述预处理增加所述第二次湿法刻蚀形成的所述第二体积。
图2E中单独将形成所述凹槽的区域的多个所述栅极结构105表示出来,为了更清楚的表示所述凹槽结构,图2E中的各区域都采用不带填充的线体图形表示。最后形成的所述凹槽如标记108所示,标记108的顶部开口减小且顶部开口和所述栅极结构105侧面的侧墙106对齐,如虚线AA所示,图2E中的侧墙106叠加了所述硬掩膜层107刻蚀后残留在所述栅极结构105的侧面的部分;标记108的所述凹槽的口径逐渐增加并在增加到最大口径后又逐渐减少,最大口径的两侧和所述栅极结构105的侧面对齐,如虚线BB所示。
步骤三、如图2E所示,在所述凹槽中填充锗硅外延层形成嵌入式锗硅外延层,通过增加所述第二体积增加所述嵌入式锗硅外延层并提高MOS晶体管的电学性能。
如图2E所示,形成嵌入式锗硅外延层的分步骤包括:
步骤31、形成由锗硅材料组成的缓冲层。
所述缓冲层由第一缓冲子层1091和第二缓冲子层1092叠加而成。图2E中,第一缓冲子层1091和第二缓冲子层1092之间用一根虚线分割。
所述第一缓冲子层1091的锗浓度为25%,所述第二缓冲子层1092的锗浓度为25%~30%。
步骤32、形成由锗硅材料组成的主体层1093,所述主体层1093的锗浓度大于所述缓冲层的锗浓度。较佳为,所述主体层1093的锗浓度为30%~40%。
步骤33、形成由硅材料组成的盖帽层1094。
步骤四、在形成有所述嵌入式锗硅外延层的所述栅极结构105的两侧进行源漏注入形成源区和漏区。
本发明实施例对∑形状的凹槽的形成工艺做了精心的设计,主要是对凹槽的刻蚀工艺进行了改进,将凹槽的刻蚀工艺分成了第一次干法刻蚀和第二次湿法刻蚀,且在第二次湿法刻蚀之前增加了一次采用第一次离子注入工艺进行的预处理,通过预处理增加第二次湿法刻蚀的效率,如通过使凹槽周侧的硅在经过第一次离子注入后使晶格结构改变,晶格结构改变后的硅中非晶结构会增加,从而有利用湿法刻蚀,从而使得第二次湿法刻蚀完成后使凹槽的体积扩展的更大,即第二体积的值会得到增加,由于最后嵌入式锗硅外延层是形成于第二体积的凹槽中,故能增加嵌入式锗硅外延层的体积,本发明实施例利用到嵌入式锗硅外延层的体积越大MOS晶体管的电学性能越好的特征,实现对MOS晶体管特别是PMOS管的电学性能的改善。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (15)

1.一种具有锗硅源漏的MOS晶体管的制造方法,其特征在于,包括如下步骤:
步骤一、提供一硅衬底,在所述硅衬底的表面形成栅极结构,所述栅极结构的侧面形成有侧墙;
步骤二、在所述栅极结构的两侧形成侧面具有∑形状的凹槽,包括如下分步骤:
步骤21、形成硬掩膜层;
步骤22、采用光刻工艺在所述栅极结构的两侧定义出所述凹槽的形成区域,采用刻蚀工艺将所述凹槽形成区域的所述硬掩膜层去除;对所述凹槽形成区域的的所述硅衬底进行第一次干法刻蚀并形成具有第一体积的所述凹槽;
步骤23、采用第一离子注入工艺对第一体积的所述凹槽的周侧的硅进行预处理,所述预处理用于增加后续第二次湿法刻蚀的效率;
步骤24、进行第二次湿法刻蚀将所述凹槽由第一体积扩展到第二体积,通过所述预处理增加所述第二次湿法刻蚀形成的所述第二体积;
步骤三、在所述凹槽中填充锗硅外延层形成嵌入式锗硅外延层,通过增加所述第二体积增加所述嵌入式锗硅外延层并提高MOS晶体管的电学性能;
步骤四、在形成有所述嵌入式锗硅外延层的所述栅极结构的两侧进行源漏注入形成源区和漏区。
2.如权利要求1所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:具有锗硅源漏的MOS晶体管为PMOS管。
3.如权利要求2所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:步骤一中所述栅极结构由栅介质层和多晶硅栅叠加而成。
4.如权利要求3所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述栅极结构作为伪栅,在所述步骤四的所述源区和所述漏区形成之后所述伪栅被去除,之后在所述伪栅去除的区域中形成金属栅结构。
5.如权利要求4所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述金属栅结构为HKMG。
6.如权利要求1所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:步骤一中在所述硅衬底表面形成有浅沟槽场氧,由所述浅沟槽场氧隔离出有源区,MOS晶体管形成于有源区中。
7.如权利要求1所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:步骤一中所述侧墙的材料为氮化硅。
8.如权利要求7所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述硬掩膜层的材料为氮化硅。
9.如权利要求8所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述第一离子注入工艺的注入杂质包括硅,砷,氮,氩气,注入剂量为3E13cm-2~2E14cm-2
10.如权利要求1所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:步骤三中形成嵌入式锗硅外延层的分步骤包括:
步骤31、形成由锗硅材料组成的缓冲层;
步骤32、形成由锗硅材料组成的主体层,所述主体层的锗浓度大于所述缓冲层的锗浓度;
步骤33、形成由硅材料组成的盖帽层。
11.如权利要求10所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述缓冲层由第一缓冲子层和第二缓冲子层叠加而成。
12.如权利要求11所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述第一缓冲子层的锗浓度为25%,所述第二缓冲子层的锗浓度为25%~30%。
13.如权利要求10所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述主体层的锗浓度为30%~40%。
14.如权利要求2所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:在同一所述硅衬底上还同时形成有NMOS管,在步骤二和三中所述NMOS管被保护而不形成所述凹槽以及所述嵌入式锗硅外延层。
15.如权利要求14所述的具有锗硅源漏的MOS晶体管的制造方法,其特征在于:所述NMOS管形成于P阱上,所述PMOS管形成于N阱上。
CN201810927566.7A 2018-08-15 2018-08-15 具有锗硅源漏的mos晶体管的制造方法 Pending CN109103107A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810927566.7A CN109103107A (zh) 2018-08-15 2018-08-15 具有锗硅源漏的mos晶体管的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810927566.7A CN109103107A (zh) 2018-08-15 2018-08-15 具有锗硅源漏的mos晶体管的制造方法

Publications (1)

Publication Number Publication Date
CN109103107A true CN109103107A (zh) 2018-12-28

Family

ID=64849822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810927566.7A Pending CN109103107A (zh) 2018-08-15 2018-08-15 具有锗硅源漏的mos晶体管的制造方法

Country Status (1)

Country Link
CN (1) CN109103107A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599667A (zh) * 2020-05-29 2020-08-28 上海华力集成电路制造有限公司 离子注入工艺的光刻定义方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151257A (zh) * 2013-03-14 2013-06-12 上海华力微电子有限公司 一种σ型硅沟槽的制造方法
CN103943508A (zh) * 2014-03-27 2014-07-23 上海华力微电子有限公司 Pmos器件的制造方法
CN105702727A (zh) * 2014-11-28 2016-06-22 联华电子股份有限公司 金属氧化物半导体装置与其形成方法
US20170040449A1 (en) * 2015-08-03 2017-02-09 Semiwise Limited Reduced Local Threshold Voltage Variation MOSFET Using Multiple Layers of Epi for Improved Device Operation
CN107887277A (zh) * 2017-11-10 2018-04-06 上海华力微电子有限公司 一种制作sigma型锗硅的沟槽及器件的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151257A (zh) * 2013-03-14 2013-06-12 上海华力微电子有限公司 一种σ型硅沟槽的制造方法
CN103943508A (zh) * 2014-03-27 2014-07-23 上海华力微电子有限公司 Pmos器件的制造方法
CN105702727A (zh) * 2014-11-28 2016-06-22 联华电子股份有限公司 金属氧化物半导体装置与其形成方法
US20170040449A1 (en) * 2015-08-03 2017-02-09 Semiwise Limited Reduced Local Threshold Voltage Variation MOSFET Using Multiple Layers of Epi for Improved Device Operation
CN107887277A (zh) * 2017-11-10 2018-04-06 上海华力微电子有限公司 一种制作sigma型锗硅的沟槽及器件的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599667A (zh) * 2020-05-29 2020-08-28 上海华力集成电路制造有限公司 离子注入工艺的光刻定义方法

Similar Documents

Publication Publication Date Title
CN103762236B (zh) 集成电路组件及其制造方法
CN102664165B (zh) 基于标准cmos ic工艺制备互补隧穿场效应晶体管的方法
US7211864B2 (en) Fully-depleted castellated gate MOSFET device and method of manufacture thereof
CN103545213B (zh) 半导体器件及其制造方法
US20100203691A1 (en) High Voltage CMOS Devices
US9245955B2 (en) Embedded shape SiGe for strained channel transistors
TW388087B (en) Method of forming buried-channel P-type metal oxide semiconductor
US8048765B2 (en) Method for fabricating a MOS transistor with source/well heterojunction and related structure
CN103426768B (zh) 半导体器件制造方法
CN106206719B (zh) Mos晶体管及其形成方法
CN108573874B (zh) 具有hkmg的nmos的制造方法
CN108962754A (zh) 半导体装置及其制造方法
CN104362095B (zh) 一种隧穿场效应晶体管的制备方法
CN103985634A (zh) 一种pmos晶体管的制造方法
US9312378B2 (en) Transistor device
CN102751198B (zh) 半导体器件中mos晶体管的形成方法
JPWO2006030505A1 (ja) Mos型電界効果トランジスタ及びその製造方法
CN109103107A (zh) 具有锗硅源漏的mos晶体管的制造方法
US8609509B2 (en) Superior integrity of high-k metal gate stacks by forming STI regions after gate metals
CN108511347A (zh) 具有锗硅源漏的mos晶体管的制造方法
US6746926B1 (en) MOS transistor with highly localized super halo implant
CN109065624A (zh) 具有锗硅源漏的mos晶体管的制造方法
CN103985633A (zh) 一种pmos晶体管的制备方法
CN109427681B (zh) 半导体结构及其形成方法
CN104332409B (zh) 基于深n阱工艺隔离隧穿场效应晶体管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181228

RJ01 Rejection of invention patent application after publication