CN103545213B - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN103545213B
CN103545213B CN201210246830.3A CN201210246830A CN103545213B CN 103545213 B CN103545213 B CN 103545213B CN 201210246830 A CN201210246830 A CN 201210246830A CN 103545213 B CN103545213 B CN 103545213B
Authority
CN
China
Prior art keywords
source
grid
ldd
drain
halo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210246830.3A
Other languages
English (en)
Other versions
CN103545213A (zh
Inventor
秦长亮
殷华湘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210246830.3A priority Critical patent/CN103545213B/zh
Priority to PCT/CN2012/079352 priority patent/WO2014012272A1/zh
Priority to US13/989,297 priority patent/US8802533B1/en
Publication of CN103545213A publication Critical patent/CN103545213A/zh
Application granted granted Critical
Publication of CN103545213B publication Critical patent/CN103545213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • H01L29/66598Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET forming drain [D] and lightly doped drain [LDD] simultaneously, e.g. using implantation through the wings a T-shaped layer, or through a specially shaped layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种具有外延LDD和Halo区域的晶体管器件及其制造方法。采用了外延与自对准各向异性刻蚀相结合的工艺,避免了现有的采用的离子注入以及退火工艺形成Halo和LDD区域制造方法中的问题,在不增加光刻掩膜数量和复杂性的基础上,彻底消除了离子注入造成的源漏区域凹槽表面处晶体结构的破坏,从而避免影响到后续源漏材料外的延生长,同时,本发明也不会因常规的离子注入而导致外延源漏的应力释放,从而保持了源漏应力及其抑制SCE和DIBL效应的效果。

Description

半导体器件及其制造方法
技术领域
本发明涉及半导体器件及其制造方法领域,特别地,涉及一种具有外延LDD和Halo区域的晶体管器件及其制造方法。
背景技术
半导体集成电路技术在进入到90nm特征尺寸的技术节点后,维持或提高晶体管性能越来越具有挑战性。目前,应变硅技术成为一种通过抑制短沟道效应、提升载流子迁移率来提高MOSFET器件性能的基本技术。对于PMOS而言,人们采用在源漏区形成沟槽后外延生长硅锗的方法,提供压应力以挤压晶体管的沟道区,从而提高PMOS的性能。同时,对于NMOS而言,为了实现同样目的,在源漏区外延硅碳的方法也逐渐被采用。具体地,STI(浅沟槽隔离)、SPT(应力接近技术)、源漏硅锗/硅碳嵌入、金属栅应力、刻蚀停止层(CESL)等应力技术被提出。同时,在小尺寸的器件中通常采用LDD、Halo工艺分别抑制热载流子效应以及防止源漏穿通,而LDD与Halo主要是通过离子注入然后退火来实现。
然而,传统LDD和Halo工艺中的的离子注入以及退火会带来一些问题。如果是源漏外延前进行离子注入,注入可能会导致源漏凹槽表面处晶体结构遭到破坏,从而影响到后续源漏外延生长硅锗;如果是源漏外延后进行注入,注入将导致外延层的应力释放,降低源漏应力,从而减弱源漏应力抑制SCE和DIBL效应的效果。退火过程的高温可能会使预非晶化形成的非晶化层晶化。另外,还有可能产生TED(Transient Enhanced Diffusion,瞬态增强扩散)效应,以及掺杂元素不能实现比较高的激活状态。
因此,需要提供一种新的、晶体管及其制造方法,以解决上述问题,从而更好地确保晶体管性能。
发明内容
本发明提供一种具有外延形成的LDD和Halo区域的半导体器件及其制造方法,其避免了现有的Halo和LDD区域制造方法中的离子注入以及退火带来的问题。
根据本发明的一个方面,本发明提供一种半导体器件制造方法,用于制造具有外延LDD和Halo区域的晶体管,其包括如下步骤:
提供半导体衬底,在该半导体衬底上形成STI结构,并进行阱区注入;形成栅极绝缘层、栅极,定义栅极图形;形成栅极间隙壁,其覆盖在所述栅极的顶部以及所述栅极和所述栅极绝缘层的侧壁上;形成源漏区域凹槽;在所述源漏区域凹槽内外延Halo材料层,所述Halo材料层具有第一掺杂元素;外延源漏区域,其向晶体管沟道区域提供应力,所述源漏区域具有第二掺杂元素,且第二掺杂元素的类型与第一掺杂元素的类型相反;各向同性刻蚀所述源漏区域,去除部分所述源漏区域材料,同时,去除位于所述栅极间隙壁正下方的部分Halo材料层并向晶体管沟道区域延伸一定的距离,剩余的Halo材料层形成了晶体管的Halo区域;外延LDD材料层,形成晶体管的LDD区域;形成源漏接触。
在本发明的方法中,所述Halo区域的厚度为1nm到100nm,优选为1nm到10nm。
在本发明的方法中,对于PMOS,所述Halo区域的材料为硅或硅锗,第一掺杂元素为N型掺杂元素,优选为磷;对于NMOS,所述Halo区域的材料为硅或硅碳,第一掺杂元素为N型掺杂元素,优选为硼。
在本发明的方法中,所述Halo区域的掺杂浓度为1e13-1e21cm-3,优选为1e13-1e15cm-3
在本发明的方法中,所述LDD材料层的掺杂剂量小于所述源漏区域的掺杂剂量;所述LDD区域的掺杂浓度为1e13-1e15cm-3,所述源漏区域的掺杂浓度为1e15-1e20cm-3
在本发明的方法中,对于PMOS,所述LDD区域的材料为硅或硅锗,掺杂元素为P型掺杂元素,优选为硼;对于NMOS,所述LDD区域的材料为硅或硅碳,掺杂元素为N型掺杂元素,优选为磷。
在本发明的方法中,形成晶体管的LDD区域具体包括:在外延LDD材料层之后,自对准各向异性刻蚀暴露出的LDD材料层,仅使得位于所述栅极间隙壁正下方的源漏区域凹槽内的部分LDD材料层保留,从而形成晶体管的LDD区域,之后,再次外延源漏区域的材料,以弥补所述源漏区域在刻蚀中的损失。
在本发明的方法中,形成晶体管的LDD区域具体包括:在外延LDD材料层之后,不进行自对准各向异性刻蚀,之后,再次外延源漏区域的材料以抬升源漏区域。
在本发明的方法中,在形成栅极绝缘层、栅极的步骤中,所述栅极的材料为多晶硅,并且,采用后栅工艺,即,在形成所述金属硅化物之后,去除多晶硅材料的所述栅极,形成栅极空洞,在该栅极空洞中填充金属,从而形成金属栅极。或者,在本发明的方法中,在形成栅极绝缘层、栅极的步骤中,采用先栅工艺,即,所述栅极的材料为金属。本发明的半导体器件制造方法适用于高k/金属栅先栅或后栅集成工艺。
根据本发明的一个方面,本发明提供一种半导体器件,包括具有外延LDD和Halo区域的晶体管,其包括:
半导体衬底,位于该半导体衬底上的STI结构和阱区;栅极绝缘层和栅极组成的栅极堆栈;栅极间隙壁,其覆盖在所述栅极的顶部以及所述栅极和所述栅极绝缘层的侧壁上;源漏区域凹槽;外延形成的Halo区域,其位于所述源漏区域凹槽内,并具有第一掺杂元素;外延形成的源漏区域,其向晶体管沟道区域提供应力,所述源漏区域具有第二掺杂元素,且第二掺杂元素的类型与第一掺杂元素的类型相反;外延形成的LDD区域,其部分或者全部位于栅极间隙壁正下方的源漏区域凹槽内,所述LDD区域的掺杂剂量小于所述源漏区域的掺杂剂量,掺杂类型与所述源漏区域的掺杂类型相同;以及源漏接触。
在本发明的器件中,所述Halo区域的厚度为1nm到100nm,优选为1nm到10nm。
在本发明的器件中,对于PMOS,所述Halo区域的材料为硅或硅锗,第一掺杂元素为N型掺杂元素,优选为磷;对于NMOS,所述Halo区域的材料为硅或硅碳,第一掺杂元素为N型掺杂元素,优选为硼。
在本发明的器件中,所述Halo区域的掺杂浓度为1e13-1e21cm-3,优选为1e13-1e15em-3
在本发明的器件中,所述LDD区域的掺杂浓度为1e13-1e15em-3,所述源漏区域的掺杂浓度为1e15-1e20cm-3
在本发明的器件中,对于PMOS,所述LDD区域的材料为硅或硅锗,掺杂元素为P型掺杂元素,优选为硼;对于NMOS,所述LDD区域的材料为硅或硅碳,掺杂元素为N型掺杂元素,优选为磷。
本发明的优点在于:采用了外延与自对准各向异性刻蚀相结合的工艺,避免了现有技术中离子注入以及退火工艺形成Halo和LDD区域制造方法中的问题,在不增加光刻掩膜数量和复杂性的基础上,彻底消除了离子注入造成的源漏区域凹槽表面处晶体结构的破坏,从而避免影响到后续源漏材料外的延生长,同时,本发明也不会因常规的离子注入而导致外延源漏的应力释放,从而保持了源漏应力及其抑制SCE和DIBL效应的效果。另外,在本发明中,由于取消了离子注入之后的退火,晶体管掺杂元素能够实现比较高的激活状态,并且,避免了可能会造成的预非晶化形成的非晶化层晶化以及TED效应。
附图说明
图1-7本发明提供的具有外延LDD和Halo区域的晶体管制造方法流程示意图以及晶体管结构示意图。
具体实施方式
以下,通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明提供一种半导体器件及其制造方法,特别地涉及到涉及一种具有通过外延生长方式形成LDD和Halo的CMOS晶体管器件及其制造方法,其结构和制造流程参见附图1-7。
参见附图7,为本发明提供的半导体器件结构示意图。
本发明提供的半导体器件包括半导体衬底10,以及位于半导体衬底10上的STI结构11和阱区(未图示);栅极绝缘层12和栅极13组成的栅极堆栈;栅极间隙壁14,其覆盖在栅极13的顶部以及栅极13和栅极绝缘层12的侧壁上;源漏区域凹槽;外延形成的Halo区域15’位于源漏区域凹槽内,并具有第一掺杂元素;外延形成的源漏区域16,其向晶体管沟道区域提供应力,源漏区域16具有第二掺杂元素,且第二掺杂元素的类型与第一掺杂元素的类型相反;外延形成的LDD区域18,其部分或者全部位于栅极间隙壁14正下方的源漏区域凹槽内,LDD区域18的掺杂剂量小于所述源漏区域的掺杂剂量,掺杂类型与所述源漏区域的掺杂类型相同;以及源漏接触19。
下面将要详细描述本发明提供的半导体器件制造方法。
首先,参见附图1,在半导体衬底10上形成有STI(Shallow trench isolation,浅沟槽隔离)结构11,以及栅极绝缘层12、栅极13和栅极间隙壁14。具体而言,提供半导体衬底10,本实施例中采用了单晶硅衬底,可选地,也可采用锗衬底或者其他合适的半导体衬底。在半导体衬底10上形成STI结构11的方法具体包括,首先在半导体衬底10上涂布光刻胶,接着光刻出STI结构11图形,并对半导体衬底10进行各向异性的刻蚀获得浅沟槽,在该浅沟槽中填充介电材料,常见的如SiO2,从而形成STI。在形成STI结构11之后,进行阱区注入(未在图中示出)。PMOS阱区注入杂质为N型杂质,而NMOS阱区注入杂质为P型杂质。为了形成包括栅极绝缘层12和栅极13的栅极堆栈,先在衬底10表面沉积一层高K栅极绝缘材料薄膜。高K栅极绝缘材料具有比SiO2更大的介电常数,对晶体管器件性能更为有利。高K栅极绝缘材料包括一些金属氧化物、金属铝酸盐等,例如HfO2、ZrO2、LaAlO3等。栅极绝缘层12既要实现其栅绝缘特性,又要具有尽可能薄的厚度,其厚度优选为0.5-10nm,沉积工艺例如为CVD。在形成栅极绝缘层12之后,沉积栅极13的材料。栅极13为多晶硅、金属或金属硅化物等材料,其中,在先栅工艺(gate first)中,栅极13材料通常为金属或金属硅化物,而在后栅工艺(gate last)中,栅极13材料为多晶硅,在完成晶体管其它部件后,将会去除多晶硅栅极,然后形成金属或金属硅化物栅极。在沉积栅极材料后,进行光刻胶涂布,光刻,定义出栅极图形,对栅极13以及栅极绝缘层12顺序刻蚀,从而形成栅极图形。接着,形成栅极间隙壁14包括在衬底10上沉积间隙壁材料层,例如SiO2、Si3N4等等,采用保形性良好的沉积工艺,使其以期望的厚度覆盖栅极13和栅极绝缘层12。接着,去除衬底10表面的间隙壁材料层,使间隙壁材料层仅留存在栅极13的顶部以及栅极13和栅极绝缘层12的侧壁上,也即栅极间隙壁14包围整个栅极堆栈。栅极间隙壁14的厚度为1nm-100nm,优选为5nm-50nm。之后,利用STI结构11、栅极13和栅极间隙壁14为掩膜,对半导体衬底10进行各向异性的自对准刻蚀,形成源漏区域凹槽。
接着,参见附图2,在源漏区域凹槽内外延Halo材料层15,Halo材料层15具有第一掺杂元素。Halo材料层15的材料可选地为硅或硅锗(对于PMOS),或者,硅或硅碳(对于NMOS),其掺杂浓度为1e13-1e21cm-3,优选为1e13-1e15cm-3
接着,选择性地外延生长源漏区域16,参见附图3。源漏区域16材料可选地为硅或硅锗(对于PMOS),或者,硅或硅碳(对于NMOS),用以向MOS沟道区域提供应力,从而提高载流子迁移率。在外延的同时,可以进行原位掺杂,例如硼(PMOS)或者磷(NMOS),用以形成器件源漏区域的掺杂。对于PMOS,源漏区域16提供压应力,对于NMOS,源漏区域16提供张应力。源漏区域16具有第二掺杂元素,其中,第二掺杂元素的类型与第一掺杂元素的类型相反,即若源漏区域16掺杂为P型杂质(PMOS),则Halo材料层15掺杂为N型杂质,例如磷,若源漏区域16掺杂为N型杂质(NMOS),则Halo材料层15掺杂为P型杂质,例如硼。
接着,参见附图4,各项同性地刻蚀去除部分源漏区域16,同时,将处在SDE区(Source drain extension,源漏扩展区)(附图中虚线圈住的源漏凹槽部分)的Halo材料层刻蚀掉,也即向栅极下方的沟道方向钻蚀,去除位于栅极间隙壁14正下方的部分Halo材料层并向晶体管沟道区域延伸一定的距离。在这里,刻蚀掉SDE区的Halo材料层,可以避免SDE区的串联电阻太大。被部分刻蚀后剩余的Halo材料层形成了晶体管的Halo区域15’,其厚度为1nm到100nm,优选为1nm到10nm。
接着,参见附图5,外延LDD材料层17,形成晶体管的LDD区域。其中,LDD材料层17具有与源漏区域16相同的第二掺杂元素,例如,对于PMOS,LDD区域的的材料为硅或硅锗,掺杂元素为硼;对于NMOS,LDD区域的的材料为硅或硅碳,掺杂元素为磷。但是,LDD材料层17的掺杂剂量小于源漏区域16的掺杂剂量,例如,源漏区域16的掺杂剂量为1e15-1e20cm-3,而LDD材料层17的掺杂剂量为1e13-1e15cm-3。在形成晶体管LDD区域的过程中,可以通过在源漏区域凹槽中外延LDD材料层17直接形成,即在外延LDD材料层之后,不进行自对准各向异性刻蚀,之后,再次外延源漏区域的材料以抬升源漏区域,降低接触电阻。这样,LDD区域至少部分是位于栅极间隙壁14正下方的源漏区域凹槽内(参见附图5的情形),另外,也可通过如下步骤形成:参见附图6,在外延LDD材料层17之后,自对准地各向异性刻蚀暴露出的LDD材料层17,由于栅极间隙壁14的保护,位于栅极间隙壁14正下方的源漏区域凹槽内的部分LDD材料层得以保留,这部分残留的LDD材料层形成了晶体管的LDD区域18,之后,在源漏区域凹槽中再次外延源漏区域的材料,以弥补所述源漏区域在刻蚀中的损失,这样,LDD区域全部是位于栅极间隙壁14正下方的源漏区域凹槽内。
至此,通过外延形成的Halo和LDD区域已经实现。由于采用了外延与自对准各向异性刻蚀相结合的工艺,本发明中的Halo和LDD的形成方法避免了现有的采用的离子注入以及退火工艺形成Halo和LDD区域制造方法中的问题,在不增加光刻掩膜数量和复杂性的基础上,彻底消除了离子注入造成的源漏区域凹槽表面处晶体结构的破坏,从而避免影响到后续源漏材料外的延生长,同时,本发明也不会因常规的离子注入而导致外延源漏的应力释放,从而保持了源漏应力及其抑制SCE和DIBL效应的效果。另外,本发明中,由于取消了离子注入之后的退火,晶体管掺杂元素能够实现比较高的激活状态,并且,避免了可能会造成的预非晶化形成的非晶化层晶化以及TED(Transient Enhanced Diffusion,瞬态增强扩散)效应。
接下来,进行常规的晶体管制造工艺。参见附图7,形成金属硅化物作为源漏接触19,金属硅化物的材料例如是NiSi、NiSiGe、TiSi、TiSiGe。
若采用先栅工艺,则可以进行互连线的制备工艺。若采用后栅工艺,则可以去除之前形成的多晶硅栅极,并形成金属或金属硅化物栅极,完成栅极制备,之后再进行互连线制备。
以上参照本发明的实施例对本发明予以了说明。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本发明的范围。本发明的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替换和修改,这些替换和修改都应落在本发明的范围之内。

Claims (16)

1.一种半导体器件制造方法,用于制造具有外延LDD和Halo区域的晶体管,其特征在于包括如下步骤:
提供半导体衬底,在该半导体衬底上形成STI结构,并进行阱区注入;
形成栅极绝缘层、栅极,定义栅极图形;
形成栅极间隙壁,其覆盖在所述栅极的顶部以及所述栅极和所述栅极绝缘层的侧壁上;
形成源漏区域凹槽;
在所述源漏区域凹槽内外延Halo材料层,所述Halo材料层具有第一掺杂元素;
外延源漏区域,其向晶体管沟道区域提供应力,所述源漏区域具有第二掺杂元素,且第二掺杂元素的类型与第一掺杂元素的类型相反;
各向同性刻蚀所述源漏区域,去除部分所述源漏区域材料,同时,去除位于所述栅极间隙壁正下方的部分Halo材料层并向晶体管沟道区域延伸一定的距离,剩余的Halo材料层形成了晶体管的Halo区域;
外延LDD材料层,形成晶体管的LDD区域;
形成源漏接触。
2.根据权利要求1所述的方法,其特征在于,所述Halo区域的厚度为1nm到100nm。
3.根据权利要求1所述的方法,其特征在于,所述Halo区域的厚度为1nm到10nm。
4.根据权利要求1所述的方法,其特征在于,对于PMOS,所述Halo区域的材料为硅或硅锗,第一掺杂元素为N型掺杂元素;对于NMOS,所述Halo区域的材料为硅或硅碳,第一掺杂元素为P型掺杂元素。
5.根据权利要求4所述的方法,其特征在于,对于PMOS,第一掺杂元素为磷;对于NMOS,第一掺杂元素为硼。
6.根据权利要求1所述的方法,其特征在于,所述Halo区域的掺杂浓度为1e13-1e21cm-3
7.根据权利要求1所述的方法,其特征在于,所述Halo区域的掺杂浓度为1e13-1e15cm-3
8.根据权利要求1所述的方法,其特征在于,所述LDD材料层的掺杂剂量小于所述源漏区域的掺杂剂量。
9.根据权利要求8所述的方法,其特征在于,所述LDD区域的掺杂浓度为1e13-1e15cm-3,所述源漏区域的掺杂浓度为1e15-1e20cm-3
10.根据权利要求1所述的方法,其特征在于,对于PMOS,所述LDD区域的材料为硅或硅锗,掺杂元素为P型掺杂元素;对于NMOS,所述LDD区域的材料为硅或硅碳,掺杂元素为N型掺杂元素。
11.根据权利要求10所述的方法,其特征在于,对于PMOS,掺杂元素为硼;对于NMOS,掺杂元素为磷。
12.根据权利要求1所述的方法,其特征在于,形成晶体管的LDD区域具体包括:在外延LDD材料层之后,自对准各向异性刻蚀暴露出的LDD材料层,仅使得位于所述栅极间隙壁正下方的源漏区域凹槽内的部分LDD材料层保留,从而形成晶体管的LDD区域,之后,再次外延源漏区域的材料,以弥补所述源漏区域在刻蚀中的损失。
13.根据权利要求1所述的方法,其特征在于,形成晶体管的LDD区域具体包括:在外延LDD材料层之后,不进行自对准各向异性刻蚀,之后,再次外延源漏区域的材料以抬升源漏区域。
14.根据权利要求1所述的方法,其特征在于,在形成栅极绝缘层、栅极的步骤中,所述栅极的材料为多晶硅,并且,采用后栅工艺,即,在形成所述源漏接触之后,去除多晶硅材料的所述栅极,形成栅极空洞,在该栅极空洞中填充金属,从而形成金属栅极。
15.根据权利要求1所述的方法,其特征在于,在形成栅极绝缘层、栅极的步骤中,采用先栅工艺,即,所述栅极的材料为金属。
16.根据权利要求14或15所述的方法,其特征在于,所述半导体器件制造方法适用于高k/金属栅先栅或后栅集成工艺。
CN201210246830.3A 2012-07-16 2012-07-16 半导体器件及其制造方法 Active CN103545213B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210246830.3A CN103545213B (zh) 2012-07-16 2012-07-16 半导体器件及其制造方法
PCT/CN2012/079352 WO2014012272A1 (zh) 2012-07-16 2012-07-30 半导体器件及其制造方法
US13/989,297 US8802533B1 (en) 2012-07-16 2012-07-30 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210246830.3A CN103545213B (zh) 2012-07-16 2012-07-16 半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN103545213A CN103545213A (zh) 2014-01-29
CN103545213B true CN103545213B (zh) 2016-12-28

Family

ID=49948199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210246830.3A Active CN103545213B (zh) 2012-07-16 2012-07-16 半导体器件及其制造方法

Country Status (3)

Country Link
US (1) US8802533B1 (zh)
CN (1) CN103545213B (zh)
WO (1) WO2014012272A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095568A (ja) * 2013-11-12 2015-05-18 株式会社東芝 半導体装置
CN105304481A (zh) * 2014-06-10 2016-02-03 联华电子股份有限公司 半导体元件及其制作方法
CN105261557A (zh) * 2014-06-26 2016-01-20 中芯国际集成电路制造(上海)有限公司 半导体器件的制作方法及半导体器件
CN105280492B (zh) * 2014-07-21 2018-08-10 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN105819395B (zh) * 2015-01-09 2017-09-05 中国科学院微电子研究所 半导体器件制造方法
US9397161B1 (en) * 2015-02-26 2016-07-19 International Business Machines Corporation Reduced current leakage semiconductor device
US9343300B1 (en) * 2015-04-15 2016-05-17 Globalfoundries Inc. Methods of forming source/drain regions for a PMOS transistor device with a germanium-containing channel region
KR102455149B1 (ko) * 2015-05-06 2022-10-18 삼성전자주식회사 반도체 소자의 제조 방법
US9691901B2 (en) * 2015-10-02 2017-06-27 United Microelectronics Corp. Semiconductor device
US9911849B2 (en) * 2015-12-03 2018-03-06 International Business Machines Corporation Transistor and method of forming same
US10796924B2 (en) * 2016-02-18 2020-10-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof by forming thin uniform silicide on epitaxial source/drain structure
US10276715B2 (en) * 2016-02-25 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
TWI668870B (zh) * 2016-12-15 2019-08-11 財團法人工業技術研究院 電晶體裝置
CN108962754B (zh) * 2017-05-19 2021-11-30 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
CN109585546A (zh) * 2017-09-29 2019-04-05 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
US10276719B1 (en) 2018-04-30 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
CN111384143B (zh) * 2018-12-27 2022-04-15 联芯集成电路制造(厦门)有限公司 晶体管结构
CN112447593B (zh) * 2019-08-30 2024-03-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US11362177B2 (en) * 2020-01-28 2022-06-14 Globalfoundries U.S. Inc. Epitaxial semiconductor material regions for transistor devices and methods of forming same
CN113394271A (zh) * 2020-03-13 2021-09-14 中芯国际集成电路制造(北京)有限公司 半导体结构及其形成方法
CN113394287A (zh) * 2020-03-13 2021-09-14 中芯国际集成电路制造(北京)有限公司 半导体结构及其形成方法
KR20220020715A (ko) 2020-08-12 2022-02-21 삼성전자주식회사 집적회로 소자
US20220320336A1 (en) * 2021-04-06 2022-10-06 Invention And Collaboration Laboratory Pte. Ltd. Mosfet structure with controllable channel length by forming lightly doped drains without using ion implantation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274894B1 (en) * 1999-08-17 2001-08-14 Advanced Micro Devices, Inc. Low-bandgap source and drain formation for short-channel MOS transistors
CN1773722A (zh) * 2004-10-12 2006-05-17 国际商业机器公司 场效应晶体管及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195985B2 (en) * 2005-01-04 2007-03-27 Intel Corporation CMOS transistor junction regions formed by a CVD etching and deposition sequence
US7727845B2 (en) * 2005-10-24 2010-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Ultra shallow junction formation by solid phase diffusion
US20090174002A1 (en) * 2008-01-09 2009-07-09 International Business Machines Corporation Mosfet having a high stress in the channel region
JP4911158B2 (ja) * 2008-10-30 2012-04-04 ソニー株式会社 半導体装置および固体撮像装置
CN101930923B (zh) * 2009-06-26 2012-12-05 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制作方法
US8357579B2 (en) * 2010-11-30 2013-01-22 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming integrated circuits
US10163724B2 (en) * 2012-03-01 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit device and method of manufacturing same
US8872228B2 (en) * 2012-05-11 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Strained-channel semiconductor device fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274894B1 (en) * 1999-08-17 2001-08-14 Advanced Micro Devices, Inc. Low-bandgap source and drain formation for short-channel MOS transistors
CN1773722A (zh) * 2004-10-12 2006-05-17 国际商业机器公司 场效应晶体管及其制作方法

Also Published As

Publication number Publication date
US20140217519A1 (en) 2014-08-07
WO2014012272A1 (zh) 2014-01-23
US8802533B1 (en) 2014-08-12
CN103545213A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
CN103545213B (zh) 半导体器件及其制造方法
US8716090B2 (en) Semiconductor device manufacturing method
US9917191B2 (en) Semiconductor devices and methods of manufacture thereof
US8557692B2 (en) FinFET LDD and source drain implant technique
US8614132B2 (en) Integrated circuit device with well controlled surface proximity and method of manufacturing same
US8569139B2 (en) Method of manufacturing strained source/drain structures
CN102931222B (zh) 半导体器件及其制造方法
US20070037326A1 (en) Shallow source/drain regions for CMOS transistors
US7410875B2 (en) Semiconductor structure and fabrication thereof
US8361895B2 (en) Ultra-shallow junctions using atomic-layer doping
CN103426769B (zh) 半导体器件制造方法
US20070029608A1 (en) Offset spacers for CMOS transistors
TW201349504A (zh) 使用氧化矽封裝、早暈及延伸植入於28奈米低功率高效能技術之pmos設備的晚原位摻雜矽鍺接合
JP2006278974A (ja) 半導体装置及びその製造方法
CN103426768B (zh) 半导体器件制造方法
US8318571B2 (en) Method for forming P-type lightly doped drain region using germanium pre-amorphous treatment
US9865505B2 (en) Method for reducing N-type FinFET source and drain resistance
CN110047754A (zh) 半导体器件及其制造方法
CN100547793C (zh) 双栅cmos半导体器件及其制造方法
US7687861B2 (en) Silicided regions for NMOS and PMOS devices
US20130244388A1 (en) Methods for fabricating integrated circuits with reduced electrical parameter variation
CN103594374B (zh) 半导体器件制造方法
CN103594420B (zh) 半导体器件制造方法
US8916430B2 (en) Methods for fabricating integrated circuits with the implantation of nitrogen
CN103594372A (zh) 半导体器件制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant