CN109065371B - 一种柔性电极及其制备方法和应用 - Google Patents

一种柔性电极及其制备方法和应用 Download PDF

Info

Publication number
CN109065371B
CN109065371B CN201810876851.0A CN201810876851A CN109065371B CN 109065371 B CN109065371 B CN 109065371B CN 201810876851 A CN201810876851 A CN 201810876851A CN 109065371 B CN109065371 B CN 109065371B
Authority
CN
China
Prior art keywords
carbon
flexible electrode
ferroferric oxide
carbon cloth
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810876851.0A
Other languages
English (en)
Other versions
CN109065371A (zh
Inventor
郝天琪
焦驰涛
俞丹
王炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810876851.0A priority Critical patent/CN109065371B/zh
Publication of CN109065371A publication Critical patent/CN109065371A/zh
Application granted granted Critical
Publication of CN109065371B publication Critical patent/CN109065371B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种柔性电极及其制备方法和应用。该柔性电极是碳纳米管碳布表面生长负载四氧化三铁。制备方法包括:将FeCl3 .6H2O、聚乙烯吡咯烷酮PVP和NaAc溶于溶剂中,搅拌,加入碳纳米管碳布,浸泡,在磁力作用下反应,冷却,清洗,烘干,即得。该柔性电极利用四氧化三铁和碳纳米管碳布的结合使得两种材料发挥了各自的优势,并且能够实现效果增强,获得预料不到的电化学效果。

Description

一种柔性电极及其制备方法和应用
技术领域
本发明属于柔性超级电容器及其制备方法和应用领域,特别涉及一种柔性电极及其制备方法和应用。
背景技术
随着社会的进步,人们的生活水平逐渐提高,近年来人们对可穿戴电子产品提出了越来越高的诉求,柔性超级电容器则是近年来柔性储能设备的研究重点,在可穿戴电子器件中起着重要的作用,其中柔性电极是其供能的关键,但是近年来关于柔性电极的制备存在的问题较多,在直接制备法中,粘合剂的使用使活性材料的电化学性能得到了限制,而间接制备法中,柔性基材上活性物质负载量低则限制了其进一步的发展。
因此,如何提高活性物质在柔性基材上的负载量以及减少粘合剂的使用成为主要技术问题。在当前研究广泛的活性材料中,碳材料具有良好的稳定性,金属氧化物具有较高的比电容,其中,一类磁性金属氧化物粒子近年来引起了研究人员的注意,即四氧化三铁纳米粒子。四氧化三铁由Fe2O3和FeO组成,电子可在二价铁和三价铁之间进行转移,因而具有良好的导电性,同时其具有良好的环境友好性能和成本低的特点,并具有高理论比电容。
专利CN201710801010.9制备了一种四氧化三铁/聚吡咯复合材料,但该材料为复合粉体,并未与柔性基材相融合。
发明内容
本发明所要解决的技术问题是提供一种柔性电极及其制备方法和应用,以克服现有技术中柔性基材上活性物质负载量低和粘合剂使用的缺陷。
本发明的一种柔性电极,所述电极是碳纳米管碳布表面生长负载四氧化三铁。
所述碳纳米管碳布负载四氧化三铁后增重率为10%~17%。
所述碳纳米管碳布为碳化后的碳纳米管/棉复合物。
所述碳纳米管碳布的制作方法为:将碳纳米管和碳布进行结合,然后将其浸渍聚合物溶液中,晾干后进行氮气碳化。
本发明的一种柔性电极的制备方法,包括:
将FeCl3·6H2O、聚乙烯吡咯烷酮PVP和NaAc溶于溶剂中,得到混合溶液,搅拌,加入碳纳米管碳布,浸泡,在磁力作用下反应,冷却,清洗,烘干,得到柔性电极,其中混合溶液中FeCl3·6H2O的浓度为1~250g/L,PVP、NaAc与溶剂的比例为1~2g:1.5~2.5g:20~40mL。
所述溶剂为乙二醇。
所述搅拌时间为30min~2h。
所述碳纳米管碳纤维为碳化后的碳纳米管/棉复合物。
所述浸泡时间为20~40min。
所述反应温度为180~250℃,反应时间为4~8h。
所述烘干温度为50~70℃。
所述磁力作用为:采用磁力搅拌器对反应进行控制,但是反应过程中不开启搅拌功能,只利用其磁力作用。
本发明的一种柔性电极的应用。包括在进一步组装过程中能够凭借磁力获得更好的组装性。
本发明以碳纳米管碳布为柔性基材,该材料具有吸附性好、稳定性强和导电性好的优点,采用氯化铁为四氧化三铁的合成来源,利用碳纳米管碳布的吸附性对含氯化铁溶液进行吸附,将铁离子吸附到碳纤维上,然后以吸附的铁离子为四氧化三铁生成位点进行反应。在此过程中,磁力作用可以使溶液中的四氧化三铁在生成的过程中有向下沉积的趋势,利于其在碳纤维上增强负载量,从而制备性能优异的柔性碳基电极。
本发明利用磁力的作用,使反应生成的四氧化三铁粒子不断沉积负载到碳纳米管碳布上,利用四氧化三铁间的磁力作用增加碳纳米管碳布上的四氧化三铁负载量,从而获得高电化学性能的柔性电极。
本发明采用所制备的柔性电极为工作电极,铂片为对电极,甘汞电极为参比电极,在电解质溶液为6M的Na2SO4溶液中进行电化学测试。
有益效果
(1)本发明中四氧化三铁和碳纳米管碳布的结合使得两种材料发挥了各自的优势,并且能够实现效果增强,获得预料不到的电化学效果,比电容值可达329·61F g-1(0.29A g-1),具有良好的循环稳定性能和弯曲性能。并且具有磁性的柔性电极在进一步组装过程中能够凭借磁力获得更好的组装性,该材料在柔性电极材料的制备领域具有巨大的潜力。
(2)本发明借助磁力的作用,可吸引更多的四氧化三铁负载到柔性基材上,从而获得高电化学性能的柔性电极,巧妙的避免了粘合剂的添加带来的成本问题和环境问题,并有效提高了四氧化三铁的负载量。
附图说明
图1为实施例1-6中柔性电极的增重率和电阻的对比曲线;
图2为实例4中柔性电极在不同扫描速率下的循环伏安曲线;
图3为实例4中柔性电极在不同电流密度下的充放电曲线;
图4为实例4中柔性电极的循环性能测试图;
图5为实施例4中碳纳米管碳布的循环伏安曲线图;
图6为实施例4中碳纳米管碳布的充放电测试曲线图;
图7为实施例4中碳纳米管碳布的循环性能测试图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例中所采用的化学试剂均来自国药集团化学试剂有限公司。
为了探索柔性电极的最佳使用条件,进行了如下实例:
实施例1
将一定量的FeCl3·6H2O,1.4g的PVP和2g的NaAc溶解在30mL乙二醇中,得到混合溶液,混合溶液中FeCl3·6H2O浓度为1g/L,搅拌2小时,获得均匀一致的黄色粘稠液体,随后加入碳纳米管碳布(由碳纳米管/棉复合物碳化后制得),浸泡30min后,将其一起密封到不锈钢反应釜(50mL,聚四氟乙稀为内衬)中,采用磁力搅拌器对反应进行控制,但是反应过程中不开启搅拌功能,只利用其磁力作用,在200℃下加热6h。反应结束后,等反应釜冷却至室温,小心取出负载四氧化三铁的碳纳米管碳布,用乙醇清洗数遍,最后将得到的产物在60℃下烘干,得到柔性电极,碳纳米管碳布负载四氧化三铁后增重率为10.98%,留样备用。
采用所制备的柔性电极为工作电极,铂片为对电极,甘汞电极为参比电极,在电解质溶液为6M的Na2SO4溶液中进行电化学测试。
实施例2~6
实施例2~6中混合溶液中FeCl3·6H2O浓度分别为5g/L、10g/L、50g/L、150g/L、250g/L;其余条件与实施例1相同,得到柔性电极,碳纳米管碳布负载四氧化三铁后增重率分别为13.27%、14.99%、16.16%、16.43%、16.73%。
图1表明:随着氯化铁浓度的提升,增重率不断上升,电阻不断下降,最终趋于平缓,但在50g/L后二者的变化不大,因此从节约成本等方面考虑,氯化铁的最佳浓度为50g/L,即实例4为最优方案。
对实例4中柔性电极进行电化学性能测试,测试结果如图2、图3所示,根据公式(1)进行电容值计算:
Figure BDA0001753487910000031
其中C为电容值(F g-1),I为电流(A),Δt为放电时间(s),ΔV为电压(V),m为质量(g)。
经计算该柔性电极的比电容为329.61F g-1(0.29A g-1),图4为1000次弯曲测试后的电容保留率图,电容保留率为98.5%,10000次循环稳定性测试后,电容保留率为103%,这是因为柔性电极在循环测试中活性材料不断被激活。
以碳纳米管碳布(由碳纳米管/棉复合物碳化后制得)为工作电极,铂片为对电极,甘汞电极为参比电极,在电解质溶液为6M的Na2SO4溶液中进行电化学测试。
碳纳米管碳布的电化学测试如图(5)和图(6),根据公式(1)进行计算,碳纳米管碳布的比电容为94.3F g-1(0.81A g-1),3000次循环后电容保留率为96%(图7)。
对比例1
专利CN107731557A发明了一种氮氧共掺杂多孔碳/四氧化三铁复合材料的制备方法,所述方法包括如下步骤:
(1)称取环戊二烯基铁1-20mmol和铁粉2.5-7.5mg于50mL的聚四氟乙烯反应釜内胆中,再加入六氯丁二烯及吡啶,六氯丁二烯的添加量为1-30mL,所述六氯丁二烯与吡啶的摩尔比为1:0.03-30,密封后放入高温反应釜中,旋紧反应釜盖,将其置于烘箱中于180-220℃,反应4-20小时;
(2)反应结束后,使其自然冷却至室温,关闭烘箱电源,打开反应釜,将釜中的产物全部转移到表面皿中,然后烘干得到半成品;
(3)将干燥后的半成品于聚四氟乙烯反应釜内胆中,加入饱和尿素溶液,半成品的质量与饱和尿素的添加量比例为每克半成品对应25ml饱和尿素,密封后放入高温反应釜中,旋紧反应釜盖,将其置于烘箱中于160-200℃反应6-20小时,自然冷却至室温,离心分离,水洗数次,置于真空干燥箱中90℃烘干;
(4)取适量上述制备样品至瓷舟中,将其置于管式炉的石英管中间部位,通氩气30min,排净管内的空气;然后设置温度和反应时间升温程序,升温速率为10℃/min,设置存储数据文件,控制气体流速,运行程序,使管式炉温度缓慢升至600-800℃,维持60-120min后仪器自动降温,冷至室温后关闭气体,获得超级电容器电极用氮氧共掺杂多孔碳/四氧化三铁复合材料。与本发明相比,该材料的比电容为346.7F/g在电流密度为1A/g的条件下,循环5000次后电容保留率为90%。

Claims (6)

1.一种柔性电极的制备方法,包括:
将FeCl3 .6H2O、聚乙烯吡咯烷酮PVP和NaAc溶于溶剂中,得到混合溶液,搅拌,加入碳纳米管碳布,浸泡,在磁力作用下反应,冷却,清洗,烘干,得到柔性电极,其中混合溶液中FeCl3 .6H2O的浓度为1~250g/L,PVP、NaAc与溶剂的比例为1~2g:1.5~2.5g:20~40mL;碳纳米管碳布为碳化后的碳纳米管/棉复合物。
2.根据权利要求1所述方法,其特征在于,所述电极是碳纳米管碳布表面生长负载四氧化三铁;所述碳纳米管碳布负载四氧化三铁后增重率为10%~17%。
3.根据权利要求1所述的方法,其特征在于,所述溶剂为乙二醇;搅拌时间为30min~2h。
4.根据权利要求1所述的方法,其特征在于,所述浸泡时间为20~40min。
5.根据权利要求1所述的方法,其特征在于,所述反应温度为180~250℃,反应时间为4~8h。
6.根据权利要求1所述的方法,其特征在于,所述烘干温度为50~70℃。
CN201810876851.0A 2018-08-03 2018-08-03 一种柔性电极及其制备方法和应用 Expired - Fee Related CN109065371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810876851.0A CN109065371B (zh) 2018-08-03 2018-08-03 一种柔性电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810876851.0A CN109065371B (zh) 2018-08-03 2018-08-03 一种柔性电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109065371A CN109065371A (zh) 2018-12-21
CN109065371B true CN109065371B (zh) 2020-03-10

Family

ID=64833156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810876851.0A Expired - Fee Related CN109065371B (zh) 2018-08-03 2018-08-03 一种柔性电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109065371B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110902770A (zh) * 2019-11-05 2020-03-24 东华大学 一种基于碳布的Fe3O4/C、Fe/C及其制备和应用
CN112382743A (zh) * 2020-11-09 2021-02-19 上海空间电源研究所 一种柔性硫化铜复合电极及其制备方法以及包含其的镁基二次电池
CN112885618B (zh) * 2021-03-10 2022-05-31 海南大学 一种负载金属氧化物的多孔碳电极材料及其制备方法
CN114709429B (zh) * 2022-03-02 2024-05-28 江苏科技大学 一种棉碳布/氮掺杂纳米碳/碳纳米管柔性一体化电极及制备方法和应用
CN114744224B (zh) * 2022-04-21 2023-11-21 浙江理工大学 一种氮掺杂碳纳米管负载镍钴复合纳米线的制备与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346291B (zh) * 2013-07-10 2015-12-02 昆明纳太能源科技有限公司 一种碳纳米纸基原位负载四氧化三铁的锂离子电池负极及其制备方法
CN107887181A (zh) * 2017-11-16 2018-04-06 东华大学 一种棉基碳纤维柔性电极的制备方法

Also Published As

Publication number Publication date
CN109065371A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109065371B (zh) 一种柔性电极及其制备方法和应用
ur Rehman et al. Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance
CN107399729A (zh) 一种双金属MOFs的含氮石墨化碳材料
Lin et al. Significance of PbO deposition ratio in activated carbon-based lead-carbon composites for lead-carbon battery under high-rate partial-state-of-charge operation
Gu et al. In-situ synthesis of novel nanostructured Pb@ C composites for improving the performance of lead-acid batteries under high-rate partial-state-of-charge operation
CN109678151A (zh) 一种无烟煤基氮掺杂多孔碳材料的制备方法与应用
CN113511647A (zh) 一种镍基金属有机框架衍生的二硒化镍/还原氧化石墨烯复合材料的制备方法
Huang et al. Hollow FeS2 nanospheres encapsulated in N/S co-doped carbon nanofibers as electrode material for electrochemical energy storage
CN111725001A (zh) 一种应用于超级电容器的氮掺杂中空多孔碳及其制备方法
Yang et al. Ultrahigh Rate Capability and Lifespan MnCo2O4/Ni‐MOF Electrode for High Performance Battery‐Type Supercapacitor
CN110854381B (zh) 一种氧化钴修饰的碳掺杂锡锰复合氧化物纳米纤维的制备方法
CN112967890A (zh) 一种拓扑电极材料及其制备方法和应用
CN111302403A (zh) 一种四氧化三铁@二硫化铁纳米复合材料的制备方法及其应用
Xiang et al. Supercapacitor properties of N/S/O co-doped and hydrothermally sculpted porous carbon cloth in pH-universal aqueous electrolytes: Mechanism of performance enhancement
CN105529194B (zh) 一种MnO2@石墨烯胶囊@MnO2复合材料的制备方法
Chen et al. Cu-MOFs derived three-dimensional Cu1. 81S@ C for high energy storage performance
CN110534351B (zh) 一种基于聚苯胺-镍钴铁氧体的超级电容器及其制法
CN111863462A (zh) 超级电容器用四氧化三铁/氮掺杂空心碳球复合材料及其制备方法
CN113782346B (zh) 一种聚3,4-乙撑二氧噻吩/钴酸镍/碳布柔性电极
CN111785940B (zh) 一种联吡啶锡片状复合材料及其制备方法
CN112837947B (zh) 无机-纤维素原料制备的氮硫共掺杂层状多孔碳杂化材料及制备和应用
CN109036874A (zh) 一种复合电化学储能炭材料及其制备方法和应用
CN111564317B (zh) 一种复合电极材料及其制备方法、超级电容器的电极及其制备方法
CN114496591A (zh) 一种不对称超级电容器电极的制备方法
CN108455685B (zh) 一种N/Co3O4多孔复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200310

CF01 Termination of patent right due to non-payment of annual fee